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Abstract

Hotspots, recurrently mutated DNA positions in cancer, are thought to be oncogenic

drivers because random chance is unlikely and the knowledge of clear examples of

oncogenic hotspots in genes like BRAF, IDH1, KRAS and NRAS among many other

genes. Hotspots are attractive because provide opportunities for biomedical research and

novel treatments. Nevertheless, recent evidence, such as DNA hairpins for APOBEC3A,

suggests that a considerable fraction of hotspots seem to be passengers rather than

drivers. To document hotspots, the database HotSpotsAnnotations is proposed. For this,

a statistical model was implemented to detect putative hotspots, which was applied to

TCGA cancer datasets covering 33 cancer types, 10 182 patients and 3 175 929 mutations.

Then, genes and hotspots were annotated by two published methods (APOBEC3A

hairpins and dN/dS ratio) that may inform and warn researchers about possible false

functional hotspots. Moreover, manual annotation from users can be added and shared.

From the 23 198 detected as possible hotspots, 4435 were selected after false discovery

rate correction and minimum mutation count. From these, 305 were annotated as likely

for APOBEC3A whereas 442 were annotated as unlikely. To date, this is the first database

dedicated to annotating hotspots for possible false functional hotspots.

Database URL: http://bioinformatica.mty.itesm.mx/HotSpotsAnnotations.

Introduction

Cancer is a genetic disease in which mutations accumulate
(1). Nevertheless, not all mutations are oncogenic because
many mutations can be the result of broken DNA repair
systems or expositions to mutagens (2,3). Therefore, it
is fundamental to distinguish between oncogenic driver

mutations and random passenger mutations. Instead of
detecting specific mutations, many methods are focused
on the gene level to identify putative driver genes (4–11).
The most widely used method concentrates on those genes
whose mutation frequency across patients is higher than
random chance, correcting for gene length, background
mutation rate and other covariates (4). Other methods
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center on the successful evolutionary concept that ratios
of non-synonymous mutations over synonymous mutations
(dN/dS) different to 1 identify those genes under positive or
negative selection (12). Driver genes are highly enriched in
those whose dN/dS > 1 (12).

Observing multiple patients mutated at the same
nucleotide or amino acid position is known as hotspot.
Under some statistical models, hotspots are highly unlikely
and therefore commonly and irrefutable thought as drivers
(13). This is also supported by several examples. For
instance, BRAF at valine position 600 (p.V600) is the
most recurrent known hotspot that has been validated to
be oncogenic (14). In the database used here, there are
more than 500 patients across diverse cancers reporting the
BRAF V600 mutation. Similarly, IDH1 at the arginine 132
(p.R132) is also a well-known oncogenic driver (15,16).
Computational analyses and filtering of missense and
nonsense mutations have identified more than 470 putative
hotspots across hundreds of coding genes (13). Moreover,
further recurrent positions are expected because tumor
sequencing is expected to become an important tool for
research and treatment (17).

Hotspots are very attractive for biomedical research
because they provide opportunities to understand their
oncogenic mechanisms and highlight possible targets or
strategies for treatment and prevention (18). Some methods
have been proposed to detect hotspots (13,19–22). The
overall rationale is that hotspots should show a number
of occurrences that is highly unlikely, commonly estimated
under a certain model.

Nevertheless, it is important to note that detecting a
mutation hotspot is not necessarily equivalent to detect a
driver mutation. Seminal work has shown that recurrent
mutations surrounded by a strong hairpin structure may be
caused by the enzymatic activity of APOBECA (13). The
authors showed that well-known cancer hotspots do not
contain hairpin structures and that many apparent hotspots
possessing hairpins appear in many not cancer genes (13).
These results provide important mechanistic evidence that
some hotspots did not arise by a functional pressure and
therefore must be qualified as passenger hotspots. Con-
sequently, to direct research into the more likely genuine
targets, it is essential to distinguish between driver and pas-
senger hotspots. Thus, models and databases for hotspots
are highly valuable.

