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Abstract

Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of

unknown aetiology. The complex mechanism of aetiopathogenesis, progress and

chronicity of the disease involves genetic, epigenetic and environmental factors. To

understand the molecular mechanisms underlying disease phenotypes, one has to place

implicated factors in their functional context. However, integration and organization of

such data in a systematic manner remains a challenging task. Molecular maps are widely

used in biology to provide a useful and intuitive way of depicting a variety of biological

processes and disease mechanisms. Recent large-scale collaborative efforts such as

the Disease Maps Project demonstrate the utility of such maps as versatile tools to

organize and formalize disease-specific knowledge in a comprehensive way, both human

and machine-readable. We present a systematic effort to construct a fully annotated,

expert validated, state-of-the-art knowledge base for RA in the form of a molecular map.

The RA map illustrates molecular and signalling pathways implicated in the disease.

Signal transduction is depicted from receptors to the nucleus using the Systems Biology

Graphical Notation (SBGN) standard representation. High-quality manual curation, use

of only human-specific studies and focus on small-scale experiments aim to limit false

positives in the map. The state-of-the-art molecular map for RA, using information from

353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8

phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106
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genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online

at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy

navigation and search of molecular pathways implicated in the disease. Furthermore,

the RA map can serve as a template for omics data visualization.

Introduction

Rheumatoid arthritis (RA) is a progressive inflammatory
and autoimmune disease with unknown aetiology. It affects
0.5–1% of the world population, and disease characteris-
tics involve synovial inflammation and hyperplasia, carti-
lage and bone destruction, production of autoantibodies
like rheumatoid factor (RF) and anti-citrullinated protein
(ACPA), and various systemic features such as cardiovas-
cular, pulmonary, psychological and skeletal disorders (1).
The pathogenesis of RA is a multistep process involving
an intricate interplay between genetic, environmental and
epigenetic mechanisms, a variety of intertwined signalling
cascades and the expression of pro-inflammatory mediators
(1, 2).

Systems Biology allows deciphering complex disease
mechanisms by treating biological processes in living organ-
isms as coordinated and interdependent events. Especially
in human diseases, genes and proteins rarely act alone when
affecting implicated cells, tissues or organs. To understand
the molecular mechanisms underlying these phenotypes,
one has to place the implicated biomolecules in their func-
tional context and interconnect them. This way, a graphical
representation of disease mechanisms is established and can
be refined, validated and interpreted using the wealth of
high-throughput biological data. Nevertheless, integration
and organization of both graph and data in a systematic
and standardized manner remains a challenge.

Molecular maps are widely used in biology to provide a
useful and intuitive way of depicting a variety of biological
processes and disease mechanisms. Examples of such maps
include the gastrin and cholecystokinin receptor signalling
(3), yeast stress response pathways (4), FceRI receptor
signalling in allergy (5), mitogen-activated protein kinase
(MAPK) pathways (6), Parkinson’s disease (7), Alzheimer’s
disease (8), influenza A virus (9), asthma (10), cancer (11)
and RA (12). Recent large-scale collaborative efforts such as
the Disease Maps Project (13, 14), demonstrate the utility
of such maps as versatile tools to organize and formalize
disease-specific knowledge in a comprehensive way, both
human and machine-readable.

In this work, we present a systematic effort to con-
struct a fully annotated, expert validated, state-of-the-art
knowledge base for RA in the form of a molecular map.
The RA map illustrates molecular and signalling pathways
implicated in the disease. Signal transduction is depicted

from receptors to the nucleus in a systematic fashion using
the Systems Biology Graphical Notation (SBGN) standard
representation (15). High-quality manual curation, use of
only human-specific studies and focus on small-scale exper-
iments aim to limit false positives in the map. The RA
map serves as an interactive knowledge base but also as
a template for omic data visualization. Omic datasets can
be superimposed on the map, pinpointing affected areas in
different samples.

Furthermore, the map is a good starting point for the
development of a computational model, providing an inter-
mediate step between a conceptual, mechanistic graph and
an executable mathematical model (12). The article com-
prises three parts. In the first part, we present the process
of constructing the RA map, highlighting the most criti-
cal pathways. In the second part, we transform the RA
map into a state-of-the-art interactive knowledge base for
the disease, which interfaces with various databases for
content annotation and enrichment analysis of experimen-
tal results. In the third part, we use bioinformatics tools
such as BioInfoMiner (16) (https://bioinfominer.com) and
Cytoscape (17) for the analysis of the RA map as a complex
biological network, revealing topological and functional
aspects of the map (Figure 1).

