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Abstract

Drosophila melanogaster is a well-established model organism that is widely used in

genetic studies. This species enjoys the availability of a wide range of research tools,

well-annotated reference databases and highly similar gene circuitry to other insects.

To facilitate molecular mechanism studies in Drosophila, we present the Predicted

Drosophila Interactome Resource (PDIR), a database of high-quality predicted functional

gene interactions. These interactions were inferred from evidence in 10 public databases

providing information for functional gene interactions from diverse perspectives. The

current version of PDIR includes 102 835 putative functional associations with balanced

sensitivity and specificity, which are expected to cover 22.56% of all Drosophila protein

interactions. This set of functional interactions is a good reference for hypothesis

formulation in molecular mechanism studies. At the same time, these interactions also

serve as a high-quality reference interactome for gene set linkage analysis (GSLA), which

is a web tool for the interpretation of the potential functional impacts of a set of changed

genes observed in transcriptomics analyses. In a case study, we show that the PDIR/GSLA

system was able to produce a more comprehensive and concise interpretation of the

collective functional impact of multiple simultaneously changed genes compared with

the widely used gene set annotation tools, including PANTHER and David. PDIR and its

associated GSLA service can be accessed at http://drosophila.biomedtzc.cn.
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Introduction

Drosophila melanogaster, also known as the fruit fly, is one
of the most commonly used model organisms and has been
widely studied for more than a century (1, 2). The short
life cycle of 12 days, ease of maintenance, low cost and
abundance of genetic tools in Drosophila have made it a
leading model in genetics research. In addition to insects,
Drosophila shares many features, genes and pathways with
mammalian systems (1). It has also been widely used for
research in development (3), brain disease (4) and cancer
treatment (5).

Today, the omics technology has been extensively used
for molecular mechanism studies (6–8). The availability
of abundant and complicated omics data brings both an
unprecedented opportunity to comprehensively describe the
physiological status of study subjects at the molecular level
and, at the same time, an unparalleled challenge to elucidate
the underlying design logic of the physiological processes
from these comprehensive molecular-level descriptions.

To address this challenge, many approaches have been
developed to derive high-level biological senses from the
omics data. These approaches typically rely on the identi-
fication of a set of simultaneous changed genes (changed
gene set, CGS) between two physiological statuses and then
use an enrichment-based method to evaluate whether a CGS
has an enriched representation of a gene set that defined a
biological process. The widely used enrichment-based gene
set annotation tools include PANTHER (9), KEGG (10) and
DAVID (11).

In essence, this strategy summarizes the observed
CGS into established biological concepts. This strategy is
successful in many cases; however, in some cases where
no established biological concepts can be found to accu-
rately describe the change, enrichment-based approaches
frequently report no annotation term or conceptually very
general terms (such as GO:0008152, metabolic process)
are found. Such results provide little value to elucidate the
design logic of physiological processes and formulating
further hypotheses to achieve effective control over desired
traits.

On the other hand, when no established biological con-
cepts may accurately describe the observed CGS, we still
may use established concepts to describe the functional
impacts of the CGS. For example, observed CGS may col-
lectively lead to GO:0048867 (stem cell fate determination),
even when the CGS genes are not enriched with these terms
(for details, see ‘Discussion’). One way to implement this
analysis strategy is to evaluate whether the observed CGS
has strong functional associations with established biolog-
ical process gene sets. If genes in the CGS have frequent
functional associations with genes representing a biological
function, the CGS is expected to interfere with this biolog-

ical function. We call this strategy gene set linkage analysis
(GSLA), which has been successfully used in human and
Arabidopsis transcriptome interpretation (12, 13). GSLA
works for these two species because high-quality functional
association gene networks exist (13, 14).

In this study, we present a high-quality functional
association gene network for Drosophila, the Predicted
Drosophila Interactome Resource (PDIR), and its associ-
ated GSLA web tool. PDIR integrates six types of evidence
for functional gene association from public databases
with timestamps before 2018. The accuracy of inferred
functional associations in PDIR was assessed using protein
interactions recently reported after 2018. The current
version of PDIR includes 102 835 gene associations, which
are expected to cover ∼22.6% protein–protein interactions
of Drosophila. ∼50.5% of these functional associations are
expected to represent protein–protein interactions. PDIR
provides a web interface for users to query these functional
associations between individual genes, as well as a GSLA
web tool for users to interpret the collective functional
impact of multiple simultaneously changed genes. We also
present a case study to illustrate the use of PDIR/GSLA.