Although a database for hotspots is available (13), it
does not keep track of their level of ‘drivenness’ or ‘passen-
gerness’. Besides, the method involved a filtering criterion
either computational or manual that may remove hotspots
without mechanistic evidence. Moreover, they used a bino-
mial model corrected by some covariates. The use of the
binomial may falsely call genes because the presence of

over-dispersion cannot be handled (23), while the use of
non-mechanistic covariates, although it helps the fitting,
does not provide evidence of the mechanistic phenomena
that give rise the hotspot.

To fulfill the lack of a database that annotates possible
false functional hotpots, the hotspot database HotSpotAn-
notations was created. To detect hotspots robustly, a mixed
model of beta-binomial with a fixed effect was used (24).
Then, up to now, detected hotspots have been or can be
annotated by three methods that warn users as a possible
passenger hotspot: first, by using the APOBEC3A method
looking for stemness strength at strong hairpins and rules
depending on loop length and position (18); second, by
using the gene-level estimation of dN/dS showing that the
gene has a different ratio of non-synonymous mutations
suggesting non-neutral selection (12); and third, by allow-
ing the community to add annotations to specific hotspots.
Also, for future updates, it is planned to implement novel
methods that explain mechanical effects when published.
Accordingly, it is hoped that researchers will focus on
hotspots that do not show evidence of possible mechanisms
that generate functionally false hotspots.

Methods

Cancer data

Mutations were obtained from the public cancer reposi-
tory TCGA (http://firebrowse.org/) on January 2018 corre-
sponding to 33 cancer types, 10 182 patients, and 3 175 929
mutations (Table 1).

Estimation of hotpots

The details of the method are available elsewhere (24).
Briefly, a beta-binomial model has been used to estimate
hotspots. The beta-binomial can capture over-dispersion
commonly present in binomial data (23) and has been
used to estimate recurrent alterations (25–27). The protein
position as reported in raw data was used to aggregate
mutations at the same position. The transcript ID that
provides the protein position is shown in the user interface.
Only mutations providing a protein position were used.
A histogram having k bins was determined by counting
the number of mutations observed per position. Then, an
algorithm was applied that uses a mixed model with fixed
effects. In this way, hi = BetaBin(a,b)i + Fi where hi is the
number of sites observing i mutations, i = 0..k, and Fi is
the fixed effect. The presence of hotspot mutations should
increase the counts at some i. Thus, the algorithm first
fit a beta-binomial model to the observed counts using a
classical numerical method (‘L-BFGS-B’ for function optim
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Table 1. Cancer data used to estimate hotspots

Cancer Patients Mutations Cancer Patients Mutations Cancer Patients Mutations

ACC 92 10 747 KIRC 336 26 693 PRAD 495 29 286
BLCA 412 134 513 KIRP 281 23 765 READ 137 64 804
BRCA 986 120 988 LAML 143 9905 SARC 237 28 159
CESC 289 103 405 LGG 508 35 556 SKCM 467 392 571
CHOL 51 5503 LIHC 364 54 238 STAD 437 213 144
COAD 399 264 786 LUAD 567 208 180 TGCT 144 3198
DLBC 37 6406 LUSC 492 181 116 THCA 492 10 899
ESCA 184 45 313 MESO 82 3827 THYM 123 4737
GBM 393 82 765 OV 436 75 168 UCEC 530 886 377
HNSC 508 102 309 PAAD 178 29 959 UCS 57 10 449
KICH 66 2896 PCPG 179 2411 UVM 80 1856

in stats package in R, https://cran.r-project.org/). Then, the
fixed effects are estimated by a stepwise algorithm. In each
step, a matrix is built representing fractions of each count
in columns, from 0.1 to 1 by 0.1 increments, and the k
histogram counts in rows. At each matrix cell, the histogram
is decreased by the corresponding i mutations and fraction
of observed mutations to estimate its corresponding beta-
binomial model. The best or fittest coordinate is used and
aggregated to a fixed effect Fi for the i mutation position.
The stepwise algorithm stops when no or little improvement
is observed using a Kullback–Leibler (KL) divergence mea-
sure, which occurs when KL is lower than 1, or when the
number of steps is larger than three times the number of
histogram bins. The fixed effects F absorbs those positions
that cannot be explained by the beta-binomial model alone.
Thus, the fixed effect vector F mark hotspots while the fitted
beta-binomial estimate its probability, which were further
corrected by a false discovery rate (FDR) approach (28) if
their recurrence were at least 4.

