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Abstract

The identification and accurate quantitation of protein abundance has been a major

objective of proteomics research. Abundance studies have the potential to provide users

with data that can be used to gain a deeper understanding of protein function and regula-

tion and can also help identify cellular pathways and modules that operate under various

environmental stress conditions. One of the central missions of the Saccharomyces

Genome Database (SGD; https://www.yeastgenome.org) is to work with researchers to

identify and incorporate datasets of interest to the wider scientific community, thereby

enabling hypothesis-driven research. A large number of studies have detailed efforts to

generate proteome-wide abundance data, but deeper analyses of these data have been

hampered by the inability to compare results between studies. Recently, a unified protein

abundance dataset was generated through the evaluation of more than 20 abundance

datasets, which were normalized and converted to common measurement units, in this

case molecules per cell. We have incorporated these normalized protein abundance data

and associated metadata into the SGD database, as well as the SGD YeastMine data

warehouse, resulting in the addition of 56 487 values for untreated cells grown in either

rich or defined media and 28 335 values for cells treated with environmental stressors.

Abundance data for protein-coding genes are displayed in a sortable, filterable table on

Protein pages, available through Locus Summary pages. A median abundance value was

incorporated, and a median absolute deviation was calculated for each protein-coding

gene and incorporated into SGD. These values are displayed in the Protein section of the

Locus Summary page. The inclusion of these data has enhanced the quality and quantity

of protein experimental information presented at SGD and provides opportunities for

researchers to access and utilize the data to further their research.

Website URL: https://www.yeastgenome.org
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Introduction

The Saccharomyces Genome Database (SGD) collects, orga-
nizes and presents biological information about the genes
and proteins of the budding yeast Saccharomyces cerevisiae
(1–2). This information can be used to direct experimental
research aimed at elucidating protein function and biolog-
ical role in the context of the cell. Currently, Protein pages
contain a descriptive overview of each predicted protein,
experimental data such as protein abundance and half-
life, structural domain information, primary amino acid
sequence from a variety of strains with overlaid experimen-
tal post-translational modification (PTM) data, physico-
chemical properties derived from the protein sequence, a
list of external identifiers and links to other resources that
may be of use to researchers. As a community resource, one
of the core missions of SGD is to interact with users in a
variety of ways to assess their needs and future research
directions. One aspect of this interaction involves working
with researchers to incorporate datasets of interest to the
wider scientific community.

Although many genes are controlled at the transcrip-
tional level, others are controlled translationally or post-
translationally, and yet others, including rate-limiting regu-
lators, are controlled at multiple levels. As a result, one goal
of proteomics research is to reliably measure and quantitate
protein content under standard growth conditions. Doing
so provides researchers with context regarding abundance
levels relative to other proteins in the proteome and pro-
vides baseline information that can then be extended to
answer questions regarding the regulation of protein levels
when cells are grown under stress conditions.

Recent advances in peptide labeling, sample preparation
and both sensitivity and accuracy of mass spectrometry-
based methods, coupled with advances in high-throughput
imaging techniques, robotics and computational approaches
to image analysis, have led to significant improvements in
both the identification and quantification of proteins (3,4).
These improvements have resulted in a proliferation of
papers providing protein abundance datasets and provide
an opportunity for the comprehensive analysis of protein
abundance (5–25).

We became interested in updating our protein abun-
dance data, with the goal of improving the quality and the
quantity of experimental protein information available to
our scientific community. As we surveyed the literature to
collect protein abundance datasets, we concurrently learned
that the laboratory of Grant Brown at the University of
Toronto was collecting and evaluating protein abundance
datasets with the goal of first normalizing the data pre-
sented in these studies and then converting it into the com-
mon units of molecules per cell (26). Since this dovetailed

nicely with our desire to enhance experimental protein
information presented on SGD Protein pages, we embarked
on a collaborative effort to integrate this information and
associated metadata into SGD. We also agreed that it would
be advantageous to include median abundance values, and
the Brown lab proposed calculating median absolute devi-
ation (MAD). The median abundance provides a measure
of the midpoint and makes it easier to compare the relative
abundance of two or more proteins. The MAD provides a
robust statistical measure of the variability within the abun-
dance values. These values were added to Locus Summary
pages for protein-coding genes and additionally integrated
into the YeastMine data warehouse so that the abundance
data and median values, even for large sets of genes, could
be easily retrieved with templated queries (27).

Data, metadata and ontologies

We focused our curation efforts on the unified dataset
obtained from the Brown lab (26). This paper contains
abundance data collected from the unified dataset pub-
lished by the Brown lab in Ho et al. (26), where protein
abundance data from 21 separate previously published
proteomic studies were collected and analyzed. These pre-
vious studies had generated protein abundance values by
any one of several independent methods, including mass
spectrometry, GFP tagging coupled with either fluorescence
microscopy or flow cytometry and tandem affinity purifi-
cation coupled with immunoblot analysis. Since the unit
space of the original data was either relative (abundance
units) or absolute (molecules per cell), Ho et al. (26) used
mode-shift normalization and scaling to convert all mea-
surements of protein abundance from these publications
into the intuitive units of molecules per cell. After filter-
ing values to remove background autofluorescence from
fluorescence microscopy-based studies, they removed low-
abundance GFP-fusion protein signals, reducing coverage
of the unified dataset from 97% to 92% of the proteome,
which represented 5391 proteins and improved correlation
with the calibration dataset (26). In addition to the baseline
data obtained under standard growth conditions, a subset
of GFP-based studies containing abundance data gathered
from cells exposed to various environmental stressors were
also analyzed (16–20, 23–24). For treated cells, abundance
values were also normalized and unified. When the value in
stressed cells was more than two standard deviations away
from the untreated average abundance, a fold change was
also calculated (26).