Methods

Construction of the RA map

CellDesigner (18) is a structured diagram editor for the
creation of gene-regulatory and biochemical networks. Net-
works are drawn using the Process Description visual lan-
guage of SBGN, and are stored using the Systems Biology
Markup Language (SBML) (20), a standard for represent-
ing models of biochemical and gene-regulatory networks.
In a CellDesigner diagram, nodes represent species like
proteins, genes, complexes and other molecules, and the
edges denote the interaction between the nodes, which
can be activation, inhibition, catalysis and state transi-
tion among other possible interactions (21, 22). A com-
prehensive molecular interaction map for RA was pub-
lished in 2010 (23) with information derived from high-
throughput data combined with interaction data from the
KEGG pathway database (24–27) (http://www.genome.jp/
kegg/pathway.html). The researchers of this study used
28 published studies for the construction of the first RA
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Figure 1. Workflow for the construction and use of the RA map. The assembly of the signalling and molecular pathways implicated in RA involves

exhaustive manual curation and information mining from literature, public databases and repositories and the use of the software CellDesigner (18).

The RA map contains mechanisms reported in the most recently published studies, after validation from RA experts. The map can be transformed

into an online interactive knowledge base using the platform MINERVA (19). Functional enrichment and topological analysis is possible using the

software BioInfoMiner (16) (https://bioinfominer.com) and Cytoscape (17), respectively.

map that included experiments performed in different cell
types/tissues/fluids such as the peripheral blood mononu-
clear cells, synovial fibroblasts, macrophages, chondrocytes,
synovial tissues, bone, blood, and synovial fluid (Figure S1,
Table S1). We used this RA map as a basis and extended it
to create a state of the art map for RA. However, apart from
updates, the first map has been significantly modified. A sys-
tematic effort was made to create an SBGN-compliant map,
the first to our knowledge. We also removed from the map
many factors and reactions that were either not disease-
specific or did not follow the curation criteria (discussed
in section Annotation and curation criteria). The map was
restructured to depict a cell layout. We grouped the recep-
tors by category (growth factors, cytokines, chemokines,
integrins and Toll-like receptors). For the updating, key-
words like ‘rheumatoid arthritis’, ‘pathogenesis of rheuma-
toid arthritis’, ‘cytokines involved in rheumatoid arthri-
tis’, ‘factors involved in rheumatoid arthritis’, ‘signalling
pathways in rheumatoid arthritis’ were used to select rel-
evant literature after 2010 (or older than 2010 that would
correspond to small-scale experiments, in order to anno-
tate nodes and reactions already present in the map) with
emphasis given on recent review articles and their reference
lists. We added proteins, genes and cellular phenotypes to

the map and used databases like KEGG pathway (24–27)
(http://www.genome.jp/kegg/pathway.html), and Ingenuity
Pathway Analysis (IPA) (28) to retrieve connections among
them, where it was not possible to retrieve the links directly
from the corresponding articles. All added factors were
discussed thoroughly with RA experts before addition to
the map and advice was taken for the best possible repre-
sentation of their mechanism of action.

Annotation and curation criteria

We carried out an exhaustive literature search for new
proteins, genes and other molecules involved in the patho-
genesis of RA. Relevant keywords and key phrases like
‘Pathogenesis of RA’, ‘Cytokines in the pathogenesis of
RA’, ‘Therapeutic targets in RA’ among many others were
used to filter the literature abstracts and studies in PubMed
and Google Scholar. Along with it, we used peer reviewed
articles concerning RA and searched their bibliographies
to mine relevant information. We focused only on studies
based on cells, fluids and tissues of human origin using
small-scale experiments, in an attempt to limit false posi-
tives from gene expression data used to construct the first
RA map. New RA mediators were added and referenced
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with at least two PubMed IDs. However, we made some
exceptions during the building of the map. For molecules
that were either published very recently (since January
2018) or were part of well-characterized pathways involved
in RA, we used one PubMed or KEGG ID. For the purposes
of this project, we aimed to be inclusive of the whole
spectrum of RA. In this context, we used RA as a defin-
ing criterion and did not make the distinction between
sero-negative and sero-positive RA when reviewing the
literature.

We added annotations for all the components (proteins,
RNAs and genes) and reactions present in the CellDe-
signer XML file using the sections text NOTE and Mini-
mal Information Requested In the Annotation of Models
(MIRIAM) (29), which are human and machine-readable
formats respectively (Figure S2). In the MIRIAM segment,
we added PubMed IDs for different cell types with the tag
‘bqbiol: is described by’. In the NOTE section, we added
text information about KEGG pathway identifiers used to
cross-validate interactions.

Evaluation of components and reactions

We carefully evaluated all elements and reactions of the
previous RA map and added annotations concerning exper-
imental validation with small-scale experiments where pos-
sible. Molecules, for which we could not find small-scale
experiments, were kept if appeared in at least two high-
throughput studies. We removed from the map molecules
that failed to fulfil the above criteria.