Annotation of APOBEC3A stemness

Following the original algorithm from authors (18), stem
strength (ss) was estimated first calculating all combina-
tions of loop lengths from 3 to 11 and mutation loop posi-
tion from 1 to loop length, then obtaining the maximum
stem strength along with its corresponding loop length and
loop position. In case of ties, the minimum loop length and
loop position was preferred. The ss is a score of the sum
of nucleotide matches weighting 3 for GC pairs and 1 for
AT pairs. So, ss = 3xGC + 1xAT. As in Buisson et al. (18),
if the original mutation position refers to a G or T, the
reverse complement of the sequence was used. To determine
which ss values are likely to be APOBEC3A artifacts,
Buisson et al. (18) stratified ss along with values of loop
length, mutation position within the loop and sequence con-
text. Thus, to facilitate the interpretation, an ‘APOBEC3A

Hairpin’ value was added to hotspots. For this, the ‘Likely’
value was assigned to those ss values surpassing a threshold
representing an excess of mutations given by APOBEC3A
as shown in Supplementary Figure 9a from Buisson et al.
(18) independently of the sequence context (because it is
only defined for TC and only 1 of 16 combinations is
not likely harpin with apparent low coverage compared
to other combinations). The thresholds for ss used were
7, 12, 11, 12, 15, 14, 18, 15 and 16 corresponding to the
combinations of loop position:loop length of 3:3, 3:4, 4:4,
4:5, 4:6, 5:6, 4:7, 5:7 and 6:8. For example, if the loop length
is 3 and loop position was 4, the stem strength has to be
higher or equal to 12 to be ‘Likely’ an APOBEC3A hairpin.
Similarly, an ‘Unlikely’ value was assigned to those ss whose
loop length and mutation loop position are amenable to
APOBEC3A but whose ss do not cross a minimum thresh-
old (threshold marked a ‘red’ in Supplementary Figure
9a from Buisson et al. (18)). Otherwise, a ‘No’ value is
assigned to those that are not amenable to be a target
of APOBEC3A. Besides the above annotations, the esti-
mated values of stem strength (ss), loop position and loop
length were added to the web interface after clicking the
‘+’ sign.

Annotation of the evolutionary measure dN/dS

To estimate positive, negative or neutral evolution, the
recent ‘CV’ method included in the package dNdScv was
used (12). For this, mutations whose consequence were
missense, nonsense, non-stop, silent, splice, frame shifts or
start sites were considered. The dndscv function reports
four estimations of dN/dS depending on the substitution
type corresponding to missense, non-sense, splicing, and
indels respectively (wmis, wnon, wspl and wind). All these
fields and their corresponding P values can be viewed after
clicking the ‘+’ sign that shows these and other details
(see Results). As a quick reference in the main table, the
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Figure 1. Database web implementation. (A) Implementation. There are two web pages, ‘Hot-Spots’ which list all hotspots, and ‘Gene Details’ which

shows the details for the gene including all mutations and hotspots. There are four web services that provides the data for the pages (HotSpots,

Annotation, Gene Info and Model Info). Examples of the web pages are shown in B and C and in Figure 2. (B) The first web page listing all hotspots.

The list can be filtered, searched, exported and selected to open details. (C) Example of the estimation details for a hotspot.

maximum values of wmis or wnon were used as an overall
dN/dS estimation.

Database web implementation

The web site to access the generated database consists of
two web pages. Both web pages use the libraries from
DataTables (http://datatables.net), jQuery (http://jquery.co
m) and JQuery user interface (http://jqueryui.com). The
first page includes all detected hotspots. The second page
shows details per gene including the information of the
fitted beta-binomial model, which makes use of Chart.js
(https://www.chartjs.org/) for a graphical representation of
the model. These pages are implemented in Java Server
Pages under the GlassFish (https://javaee.github.io/glassfi
sh/) application server. To facilitate loading, information is
read from text-based databases. For community annotation
of hotspots, gene and model information, web services
provide the data needed to AJAX requests implemented in

both pages. A schema of the implementation is shown in
Figure 1A.