Materials and Methods

Source data

To train the prediction model, six types of evidence
suggesting functional associations between genes were
collected from seven public databases before 2018, which
include 11 937 expression profiles (Coxpresdb), 97 220
gene annotations (Gene Ontology Consortium, GOC),
60 368 domain interactions (IDDI and Pfam), 31 278
subcellular gene localizations (Compartments), 17 737 phy-
logenetic profiles (DIOPT) and 5628 Drosophila proteins
and proteins from Arabidopsis thaliana, Caenorhabditis
elegans, Homo sapiens, Mus musculus, Rattus norvegicus,
Saccharomyces cerevisiae and Schizosaccharomyces pombe
to compute interologs.

Protein–protein interactions were considered to be
a strong evidence of functional associations. In this
study, we attempt to predict functional associations that
are as strong as protein interactions (14). A total of
155 871 experimentally reported Drosophila protein–
protein interactions were collected from three public
databases, including BioGRID (15), IntAct (16) and FlyBase
(17) (Supplementary Table S1). To ensure the reliability of
example interactions, we removed those reported in less
than two independent studies and those reported only
in high-throughput experiments. This filtering resulted
in 4434 high-confidence protein–protein interactions
(Supplementary Table S1). For the prediction of functional
gene associations with uniform gene ID, we used Uniprot
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Figure 1. Workflow for the inference of functional interactions between Drosophila genes. High-quality experimental reported protein interactions

were integrated from three databases and were used as positive examples. Six types of functional association evidence from 10 databases were

collected to infer putative functional interactions. A total of 17 high-quality feature values were selected from 36 feature values that characterize this

evidence with different mathematical representations. Random gene pairs after removing positive examples were used as negative examples. The

number of negative examples was 100 times that of the positive examples.

(15) and BioMart (16) software to convert different gene
IDs to FlyBase ID (Figure 1).

Feature value computation

Thirty-six mathematical characterizations were used to
compute the feature values from the data collected
above. The detailed equations can be found in the PDIR
website. In total, 3 shared annotation features, 2 co-
expression features, 4 subcellular co-localization features,
23 domain interaction features, 3 phylogenetic profile
features and 1 homologous interaction feature resulted in
Supplementary Table S3.

Evaluation of feature values

The area under the curve (AUC) of the receiver operating
characteristic (ROC) test was used to evaluate the quality
of feature values to suggest functional associations. By
applying different cut-offs, each feature value produced a
series of sensitivities and specificities when it was used to
predict protein interactions, evaluated using our training
dataset (data before 2018). The sensitivities and specificities
corresponding to different cut-offs were plotted as the ROC
curve (X-axis, 1-specificity; Y-axis, sensitivity). Feature val-
ues with AUC less than 0.6 were considered not informative

to indicate strong functional associations and were removed
(Supplementary Figure S1).

Website construction

The PDIR database runs on LNMP, which is an integrated
running environment, including Linux, Nginx, MySQL and
PHP. The MySQL database is used for data storage, mainte-
nance and operation. The interaction interface is developed
with the Laravel framework based on PHP. The front-end
of PDIR is a Vue.js-based single page application (SPA).
Vue.js is an open-source JavaScript framework for interface
creation and a web application framework compatible with
SPA. The functional association network is visualized with
Cytoscape (17).

Microarray data analysis

We retrieved the microarray dataset GSE99071 from the
GEO database (18). The original research indicated that
approximately 1000 genes showed differential expression
(up- or down-regulated) in the Apc1 mutant (Apc1Q8, also
referred to as Apc1−/−) relative to the wild type (w1118).
Three biological repeats were performed for both the Apc1
mutant and the wild type. These expression profiles were re-
analyzed using the online GEO2R tool with default param-
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eters. The top 250 transcriptionally changed genes were
selected based on adj.P. Val (P-value after the adjustment
for multiple testing).

Results

Integration of data for the prediction of functional

associations between Drosophila genes

Experimentally reported protein–protein interactions
in Drosophila (D. melanogaster) were collected from
three databases, i.e. BioGRID (19), IntAct (20) and
FlyBase (21) (Figure 1 and Supplementary Table S1).
These interactions were further filtered by supporting
evidence provided in each database, keeping only exper-
imentally confirmed interactions (Figure 1). The resulting
dataset of high-confidence protein interactions was used
as positive examples in training the prediction model
(Supplementary Table S1).