Compartments, structure and layout

To improve the layout of the molecular map, we used the
CellDesigner plugin Relayout Model (http://www.celldesi
gner.org/plugins.html). The RA map includes six compart-
ments, namely extracellular space, plasma membrane, cyto-
plasm (including Golgi apparatus, endoplasmic reticulum,
and mitochondria), nucleus, secreted molecules and cellular
phenotypes.

A cellular phenotype can be viewed as the endpoint
of multiple cellular processes that define and shape the
morphology and function of the cell, dictating its fate.
Extracellular space includes the protein ligands outside the
cell that can form a complex with the plasma membrane
receptors and proteins resulting in the activation of several
signalling cascades. Cytoplasm compartment includes the
signalling proteins, enzymes, small molecules and transcrip-
tion factors, which are subsequently transported to the
nucleus and are involved in gene expression regulation.
The nucleus compartment includes transcription factors
transported from the cytoplasm, genes and RNAs (miRNA

and mRNA). A separate compartment contains proteins
secreted out of the cell and, finally, a dedicated compart-
ment contains cellular phenotypes relevant for RA. The RA
map has the form of a cell with surrounding extracellu-
lar space, the cytoplasmic area containing organelles, pro-
teins and small molecules, the nucleus with gene-regulatory
mechanisms, secreted molecules and cellular phenotypes.
We used a distinct colour code for the components in the
RA map: plasma membrane receptors in peach, proteins in
purple, genes in green, RNAs in red and cellular phenotypes
in yellow. Inhibition edges are represented in red colour,
while for all others like state transition, catalysis, transport,
reduced physical stimulation and heterodimer association
we used black colour.

Experts’ advice and feedback

Experts’ curation is critical to reconstructing molecular and
cellular interactions from the available literature. Due to the
complexity of RA regarding cell types (macrophages, lym-
phocytes, endothelial cells, synovial fibroblasts), mediators
of inflammation (cytokines, chemokines, growth factors,
tissue-degrading enzymes) and the variety of biological
processes implicated in the disease, the review of the map
by RA experts was necessary for an accurate representation
of disease hallmarks. To provide a systematic and compre-
hensive molecular map, we used SBGN standards and a cell
layout. We took advice from experienced scientists in both
biological and computational domains to make the content
comprehensive and functional for different types of users
such as experimental biologists, clinicians, computational
modellers and bioinformaticians. The RA map layout, the
representation of various levels of information and the
validity of molecules and pathways included in the RA map,
were carefully examined in this context.

SBGN standards and process description map

validation

The SBGN (15) is a standard for the visual representation
of biological/biochemical processes as networks. Three
types of SBGN languages cover different ways to represent
biological networks, Process Description (PD), Entity-
Relationship (ER) and Activity Flow (AF) (30). The RA map
is a PD map showing the detailed biological processes impli-
cated in RA. We systematically checked the compliance to
the SBGN standard. For keeping the diagram compact
and avoid repeating the same pattern multiple times
(activation of protein production from an empty set), we
used the translation connectors. VANTED (Visualisation
and Analysis of Networks containing Experimental Data)
(31), is a framework for systems biology applications
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with functionalities ranging from network reconstruction,
data visualization, integration of various data types to
network simulation using systems biology standards for
visualization and data exchange. We used SBGN-ED (an
add-on for VANTED for editing, validating and translating
of SBGN maps) (32) to validate our SBGN PD encoding
of the RA map. As this tool works with SBGN-ML file
format, we utilized the CellDesigner to SBGN converter
(https://royludo.github.io/cd2sbgnml) for converting the
CellDesigner XML file into SBGN-ML format and
subsequently import the file to VANTED for further
analysis.

Web-based MINERVA map The RA map is available as an
online interactive map using MINERVA (Molecular Inter-
action NEtwoRks VisuAlization) platform (19). MINERVA
is a web service that supports curation, annotation and visu-
alization of molecular interaction networks in the SBGN-
compliant format. MINERVA provides automated content
annotation and verification, along with mapping of drug
targets and overlaying experimental data on the visual-
ized networks. Automated annotations (HGCN) and cura-
tor’s annotations for every component and reaction are
displayed in the left panel (see Figure 3A). The user can
also visualize cell-specific data based on curated overlays
or analyse patients’ omic datasets (see Figure 8). More-
over, MINERVA provides an interface for interrogating
several other databases such as DrugBank (33) (https://
www.drugbank.ca/), CHEMBL (34) (https://www.ebi.ac.u
k/chembl/), CTD (35) (http://ctdbase.org) and miRTarBase
(36) (http://mirtarbase.mbc.nctu.edu.tw).