Results

The overall process performed in this study is (i) hotspot
detection, (ii) hotspot annotation for possible hairpins and
dN/dS and (iii) web interface implementation.

Hotspot detection

Putative hotspots were detected by the fixed effect, then
annotated for the P value designated by the fitted beta-
binomial distribution. The 23 198 ‘warm’ spots having four
or more mutations were further corrected by FDR and
filtered by q < 0.01 or observed in seven or more patients.
Thus, the total reported possible hotspots were 4435 com-
prising 3384 genes. Both sets, hotspots and ‘warm’ spots,
can be revised in the web pages. Although the concepts
of ‘hotspot’ and ‘driver gene’ are not equivalent, they
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Figure 2. Page for the gene details. The example shows parts of the data shown for the gene EGFR. (A) All mutations in coding regions piled up

per position. Pointing to a mutation, a floating tip show details of the mutation. (B) Raw count of mutations per position. (C) Detected hotspots for

the current gene. (D) Distribution of mutations used to fit the beta-binomial model. (E) Graphical representation of the distribution of mutations and

fitted model. (F) Mutations along cancer types per hotspot. (G) List of all mutations per gene.

are related (see the Introduction section). Thus, to assess
whether the 3384 genes carrying putative hotspots are
enriched of driver genes, two comparisons with well-known
cancer gene lists were made. The first comparison was
made with the 221 reported in Martincorena et al. as
under strong positive selection (12). The second comparison
was performed with the 723 genes reported in the Cancer
Gene Census form COSMIC (29). Both assessments were
highly significant (P = 2e-62, P = 2e-50, hypergeometric test)
suggesting that the hotspot database is highly enriched in
cancer genes and cancer genes under positive selection.

Annotation of hotspots

From the 4435 spots detected, 747 could be potential
hairpins defined by the position of the mutation within the

loop and the length of the loop following the parameters
of Buisson et al. From the 747 spots, 305 indeed had a
critical value of stem length forming a ‘Likely’ hotspot as
defined by Buisson et al. Thus, 442 spots were annotated
as ‘Unlikely’ and 3688 as ‘No’ forming an APOBEC3A
passenger spot. As a validation, some top genes mentioned
by Buisson et al. were verified. Of the potential hotspots
that were unaffected by the hairpin artifact include PIK3CA
(N1044, 10 mutations), PIK3CA (E365, 10 mutations)
and IDH1 (R132). These hotspots were also marked as
‘Unlikely’ in our implementation because the stem strength
was not strong enough to form a stable hairpin following
the Buisson et al. criteria. Contrary, MB21D2 (Q311E, 25
mutations), FAM83G (Q88, 9 mutations), NUP93 (Q15, 7
mutations), MROH2B (E1109, 9 mutations) and C3orf70
(S6, 20 mutations) that were marked as optimal for the
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Figure 3. Section of the details to add community annotations. (A) Option to show details. (B) Current community annotations for that hotspot. (C)

Form to add new user annotations.

hairpin artifact in Buisson et al., were also set as ‘Likely’
by our implementation because stem strengths were above
their corresponding thresholds. These observations suggest
that our estimations are very similar to those of Buisson
et al. An important gene to note by Buisson et al. was
TBC1D12, which was not found in our database because
only coding mutations were considered here while the
hotspot in TBC1D12 is located at the 5′UTR.

It has been proposed that genes carrying passenger muta-
tions follow a neutral selection model of evolution while
genes carrying driver mutations follow positive selection
(12). Cancer genes that carry an excess of driver muta-
tions can be detected by high values of dN/dS, the ratio
of non-synonymous mutations to synonymous mutations
normalized by corresponding sites of non-synonymous sites
or synonymous sites. Here, the cancer data were used for
de novo estimations of dN/dS using the method proposed
by Martincorena et al. (12) providing a powerful approxi-
mate of a gene-level selective pressure. As a validation, the
mean values of dN/dS for missense, non-sense, splicing and
indels were 1.06, 0.99, 0.99 and 0.98 respectively while
the medians were 1.05, 0.84, 0.84 and 0.78. These values
are very close to 1, which is the expectation for neutrality.
Supplementary Figure 1 shows a comparison of the esti-
mated values for genes under high positive selection. This
figure confirms that the de novo estimations are consistent
to those in Martincorena et al. (12).