In addition to protein–protein interactions, six types of
other evidence suggesting functional associations between
genes from different biological perspectives were collected
from seven databases, which include Coxpresdb (22), GOC
(23), Compartments (24), IDDI (25), Pfam (26), DIOPT
(27) and Inparanoid (28) (Figure 1). Using different math-
ematical characterizations, 36 feature values were derived
from these six types of evidence to characterize the strength
of functional association suggested by each type of evidence
(Supplementary Table S2).

Not all feature values are expected to provide equal
amount of information to suggest functional associations
between genes. To increase the signal-to-noise ratio in the
later functional association prediction step, we removed
features that did not show a strong correlation to functional
associations. The ROC curve was used to assess the capabil-
ity of a feature to indicate protein interactions. In this study,
protein interactions were considered a strong type of func-
tional association (13). Seventeen features with AUC greater
than 0.6 were selected for use (Supplementary Table S3 and
Supplementary Figure S1).

Prediction of functional associations between

genes

The libSVM package was used to train and predict func-
tional associations (29, 30) (Figure 1). Positive examples
include 4434 protein interactions published before 2018,
which represent examples of strong functional associations
between genes. Negative examples were prepared by gen-
erating random pairs of genes that do not overlap with
the positive examples. Considering the low probability
of two random genes having functional associations, the

generated negative examples are expected to include few
false negatives. The positive-to-negative ratio in the training
dataset was set to 1:100 to reflect the expectation that only
a small fraction of gene pairs has functional associations.
This approach of predicting functional gene associations
may be considered an implementation of transfer learning.
Both protein interactions and functional gene associations
may be predicted from the evidence of functional associa-
tions; furthermore, protein interactions may be considered
a special form of strong functional gene interactions. There-
fore, ‘knowledge’ (i.e. the classification model) gained from
predicting protein interactions may be used for predicting
functional gene associations. In practice, there are exper-
imentally reported gold-standard protein interactions, but
there is no well-established gold-standard dataset for strong
functional gene associations. With the strategy of transfer
learning, we may avoid the difficulty of lacking gold-stand
dataset when predicting functional gene associations and
use the knowledge gained in predicting protein interactions
(i.e. a special form of strong functional interactions) to
predict functional gene associations.

To train the prediction model, the soft-margin Gaus-
sian kernel SVM algorithm was used. The kernel width
parameter σ and soft-margin parameter C were optimized
with a 5-fold cross-validation targeting an optimal har-
monic mean of sensitivity and specificity. With optimized
σ and C, a prediction model was trained with all training
data. This model was validated with an external validation
dataset consisting of 559 protein interactions published
after 31 December 2017 and randomly generated negative
examples. In validation, this model showed a sensitivity of
22.15% and a specificity of 99.95%. For comparison, we
also evaluated how well the predicted interaction in DroID,
MIST and STRING covered these new interactions. Results
are shown in Supplementary Table S4.

Applying this model to all Drosophila gene pairs
produced 98 056 inferred functional associations. These
inferred functional interactions together with the 4779
known protein interactions make the PDIR dataset, which
consists of 102 835 interactions. To estimate how much
proportion of protein–protein interactions were covered
by the predicted functional interactome, we solved the
following equation:

Ninteractome × Sensitivity + (
Nall−pairs − Ninteractome

)

× (
1 − specificity

) = Npredict,

where Ninteractome is the expected number of all protein–
protein interactions in Drosophila, Nall−pairs is the number
of all gene pairs in Drosophila, Npredict is the number of pre-
dicted gene associations and sensitivity and specificity are
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Figure 2. Assessment of the capabilities of seven interactomes to group functionally associated genes together. The precision-recall curves of gene

function prediction using different interactomes are illustrated. Precision estimates the proportion of correct annotations identified by an interactome.

Recall estimates the proportion of new annotations that is identified by an interactome.

the accuracy measures produced when the prediction model
was validated with newly published protein interactions.
Solving this equation gives an estimated size of Drosophila
protein interactome 2.24 × 105. This number corresponds
to one protein interaction among 433 gene pairs, which is
on the same order of magnitude as the reported fraction of
protein interactions in yeast (1/775; (31)).