Metadata associated with the primary datasets used in
Ho et al. (26) was reviewed and verified. This included
the growth media, strain background, visualization method
and, for treated cells, the treatment (including the concen-
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Figure 1. Experimental Data Section of the Protein Page. This section of the Protein page contains two tables, one containing protein half-life data and

the second containing the protein abundance data, and associated metadata, along with the original reference and the reference for the combined

unified dataset. This table is both sortable and filterable.

tration of chemical applied to the cells, when applicable),
units and treatment time (26). To standardize the metadata
representation and enhance computational analysis, several
different ontologies were investigated. We used the
Experimental Factor Ontology (EFO; https://www.ebi.a
c.uk/efo/), originally developed to describe experimental
variables for expression studies, to represent yeast growth
media (28). We used the Evidence & Conclusion Ontology
(ECO; http://www.evidenceontology.org), a controlled
vocabulary that describes scientific evidence, to describe
the various visualization methods (29). When chemical

treatments were used to induce environmental stress, terms
from the Chemical Entities of Biological Interest (ChEBI;
https://www.ebi.ac.uk/chebi/), an ontology used to classify
chemicals based on both shared structural features and
activities, were used (30). Experimental treatments that
involved nitrogen starvation or cellular quiescence were
represented by Gene Ontology process terms (GO; http://
www.geneontology.org) (31). Finally, strain backgrounds
were recorded to document the genetic environment in
which abundance was measured (https://wiki.yeastgeno
me.org/index.php/Commonly_used_strains).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baaa008/5775554 by guest on 07 M

ay 2024

https://www.ebi.ac.uk/efo/
https://www.ebi.ac.uk/efo/
http://www.evidenceontology.org
https://www.ebi.ac.uk/chebi/
http://www.geneontology.org
http://www.geneontology.org
https://wiki.yeastgenome.org/index.php/Commonly_used_strains
https://wiki.yeastgenome.org/index.php/Commonly_used_strains


Page 4 of 6 Database, Vol. 2020, Article ID baaa008

Figure 2. Protein Section of the Locus Summary Page. The protein section of the Locus Summary pages, located between the Sequence and Gene

Ontology sections, contains the calculated median and MAD for the protein of interest expressed in molecules/cell in addition to basic sequence-

derived information (length, molecular weight and isoelectric point). Median was calculated based on all values for a given protein from untreated

cells, and MAD was calculated using the same values. When the median value was generated based on a single value, a MAD could not be calculated.

Integration of protein abundance data into SGD

and YeastMine

To store this novel unified protein abundance data in the
SGD database, we created a new database table containing
fields for recording the protein entity to which the specific
abundance value is associated, an identifier to indicate the
annotation source, a taxonomy ID indicating the strain
background and two reference IDs, one for the original
data source and a second for the data normalization and
unification paper. In addition, there are fields for the data
value, data unit, assay ID (ECO identifier) and media ID
(EFO identifier) for the various growth media used. For
cells treated with an environmental stress-inducing agent or
condition, the table contains fields for chemical ID (CHEBI
identifier), concentration value, concentration unit, time
value and time unit. For cases in which the environmental
stress was not a chemical treatment, this was captured
using a Gene Ontology process term and is stored as a GO
identifier. The fold change is also included in cases where the
value in stressed cells is more than two standard deviations
from the untreated average abundance. Finally, a median
value was calculated from all values for a given protein from
untreated cells and was used to calculate MAD using all

values from untreated datasets and a constant of C = 1 (26).
In cases where the median value was generated based on
data from a single study, the MAD could not be calculated.
Scaled protein abundance data for untreated and treated
cells were loaded into the SGD database, which houses the
data, metadata, original and unified data reference, median
and newly calculated MAD. Abundance data, metadata,
median abundance and MAD values were also added to our
YeastMine data warehouse, using the data integrated into
the SGD database as the source.

Accessing protein abundance data at SGD

Unified protein abundance data stored in our database are
displayed on our public website on the Protein page in
the experimental data section for each visualized protein-
coding gene (Figure 1). The table is located below a table
containing experimentally determined proteome-wide pro-
tein half-life data. This table, consistent with others on the
SGD website, can be both filtered and sorted. The data in
each table can be retrieved using the ‘Download’ button
located under the table (Figure 1). The median and MAD
values are displayed in the Protein section of the Locus
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Summary page, below sequence-derived values of protein
length, molecular weight and isoelectric point (Figure 2).

Additionally, these data can be explored and down-
loaded from YeastMine (https://yeastmine.yeastgenome.o
rg). Specifically, there are two templated pre-generated
queries in the protein category; ‘Gene to Protein Abun-
dance’, where abundance values for one or more proteins
or a user customized list of proteins can be retrieved, and
‘Gene to Median Protein Abundance’, where median and
MAD values for one or more proteins can be downloaded.
These data are downloadable as tab- (.tsv) or comma-
delimited text files (.csv), XML or JSON formats. Data
is also downloadable using the YeastMine API (https://yea
stmine.yeastgenome.org/yeastmine/api.do) or using SGD’s
web services (e.g. https://www.yeastgenome.org/webservi
ce/locus/S000000364/protein_abundance_details).

Future directions

We are currently investigating ways to better visualize the
protein abundance data. To provide users with an overview
of the abundance values and variance of protein(s) of
interest, we are exploring the use of scatter plots to visualize
the abundance value or median value for a given protein
relative to all other proteins and to visualize the effect of
treatment with stress on relative abundance. We will also
need to explore how best to update these data if additional
abundance datasets become available.
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