Database web interface

The information of the generated database can be viewed
and downloaded from the website http://bioinformatica.
mty.itesm.mx/HotSpotAnnotations. The web tool consists
basically of two web pages (Figure 1A). The first shows the
estimated hotspots (Figure 1B). Columns can be used to sort
data. Search text can be used for filtering. All data in tables
can be exported and downloaded to several formats. The
information of a hotspot can be further detailed using the
‘(+)’ sign. The information includes the amino acid position
and changes, number of mutations, transcript, p- and q-
values of the beta-binomial model, summary of mutation
types, summary of cancer types and the annotation of
APOBEC3A hairpin target and dN/dS.

The second page is specific for a gene. This page can
be accessed from the first page after selecting a hotspot.
The gene-specific page shows six sections (Figure 2). The
first section is a plot of amino acid positions in the x-
axis and mutations in the y-axis (Figure 2A). The second
section shows a similar plot highlighting positions instead
of mutations (Figure 2B). The third section shows the esti-
mated hotspots for the gene (Figure 2C). The fourth section
shows a table of the fitting information of the model to
estimate hotspots showing the observed mutations per site,
the mutations explained by the beta-binomial model, those
mutations explained by the fixed effect, and the probability
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of occurrence (Figure 2D). Within this section, a graphical
representation of the model is also shown (Figure 2E). The
fifth section shows the distribution of mutation per cancer
type and consequences (Figure 2F). Finally, the sixth section
shows all mutations for the gene (Figure 2G). This figure
shows the results for EGFR as a representative example.

Community hotspot annotation

In both pages within the HotSpots tab, the research
community can annotate additional information associated
with hotspots by opening the details using the ‘(+)’ option
(Figure 3). The required information includes a URL or
DOI referring to the evidence supporting the claim, a text
description of the experiments, concepts or algorithms
related to positive validation or negative confirmation as a
hotspot, and optionally the user e-mail, id and nickname of
the user.

Discussion and conclusion

Hotspots mutations are commonly thought as driver muta-
tions because it seems highly unlikely that the same residue
is mutated in different patients. Nevertheless, it has been
shown recently that hairpin formation in during DNA
replication may be targeted by the APOBEC3A enzyme
(18). This discovery provides direct evidence that passenger
mutations in cancer may accumulate under certain cir-
cumstances to form passenger hotspots. Consequently, it is
necessary to inform researchers of this evidence that may
be useful when designing experiments regarding hotspots.
To provide more information, dN/dS, a common and pow-
erful measure from molecular evolution that may inform
a possible neutral selection of the gene, was also included
(12). Moreover, it was implemented the possibility to add
manual annotations that document the experimental work
regarding the associated hotspot providing further help to
users. Altogether, the included information may aid users to
encourage laboratory experiments or focus efforts in more
promising hotspots.

Other hotspots have been proposed that are also passen-
ger because of its correlation with higher mutation rates (4)
or excessive gene sizes such as those in olfactory receptor
genes, titin and mucins. Although this is highly plausible
in the sense of background mutations rates, there is no
mechanistic evidence that explains the appearance of spe-
cific hotspots in these highly mutated regions. To determine
hotspots, a recent approach proposes a similar statistical
model with covariates that show potential to avoid calling
false hotspots (30). Nevertheless, besides it is pending to
show experimental false positive and negative rates, this
algorithm does not provide mechanistic evidence of the

mutation bias such as in the APOBEC3A case. Thus, it is
expected that novel experimental proposals will provide
information on other passenger hotspot mechanisms. This
topic will be tracked to further annotate the database.

To the time this work was performed, this is the first
database dedicated to annotating hotspots and document
researchers for possible passenger mechanistic artifacts.
This may help to focus research efforts in hotspots having
potential to drive oncogenic processes.
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