Evaluation of functional gene association

network

One way to evaluate the quality of a functional association
network is to evaluate how well it can group functionally
associated genes together. This quality may be measured by
the accuracy of using a gene’s network neighbors to predict
the gene’s function with the ‘guilt-by-association’ strategy.
In this study, the quality of the predicted functional asso-
ciations was compared with six existing Drosophila inter-
actomes, including FlyBase (21), ComPPI (32), DroID (33),
mentha (34), MIST (35) and STRING (36). For each gene
in each interactome, its GO biological process annotations
were predicted as the terms enriched in the annotations
of its first-degree network neighbors. In our evaluation,
PANTHER term enrichment tool (9) was used to compute
enriched terms.

We used the precision-recall curve to compare the over-
all accuracy of new annotation prediction across seven
interactomes. The data used to infer PDIR gene associa-
tions were collected before 2018 (31 December 2017). We

collected 2833 genes from GO (37, 38) with new annota-
tions dated up to 10 March 2019. These genes had a total
of 104 795 annotations, of which 11 464 annotations were
newly added (after 2018). Recall is measured as how much
proportion of these new annotations may be successfully
predicted. Precision is measured as how much proportion
of the PANTHER predicted annotations are consistent
with the known annotations (including both new and old
annotations).

Each PANTHER-predicted annotation has an enrich-
ment significance. The number of reported annotations will
change when a cut-off on the significance value is applied.
A higher cut-off will result in more reported annotations,
leading to higher recall but also a higher false positive
rate. In contrast, a lower cut-off will result in less reported
annotations, leading to lower recall but also higher pre-
cision. The advantage of the precision-recall curve is that
it shows precision and recall rates on different cut-offs,
which gives a more comprehensive view of the quality of
the interactome, independent of the selection of cut-offs.
The higher the AUC, the better an interactome may support
‘guilt-by-association’ prediction of gene function.

As shown in Figure 2, the PDIR curve resides on top
of others with the highest AUC, suggesting its superior
quality to group functionally associated genes together.
When the curve of PDIR reaches the high-recall region, it
maintains the highest precision. The curves of the other six
interactomes are below that of PDIR in all areas. Although
FlyBase, ComPPI, DroID, mentha and MIST have similar
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Figure 3. Interface of PDIR and GSLA. (A) Two search options in PDIR. (B) Search result page. A right click on the edge will show interaction details.

(C) Interface of GSLA. (D) Results of a GSLA analysis job.

high-precision regions, these curves did not reach the high-
recall regions. On the other hand, STRING reached the
high-recall region, but its precision did not increase much in
the low-recall region. This observation indicated that a high
proportion of STRING interactions were weak functional
gene associations, which may raise the false positive rates
during function prediction. In general, PDIR showed a
balance between coverage and accuracy. The overall quality
of PDIR exceeds those of other compared interactomes.

PDIR/GSLA web interface

The interface of PDIR is user-friendly and easy to operate.
PDIR provides two search options, a single gene search

and a multiple gene search (Figure 3A). Both search options
offer access to PDIR with FlyBase ID or gene name. Sin-
gle Gene mode reports putative functional associations
involving the query gene, whereas Multiple Genes mode
reports functional associations between the query genes.
The resulting functional associations are provided in a
tabular form (Figure 3B). A graphical view of the reported
functional associations is provided at the right side of the
query interface. The feature values that were used by our
model to predict these interactions will be provided if a
user correctly clicks the edges in the graphical view of
the reported functional associations. In addition, users can
also navigate to a gene information page that provides
more detailed annotation of a gene by clicking the nodes
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Figure 4. Two hypothesis tests that GSLA used to identify significant functional associations between two gene sets that are biologically meaningful.

Q1 tests whether the density of functional associations between two biologically meaningful gene sets is higher than random gene pairs, while Q2

tests whether the strong functional associations observed between two gene sets can only be observed from the biologically correct network, rather

than any random interactomes.

in the graphical view. Users can download all reported
functional associations between genes. A full dump of the
PDIR database is also available for download. More details
about the PDIR/GSLA web tool can be found on the help
section of the website.