Overlays We provide three different types of overlays with
the RA map. The first type corresponds to cell, tissue
and fluid specific overlays. The RA map is a global map,
integrating data and information from various sources. As
a result, it has reactions and components that come from
different cell or tissue types. We have grouped the sources
into seven distinct groups that we provide as overlays. The
groups are synovial fibroblasts, synovial tissue, peripheral
blood mononuclear cells, blood, synovial fluid, chondro-
cytes and macrophages (Table S1). These overlays allow
visualizing cell or tissue-specific interactions and molecules.
The second type of overlay comes from publicly available
datasets and facilitates visualization of mapping compo-
nents onto the RA map. The third type of overlays concerns
canonical pathways retrieved from REACTOME, EBI for
TNF, IL6, MAPK and Interferon signalling (Table S2).

BioInfoMiner analysis The algorithm performs a topological
analysis of semantic networks, derived from ontologies

(Gene Ontology (37, 38), Human Phenotype Ontology (39)
and Mammalian Phenotype Ontology (40)) and pathway
databases with hierarchical structure, like REACTOME
(41–43). It employs a graph-theoretical method that cor-
rects the annotation bias of community ontologies, per-
forms enrichment analysis to assess the over-representation
of terms and ranks the related genes according to their
connectivity in the corrected semantic network (44, 45).
Systemic processes are clusters of terms that share maxi-
mum semantic similarity among them, but minimal simi-
larity among other clusters. The highly ranked genes are
those associated with many systemic processes, and thus,
they are considered hub genes in the semantic network,
assuring cross-talking among distinct, orthogonal (inter-
independent) processes. Finally, the application derives a
signature, consisting of the mapping of the prioritized genes
to a minimal set of clustered systemic processes. Further-
more, BioInfoMiner provides a pharmacogenomic analysis,
as the derived hub genes constitute putative drug targets.

Topological and gene ontology enrichment

analysis with Cytoscape

The RA map XML file was imported in Cytoscape, version
3.5.0, and the built-in NetworkAnalyzer function was used
for topological analysis (17).

Results

A comprehensive molecular interaction map for

RA

The RA map graphically illustrates signalling pathways,
gene expression regulation, molecular mechanisms and cel-
lular phenotypes involved in the pathogenesis of the dis-
ease. As shown in Figure 1, and explained in detail in
the methodology section, the RA map requires exhaus-
tive literature curation, information mining from relevant
databases along with continuous updating and advice from
domain experts. Importantly, the interactions shown in
the diagram represent a graphical model encoded using
a standardized format, making the map computationally
tractable.

For the construction of the map, we used the graphi-
cal editor CellDesigner (18). In Figure 2, one can see an
overview of the RA map. We constructed the RA map
following the SBGN Process Description format (46). We
made only one exception concerning the choice of the trans-
lation and transcription representation, for which we used
the CellDesigner’s system of symbols. The RA Map features
506 species, 449 reactions and 8 cellular phenotypes. The
biomolecules in the map are 303 proteins, 61 molecular
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Figure 2. Snapshot of the SBGN-compliant RA map. The map is colour-coded with proteins in purple, genes in green, RNAs in red and phenotypes in

yellow. State transitions and catalysis reactions are displayed in black, and the inhibitions are in red. Compartments are distinguished as bounding

boxes. The map was built using CellDesigner, version 4.4 (18). Modifications to the SBGN format: translation arcs are used to keep the representation

compact, as well as the gene and RNA shapes.

complexes, 106 genes, 106 RNA entities, 2 ions and 7 sim-
ple chemical species like for example cAMP, H2O2 or PIP3.
Proteins include extracellular, membrane and cytoplasmic
proteins comprising signalling proteins, enzymes and tran-
scription factors. The reactions are classified as state transi-
tions, catalyses, inhibitions, transports, heterodimer asso-
ciations, dissociations, Boolean AND gates and reduced
physical stimulations. All the components in the map have
at least two manually curated PubMed references, giving
overall 353 publications covering a period from 1973 to
2019 (Figure S3).

The RA map is organized in the form of a cell represent-
ing the flow of information from the extracellular space
(ligands) to the plasma membrane (ligand–receptor com-
plexes) and then to the cytoplasm (signalling pathways), the
nucleus (gene regulation) and the secreted compartment or
cellular phenotypes (Figure 2).

Molecular pathways covered in the RA map

The RA map contains hallmark cellular and molecular
pathways that participate in disease pathogenesis. In sig-
nalling cascades, the activation occurs as a response to an
upstream stimulus. After activation, the signal propagates

through a series of coupled reactions from the plasma
membrane to the cytoplasm, to regulate key factors that
are responsible for gene regulation and different cellular
phenotypes. The RA map includes the following upstream
stimuli:

(i) Cytokines and chemokines: a diverse group of pro-
teins like tumour necrosis factor (TNF) and inter-
leukins to list a few, implicated in various phases of RA
pathogenesis by promoting autoimmunity, initiating
and maintaining chronic inflammatory synovitis and
driving cartilage and bone destruction (47–49);

(ii) Growth factors: such as epidermal growth factor
(EGF), fibroblast growth factor (FGF), insulin-like
growth factor (IGF), vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF),
activate intracellular signalling pathways (such as
PI3K-AKT pathway) and regulate a broad range
of cellular functions like cell growth, survival, cell
motility and apoptosis (50, 51);

(iii) Toll-like receptors (TLRs): TLR2 and TLR4 are
primarily expressed in synovial fibroblasts and
macrophages in human RA joints (52–54). Activation
of TLR2 and TLR4 results in recruitment of adaptor
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molecules such as MyD88, IRAK, TRAF6 and TANK-
binding kinase (TBK)-1 and leads to the activation
of MAPKs and NF-κB and the increased expression
of various pro-inflammatory and tissue-destructive
mediators (such as TNF, IL-6, chemokines and MMPs)
(55, 56).

The activation of these upstream components leads to
the activation of downstream pathways that include:

(i) The JAK-STAT pathway: this is an effective target
in RA therapy. Many cytokines, including IL-6 and
TNF, which are validated therapeutic targets in RA,
activate directly (for example IL-6) or indirectly (for
example TNF) this pathway by phosphorylating JAK
proteins. JAKs, in turn, phosphorylate STATs, which
then dimerize and translocate to the nucleus and bind
to regulatory elements of DNA modulating the expres-
sion of target genes (57, 58). Activation of JAK-STAT
pathway also results in the activation of suppression
of cytokine signalling (SOCS), which operates as a
feedback inhibitory loop aiming to terminate excessive
activation of JAK-STAT (59).

(ii) The NF-κB pathway: it is involved in inflammation,
cell survival and proliferation. Activated NF-κB is
detected in immune cells (such as macrophages and
lymphocytes) as well as in stromal cells (such as FLS
and endothelial cells) and stimulates the transcription
of arthritogenic mediators like IL-1, TNF, RANKL,
PTGS2 and IL-6 in RA synovium. TNF, IL-1 and
RANKL are key upstream RA-relevant triggers of the
activation of the NF-κBpathway (60).

(iii) The MAPK pathway: all the three classes of MAPKs,
namely ERK, JNK and p38, are found to be expressed
and activated in synovial tissue in RA. A series of
cytokines including among others TNF, IL-1 and IL-6
activate ERK, JNK and p38 MAPK in synovial tissue
with successive induction of proinflammatory media-
tors such as cytokines and tissue destructive enzymes
(e.g. MMP-1 and MMP-13) (61, 62) Negative feed-
backs are required to keep in check the constitutive
activation of MAPK proteins in order to control the
excessive prolonged expression of pro-inflammatory
genes (61).

(iv) The PI3K-AKT pathway: growth factors like VEGF
and FGF induce the PI3K-AKT pathway (50, 63–
65). Activated cellular AKT regulates immune cells,
and survival of synoviocytes and chondrocytes by
phosphorylating several downstream signalling pro-
teins modulating mTOR, BAD, FOXO3 and tumour
protein-73 (TP-73) (63).

All signalling cascades end at specific cellular outcomes
grouped in eight distinct phenotypes such as inflammation
(1, 51, 66, 67), cell chemotaxis/recruitment/infiltration (68,
69), matrix degradation (66, 70–73), osteoclastogenesis
(66, 74, 75) and bone erosion (1, 66, 76, 77), angiogenesis
(51, 66, 78, 79), apoptosis (66, 80–83) and finally cell
survival/growth/proliferation (51, 84–86).

Transforming RA map into a state of the art

knowledge base using MINERVA

The RA map is available at ramap.elixir-luxembourg.org
in the form of an interactive diagram, using the platform
MINERVA (Molecular Interaction NEtwoRks VisuAliza-
tion) (Figure 3). Clicking on a biomolecule in the map, the
user can choose to visualize interacting drugs, chemicals and
miRNAs. The RA map interfaces with DrugBank (https://
www.drugbank.ca/), CHEMBL (https://www.ebi.ac.uk/che
mbl/), CTD (http://ctdbase.org) and miRTarBase (http://mi
rtarbase.mbc.nctu.edu.tw).

RA map offers custom visualization and export capa-
bilities via MINERVA plugins (87). For instance, users can
explore the RA map starting from a molecule of inter-
est and easily follow its interactions, even throughout a
dense and complex network. This functionality facilitates
navigating through the contents and tracking the flow of
the signal from the ligand to the corresponding phenotype
(Figure 4A). Another feature of the RA map is the stream
plugin, allowing for highlight and export of entire subnet-
works in the map in one click. This feature is especially
important to visualize the ensemble of signalling path-
ways converging on the same disease-related phenotype
(Figure 4B).