The GSLA web tool was first developed with the pre-
dicted Arabidopsis interactome (13) for functional inter-
pretation of CGS in Arabidopsis. GSLA relies on testing
two hypotheses (Q1 and Q2) to ensure the significance
of reported functional associations between two gene sets
(Figure 4). The first test (Q1) examines whether the inter-
gene-set gene association density between functionally asso-
ciated gene sets is higher than the background gene associ-
ation density between random gene sets. The second test
(Q2) examines whether the observed high density between
functionally associated gene sets can only be observed in the
biologically correct functional gene association network. In
other words, the density observed in PDIR is higher than
the densities observed in random gene association networks
consisting of the same genes with each gene having the
same number of neighbors. In a biological sense, Q1 tests
the strength of a functional association between two gene
sets, while Q2 verifies that the observed strong functional
association is the result of biologically correct network
topology (i.e. our knowledge of the molecular mechanisms),
rather than the result of the compositions of these two gene
sets. Some genes, known as hubs, have considerably more

neighbors than other genes. Gene sets that include many
hubs are therefore more likely to connect to other gene
sets. Q2 is used to remove the confounding factor of gene
set composition and to ensure the biological significance of
the functional associations detected between gene sets. Q1
and Q2 are related but different tests that complement each
other to increase the sensitivity and specificity of GSLA. The
default criteria for GSLA to report a functional association
between gene sets are density > 0.01 for Q1 and P < 0.001
for Q2.

The PDIR web interface provides a link to the GSLA
online service that uses PDIR functional associations
to interpret the functional impacts of observed CGS in
Drosophila. The main interface of GSLA is illustrated in
Figure 3C. To submit an observed CGS, users can submit
a whitespace delimitated list of gene IDs. GSLA accepts
five types of Drosophila gene IDs, including FlyBase ID,
gene name, UniprotKB ID, Ensembl gene and protein ID
and NCBI Entrez ID. However, the internal server works
only with FlyBase ID. The submitted IDs, if accepted, will
be automatically mapped to FlyBase ID before further
computation. To prevent information loss associated with
ID mapping, it is suggested that submit CGS lists with
FlyBase ID are used. The criteria to report significant
functional associations (test Q1 and Q2 as described
above) can be customized (Figure 3C). Before submitting
an analysis job, users need to provide an email address
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Figure 5. Functional interpretations produced by PDIR/GSLA. Compared with GO enrichment analysis and DAVID, the annotations produced by

GSLA are more comprehensive and more accurate.

to receive the results. We recommend using the top 50–
200 changed genes as the query CGS to obtain optimal
functional impact interpretations. In the result file, the top
10 lines show the analysis parameters (Figure 3D). Below
is a table that shows the functionally associated biological
processes and functional association between the genes in
reported biological processes and the genes in the query
CGS.

Using the PDIR/GSLA system to re-analyze the

Apc1 knockdown dataset

Wnt signaling pathways play an important role in cell
fate determination and proliferation (39). Aberrant Wnt
signaling often leads to diseases including birth defects
and cancers (40). The canonical Wnt signaling pathways
are well understood (41). The Wnt/β-catenin pathway, a
canonical Wnt pathway, is conserved between humans and
Drosophila, which is known to regulate the proliferation of
intestinal stem cells (ISCs) (18, 42). In the Wnt ‘off’ state,
the transcription coactivator, β-catenin, is phosphorylated
and degraded by proteasome (18). When Wnt is ‘on’, β-
catenin becomes stable and translocates into the nucleus
to interact with DNA-binding transcription factor (18).
Hyperactivation of the Wnt pathway, which may be caused
by truncating mutations of the tumor suppressor adeno-
matous polyposis coli (APC), can initiate the development
of colorectal cancer (43, 44). Using the Drosophila model,

Tian et al. (18) demonstrated that Apc1 loss leads to the
overactivation of Wingless target genes, excessive number
of ISCs, defects in adhesion and epithelial polarity and
disorganization of the intestinal architecture. Two evo-
lutionarily conserved transcription cofactors, Earthbound
and Erect wing, are both essential for the hyperactivation
of Wnt signaling. In addition, Hayden et al. (45) found
that loss of Apc1 results in severe defects in optic lobe
development during the medullar development stage.