The RA map as a template for visualizing

cell-specific overlays

The RA map contains information from various sources
serving as a generic blueprint for disease mechanisms.
However, due to extensive annotation and reference,
the user can opt for visualizing cell-specific nodes and
interactions. In the RA map, we have grouped our sources in
seven distinct groups: synovial fibroblasts, synovial tissue,
peripheral blood mononuclear cells (including PMNs),
blood (including T and B cells), synovial fluid, chondrocytes
and macrophages (Table S1). Synovial fibroblasts are the
most frequent cell type in the RA map covering a total of
45%, followed by synovial tissue with 36% (Figure S1).
In the RA map, the user can select to visualize one of
the corresponding overlays, for example, synovial tissue
overlay (Figure 5).
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Figure 3. The RA map in MINERVA platform. (A) Users can use the search box to type in the element of interest. The resulting element shows up as

pins on the map. Corresponding annotations of the searched element, like HGNC, Entrez Gene, RefSeq and Ensembl identifiers are displayed on the

left panel along with the PubMed identifiers of the manually curated annotations. (B) Further clicking on the pin will display additional information

about interacting drugs, chemicals and microRNAs for the element.
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Figure 4. MINERVA plugins. (A) The tree plugin allows to navigate in dense networks by following interactions in a tree-like manner. (B) The stream

plugin allows for downstream or upstream expansion when selecting a node of interest.

Visualizing various datasets

We used publicly available datasets for visualization with
the RA map. Our goal was to compare the differentially
expressed pathways or map regions in different datasets.
For this purpose, we used the datasets from transcrip-
tomic data of synovial tissue (88). We performed differen-
tial expression analysis between Berlin, Leipzig and Jena
datasets using osteoarthritis as control and visualized the
mapping of 122 molecules to the RA map. Most pathways
were highlighted, as molecules that lead to most phenotypes
were present. Interestingly, we found enrichment for almost
all cellular phenotypes except for apoptosis and angiogen-

esis. Molecules leading to six out of eight phenotypes were
expressed, while molecules linked to the two mentioned
phenotypes were absent (Figure 6).

Systemic interpretation and pharmacogenomics

analysis using BioInfoMiner

We also used the BioInfoMiner web application (16)
(https://bioinfominer.com) to perform a functional analysis
of the RA map. The application performs a biological
interpretation of gene sets, which comprises detection and
prioritization of systemic processes and pathways, as well
as prioritization of genes based on their mapping to those
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Figure 5. Visualizing cell/tissue/fluid-specific parts of the RA map using dedicated overlays. Snapshot of the visualization of the Synovial Tissue

overlay.

Figure 6. Mapping of Omic datasets from RA synovial tissue. The apoptosis and angiogenesis phenotypes appear to be inactive as no molecule

leading to these cellular phenotypes is mapped.

processes. We used BioInfoMiner as a second layer of anal-
ysis to see if the functional enrichment would give results
relevant to the autoimmune process and RA. We performed
two sets of analyses using gene ontology (GO) and human
phenotype ontology (PHO) terms. The first analysis using
GO gave enrichment of terms like Inflammatory response,
Regulation of cytokine production and Activation of
MAPK activity, all relevant to pathways included in the RA
map. The top five GO terms included apoptotic signalling
pathway, positive regulation of cell death, negative regula-
tion of apoptotic signalling pathway, positive regulation of

NF-kappaB transcription factor activity and regulation of
I-kappaB kinase/NF-kappaB signalling. It also gave a list of
48 prioritized genes (Table S3). The top 10 priority genes
obtained were TNF, toll-like receptor 4 (TLR4), receptor-
interacting serine/threonine kinase 2 (RIPK2), interleukin
1 beta (IL1B), receptor-interacting serine/threonine kinase
1 (RIPK1), fas-associated via death domain (FADD), Janus
kinase 2 (JAK2), wnt family member 5A (WNT5A), TNF
receptor-associated factor 6 (TRAF6) and innate immune
signal transduction adaptor (MYD88). The signature we
obtain using GO consists of the ranked systemic processes
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Figure 7. Systemic functional analysis of the RA map using GO terms. Heat map of the top 15 priority genes and their systemic interpretation using

BioInfoMiner and GO terms.

Figure 8. Systemic functional analysis of the RA map using HPO terms. Heat map of the top 15 priority genes and their systemic interpretation using

BioInfoMiner and HPO terms.

(y-axis) and prioritized genes (x-axis) (Figure 7). The first
most prioritized gene was TNF, a prevalent target for many
approved drugs such as anti-TNF agents, while all other
nine genes have been implicated in studies for drug targeting
in RA (89, 90).

Functional analysis with BioInfoMiner using the
Human Phenotype Ontology gave 32 priority genes
(Table S4) and enrichment in terms containing arthralgia,
skin nodule, abnormality of the immune system, among
others (Table S5), as we can see in Figure 8. Overall, the
systemic functional analysis with BioInfoMiner further
confirmed the validity of the model at the semantic
level, complementary to the mechanistic one. The top
10 priority genes using PHO terms are interleukin 12A
(IL12A), Fas cell surface death receptor (FAS), NRAS proto-
oncogene (NRAS) GTPase, signal transducer and activator
of transcription 3 (STAT3), protein tyrosine phosphatase
(PTPN22), non-receptor type 22, major histocompatibility
complex, class II, DR beta 1 (HLA-DRB1), Janus kinase
2 (JAK2), interferon regulatory factor 5 (IRF5), signal
transducer and activator of transcription 4 (STAT4), catenin
beta 1 (CTNNB1). All of these genes have been considered
as putative drug targets in RA.

Topological analysis of the RA map as a complex

network

We imported the RA map to Cytoscape 3 to perform
network analysis. The RA network comprises 1225 nodes
and 1471 interactions (Figure 9). The analysis using
Network Analyzer, a built-in tool of Cytoscape, revealed
that the RA network consists of 30 connected components.
These connected components correspond to the connected
subgraphs, i.e. parts of the graph in which any node
is accessible from any other node by a path, with a
core subgraph of 1106 nodes and 1379 reactions and
29 smaller ones.

Node degree is a characteristic of the nodes of a network
that describes the number of adjacent nodes (nodes directly
connected to them). In directed networks such as signalling
networks where the reactions are oriented (i.e. from the
ECM to the nucleus) we can distinguish two types of node
degree: the in-degree, meaning the number of directed edges
that have the node as target, and the out-degree that is
the number of directed edges that have the node as source.
Node degree is an individual characteristic for each node,
but a degree distribution can be computed to assess the
diversity of the whole network.
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Figure 9. The RA map as a complex network. The RA network with spring embedded layout. One connected core and several smaller unconnected

parts are shown.

The majority of biological networks display scale-free
properties (91), which means that they contain a few central
nodes that are highly connected (hubs) and several other
loosely connected peripheral nodes. These networks follow
a power law. This function indicates that there is a high
diversity of node degrees which is why we describe these
networks as ‘scale-free’.

First, we performed the analysis considering the network
as undirected to obtain the overall degree distribution (in
and out) and then as directed to get the in-degree and out-
degree distributions. All node degree distributions follow a
power law, showing that the RA network is indeed a scale-
free network (91) (Figure 10).

In Table 1, we can see some of the topological charac-
teristics of the RA network, analysed in Cytoscape. Each
node has an average of 2. 299 neighbours (nodes to which
it is connected). We used the degree distribution to obtain
the hubs of the RA network, and in Table 2, we display
the top 10 hubs. The network diameter of the RA network
that corresponds to the maximum length of shortest paths
between two nodes is 24 suggesting that the signal starting
from ligand–receptor complexes in the membrane reaches

most of the network within 24 steps. The characteristic
path length of the network that corresponds to the expected
distance between two connected nodes is approximately 10,
meaning that the response to a signal and its propagation
can occur relatively rapidly.

Discussion

Visual representation of complex pathways and biological
processes involved in a disease allows clinical and life
sciences researchers to explore relevant mechanisms,
which are often intricate and intertwined. Standardized
representation and formalization of knowledge in the form
of disease maps create an interface to a broad range of
bioinformatics and modelling workflows. We present here
a state-of-the-art, large-scale molecular interaction map for
RA, which is to our knowledge the first SBGN-compliant
Process Description disease map. While other efforts,
such as the Asthma map, follow the SBGN format, their
approach is different as they use three levels of granularity
and different SBGN representations for every layer of
information. The Process Description level for Asthma map
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Figure 10. Node degree distributions of the RA map with a fitted power law. (A) Overall degree distribution. (B) In-degree distribution. (C) Out-degree

distribution.

consists of a set of separate modules that correspond to an
Activity Flow layer, while the RA map is a global Process
Description disease map.

All the components and reactions are annotated using
only RA and human-specific studies. The RA map is part
of the Disease Maps Project, a large scale community
effort to comprehensively represent mechanisms for various
diseases (13, 14) (http://disease-maps.org/). The community
fosters the exchange of good practices and promotes the
use of standards for the development of disease maps. The

standards of curation and graphical representation, as well
as the extensive annotation in both human and machine-
readable formats of the RA map, ensure transparency,
reproducibility and reusability of its content.