To investigate the pattern of gene regulation in the Apc1
mutant, Tian et al. (18) measured the midgut transcriptomes
of the wild-type and mutated lines using a microarray (GEO
database, GSE99071). These researchers reported that over
1000 genes showed more than 2-fold expression changes
(18). To assess whether the prediction tools can derive
helpful biological insights from these changed genes, we
performed PDIR/GSLA, DAVID (11) and GO enrichment
(37, 38) analysis with the top 250 changed genes. As shown
in Figure 5, GO enrichment analysis reported only one
GO term, GO:0019731, antibacterial humoral response
(Supplementary Table S5), which is not knowingly related
to the main physiology of Wnt pathways. The DAVID tool,
which relies on a term clustering technology, reported
Wnt-related biological processes that are consistent
with those reported by the original authors. However,
DAVID reported a total of 176 terms in 20 clusters
(Supplementary Table S6). Among them, there are 62 GO
terms. The top 20 GO terms (ranked by P-value) included
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many lipid metabolism and immune system processes.
These metabolism terms are also not knowingly related
to the main physiology of Wnt pathways. In contrast,
PDIR/GSLA reported 17 terms (Supplementary Table S7).
In addition to the Wnt pathway-related terms, PDIR/GSLA
also found stem cell proliferation-related items, which
are known to be the ‘functional impact’ of the Wnt
hyperactivation. An excessive number of ISCs is also an
observed phenotype of the Apc1 mutant (18). Furthermore,
GSLA also reported neuroblast development terms and
elastic fiber formation terms, which are well-known
functional impacts of the Wnt pathways. In this case study,
the interpretation provided by PDIR/GSLA is broader
and more accurate, which may better help experimental
biologists explain the observation and formulate further
hypotheses to elucidate the mechanisms of Wnt pathways.

Discussion

Before this study, there have been many efforts directed
at building reference interactomes for Drosophila. To
date, many related resources are available. For example,
BioGRID (19), IntAct (20) and FlyBase (21) are dedicated
to the curation of experimentally reported molecular
interactions. DroID (33) and MIST (35) provide both exper-
imentally reported interactions and interactions predicted
by interologs. STRING (36) provides predicted molecular
interactions. Experimentally reported interactions are more
accurate than predicted interactions. However, the number
of experimentally reported interactions is still small.
According to the estimated size of the Drosophila protein
interactome (2.24 × 105), a typical experimental interaction
dataset, FlyBase, included 41 272 interactions, which
represents 18.36% of protein interactome. This estimation
does not consider false positive experimental interactions.
Therefore, the actual coverages of these experimental
interaction databases are expected to be lower. Although
this coverage is comparable to PDIR, these interactions are
mostly protein interactions, which are only one type of
functional gene interaction. In contrast, PDIR is inferred
from multiple types of evidence suggesting functional
gene associations from different biological perspectives.
Therefore, PDIR consists of functional interactions that
are as strong as protein interactions, which provides a
more comprehensive view of the true functional gene
interaction network. On the other hand, databases that
provide predicted interactions enjoy high coverage of the
true protein interactome. For example, STRING provides
4 072 942 interactions and is estimated to cover 53.12%
of protein interactions. However, databases providing
predicted interactions often have very high false positive
rates. STRING, as a typical example, is expected to have

a low reliability of 2.93% if considered as a protein
interaction database. For these reasons, as demonstrated in
our new gene annotation prediction assessment (Figure 2),
both experimental reported interaction datasets and
predicted interactomes did not perform, as well as PDIR,
which enjoys a balanced sensitivity and reliability (22.6%
coverage and 50.5% reliability if evaluated as protein
interactome). Therefore, PDIR complements existing
Drosophila interactomes as a high-quality reference for
analyzing functional gene interactions.

The availability of PDIR enables the application of
GSLA for Drosophila CGS interpretation. To report
significant functional associations between two gene sets,
GSLA assesses the density of functional gene associations
between individual genes in two gene sets. Successful
application of this strategy requires that the reference
interactome has both high precision and high coverage of
true functional interactome, which requires an interactome
of balanced accuracy. Previous interactomes did not
satisfy this requirement. In our assessments, using other
interactomes, GSLA did not produce interpretations as
useful as PDIR (data not shown). The same case was
observed when we previously developed high-quality
functional interactomes for humans and Arabidopsis.

As mentioned in the introduction, the availability
of the PDIR/GSLA system enables the interpretation of
Drosophila CGS for their potential functional impacts,
which extends the capacity of current enrichment-based
tools to summarize CGS into known biological processes.
When there is no established biological concept that may
accurately describe an observed CGS, PDIR/GSLA may still
help researchers to understand the observed change in terms
of how it connects to related physiologies. Meanwhile, the
functional gene interactions provided in PDIR serve as a
useful reference for investigators to focus on genes that
likely mediate the mechanisms of interest.
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