In 2010 the first RA map was published by Wu et al.
They used exclusively high-throughput RA experiments
(mRNA, miRNA) described in 28 studies combined with
data available in the KEGG database. A total of 435 species
(263 proteins, 58 genes, 48 RNAs, seven simple molecules,
one ion, one antisense RNA, 47 complexes), 265 reactions
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Table 1. Example of simple topological parameters obtained with Network

Analyzer for the RA network

Topological parameters Corresponding values

Connected component 30

Network diameter 24

Characteristic path length 10.099

Average number of neighbours 2.299

Number of nodes 1225

Isolated nodes 4

Table 2. Top 10 hubs of the RA map

RA map nodes Node degree Role Reference

NFKB 28 Implicated in RA and inflammation (92, 93)

Inflammation 14 A major characteristic of RA (1, 66)

AKT 13 Regulates apoptosis in RA (94, 95)

Cell chemotaxis/recruitment/infiltration 13 Implicated in RA (96, 97)

JUN 13 Implicated in RA (98, 99)

MAPK1 12 Implicated in RA (100, 101)

RAC1,2 12 Implicated in RA (102, 103)

Cell growth/survival 11 Major characteristic of RA (66, 85)

Osteoclastogenesis 10 Results in bone damage in RA (74, 104)

TP53 9 Involved in the apoptosis pathway implicated in RA (105, 106)

and 10 phenotypes involved in RA were identified using
this approach. We decided to follow a different approach
as described in the methodology section, in an attempt to
limit false positives, increase confidence by incorporating
experts’ advice and promote the use of SBGN standards
for representation to assure reusability of the map. The
new RA map we present here includes information from
353 peer-reviewed publications, and it has a significantly
bigger size, as it features 506 species, 446 reactions and 8
phenotypes. The species in the map are classified to 303
proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions
and 7 simple molecules.

The RA map can also be used as an interactive
knowledge base, using the platform MINERVA and serve as
a template for overlaying multiple datasets. Visualization
of experimental data could help highlight aspects of the
affected biological process and make differences between
experimental conditions more evident. Visualizing the
results of differential expression analysis of three datasets of
gene expression of RA synovial tissues showed enrichment
in all cellular phenotypes but not in apoptosis. This
finding is in line with the fact that fibroblasts, which
constitute a large percentage of the RA synoviocytes, have
an apoptosis-resistant phenotype (107, 108).

We performed functional analysis and gene prioritiza-
tion using BioInfoMiner (16). The genes that rank higher
in this analysis are associated with many systemic pro-

cesses and are considered as hubs in the semantic network.
Along with prioritization, a pharmacogenomic analysis is
provided since the hubs proposed are considered as putative
drug targets. The results of the analyses using GO and PHO
terms revealed known RA players, most of which have been
already used as drug targets demonstrating that the RA map
comprises well-characterized factors and captures most of
the relevant systemic processes implicated in the disease.

The RA map serves as a curated knowledge base, but
it can also be analysed as a complex network. Topolog-
ical analysis can reveal underlying structural features of
the RA map like unconnected parts of the network, or
important hubs (well-connected nodes) which are otherwise
hard to perceive in large-scale networks. The topological
analysis performed in this study revealed connected and
unconnected parts of the network. This result reflects our
fragmented knowledge on the one hand, but also the use
of stringent criteria for the nodes included in the map:
experimentally validated interactions in at least two pub-
lished studies, use of data of strictly human origin and
disease-specific.

Another reason that contributes to the limited wiring of
some of the RA map components is the unavailability of
known interactions for newly discovered factors for RA.
However, we keep them present because the RA map also
works as an encyclopaedia for the disease, even if some
parts of the puzzle are still missing.
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The topological analysis also assists in the understanding
of significantly connected nodes (hubs), placing them in
their functional context. The top ten hubs of the RA
map as seen in Table 1 (NFKB, AKT, Inflammation,
Cell chemotaxis/recruitment/infiltration, JUN, MAPK1,
RAC1,2 Cell growth/Survival, Osteoclastogenesis, TP53)
are well-characterized factors implicated in the disease. Not
surprisingly, four of them (AKT, MAPK1, RAC1,2, TP53)
were also characterized as hubs in the first RA map by Wu
et al., based on high-throughput data.

Conclusion

The RA map is the fruit of interdisciplinary collaborations
between clinicians, biologists and bioinformaticians. The
aim was to build not only a knowledge repository but a
versatile tool that can be used for various purposes. The RA
map can offer to experimental biologists and clinicians easy
access to all molecular pathways implicated in the disease
along with references and annotations, to bioinformati-
cians a template for disease-specific pathway enrichment
of omic datasets and finally, to computational modellers a
mechanistic scaffold for the inference of a computational
model (5, 6, 109), providing an intermediate step between
a conceptual and an executable model.
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