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Abstract

For optimal performance, machine learning methods for protein sequence/structural

analysis typically require as input a large multiple sequence alignment (MSA), which is

often created using query-based iterative programs, such as PSI-BLAST or JackHMMER.

However, because these programs align database sequences using a query sequence

as a template, they may fail to detect or may tend to misalign sequences distantly

related to the query. More generally, automated MSA programs often fail to align

sequences correctly due to the unpredictable nature of protein evolution. Addressing

this problem typically requires manual curation in the light of structural data. However,

curated MSAs tend to contain too few sequences to serve as input for statistically

based methods. We address these shortcomings by making publicly available a set of

252 curated hierarchical MSAs (hiMSAs), containing a total of 26 212 066 sequences,

along with programs for generating from these extremely large MSAs. Each hiMSA

consists of a set of hierarchically arranged MSAs representing individual subgroups

within a superfamily along with template MSAs specifying how to align each subgroup

MSA against MSAs higher up the hierarchy. Central to this approach is the MAPGAPS

search program, which uses a hiMSA as a query to align (potentially vast numbers of)

matching database sequences with accuracy comparable to that of the curated hiMSA.

We illustrate this process for the exonuclease–endonuclease–phosphatase superfamily

and for pleckstrin homology domains. A set of extremely large MSAs generated from the

hiMSAs in this way is available as input for deep learning, big data analyses. MAPGAPS,

auxiliary programs CDD2MGS, AddPhylum, PurgeMSA and ConvertMSA and links to
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National Center for Biotechnology Information data files are available at https://www.

igs.umaryland.edu/labs/neuwald/software/mapgaps/.

Introduction

Certain protein sequence analysis methods require as input
a large number of multiply aligned sequences. This includes,
for instance, direct coupling analysis (DCA) (1–7), which
uses statistical modeling to predict 3D interacting residue
pairs. DCA typically requires at least a thousand and, ide-
ally, tens of thousands of aligned sequences. Larger multiple
sequence alignments (MSAs) are required for deep neural
networks and for other machine learning algorithms, such
as Bayesian partitioning with pattern selection (BPPS) (8).
BPPS, like DCA, identifies statistical correlations in an MSA
but, unlike DCA, focuses on sets of subgroup-specific co-
conserved residues associated with functional specialization
rather than on pairwise correlations. For BPPS, at least tens
of thousands of aligned sequences are required to obtain
accurate subgroup models, each of which might be based
on at least a hundred sequences. This process defines sub-
MSAs that are useful for performing DCA on superfamily
subgroups (9).

Of course, to best distinguish signal from noise,
sequences also need to be aligned accurately. In this regard,
automated MSA programs are far from optimal (10–14)
due to the unpredictable nature of protein evolution.
Consider, for example, a conserved arginine residue that
is just beyond a guanine-binding NK.D motif in Ran,
Rab, Ras and Rho GTPases and that forms a salt bridge
with a conserved acidic residue (15). Within some of

these GTPases, a deletion (of up to three residues) directly
precedes this arginine and an insertion (of up to 15 residues)
directly follows it (16)—making it more or less impossible
to align correctly without manual curation. Moreover,

distinct subgroups within a large superfamily typically
harbor insertions and deletions relative to other subgroups
thereby confounding MSA methods. For these reasons, the

National Center for Biotechnology Information manually
curates hierarchical MSAs (hiMSAs) for hundreds of widely
distributed and diverse protein domain superfamilies.
RPS-BLAST (17) searches against this conserved domain
database (CDD) (18) identify domains within a query
sequence and the subgroup to which each domain
belongs.

Curated hiMSAs have other useful applications as
well, including serving as benchmark sets (14). Another
application, which we highlight here, is as queries for
the MAPGAPS (Multiply-Aligned Profiles for Global
Alignment of Protein Sequences) program (16) to thereby
create extremely large and accurate MSAs. Here we

announce the public availability of (i) a set of CDD hiMSAs,
(ii) a suite of programs for creating from each hiMSA an
extremely large MSA and (iii) a set of MSAs obtained in this
way. The software package contains MAPGAPS (v2.1) and
utilities for format conversion, taxonomic annotation and
the removal of undesirable sequences from the output MSA.
Phylum annotation and species identifiers are particularly
useful for both DCA and BPPS. For DCA, species identifiers
facilitate prediction of residue 3D contacts across a protein–
protein interface by identifying, for each species, pairs of
interacting proteins. For BPPS, this facilitates both co-
analysis of interacting proteins and characterization of
subgroup phylogenetic diversity to confirm that residue
patterns are due to persistent evolutionary constraints
rather than merely due to recent common descent. Of
course, having an extremely large and accurate MSA also
provides additional statistical power for DCA and BPPS
and is necessary for machine learning based on deep neural
networks.

Availability of CD hiMSAs and of corresponding

MSAs

Version 3.17 of the CDD provides over 57 000 position-
specific scoring matrices and MSAs corresponding to
ancient conserved domains (CDs) for individual protein
subgroups that span diverse organisms. Subgroup align-
ments are kept consistent throughout each superfamily
hierarchy, which allows each of these to be mapped
onto its typically less extensive ‘parent’ alignment. CDD
subgroups correspond to major branches within sequence
trees. CDD alignments are manually curated based on
both sequence homology and structural superposition.
Superfamily members share a common structural core but
often perform diverse biochemical or cellular functions.
Each sequence assigned to a given subgroup is also assigned
(either explicitly or implicitly) to its parent subgroups. For
each subgroup, a consensus sequence is defined based on
the most frequent residue per column after weighting for
sequence redundancy.

Here we announce the availability (at ftp://ftp.ncbi.nih.
gov/pub/mmdb/cdd/hiMSA) of 252 curated CDD hiMSAs
and of MSAs derived from these. These hiMSAs consist of
at least 10 nodes, and their derived MSAs contain at least
1000 sequences after removing sequence fragments match-
ing <75% of the aligned columns and reducing sequence
identities to �98%; the average length of these MSAs is 157
columns and contain an average of 50 nodes and 106 109
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sequences. Each superfamily hiMSA comes as a set of text
files in mFASTA format along with template files that define
how to globally align each subgroup MSA against the other
subgroup MSAs from the same superfamily. Each superfam-
ily’s file is in a subdirectory named after its identifier (e.g.
cd08372). The numbers of sequences in the corresponding
MSAs are given in Table S1. Although existing methods
may align a small number of sequences with compara-
ble accuracy, aligning the numbers of sequences obtained
here overwhelms these programs. This includes two recent
programs designed to align larger numbers of sequences
(19, 20); these failed to align most of the sequence sets in
Table S1 using the maximum amount of RAM available on
our systems.

Using hiMSAs to obtain MSAs

The software needed to construct an extremely large,
accurate and taxonomically annotated MSA from the
corresponding hiMSA is available at http://www.igs.umary
land.edu/labs/neuwald/software/mapgaps/. The procedure,
which is outlined in Figure 1, involves the following. (i)
The CDD2MGS program converts an mFASTA formatted
CDD hiMSA into MAPGAPS’s input format. (ii) Using
the hiMSA as a query, MAPGAPS searches a large
sequence database, such as the FASTA-formatted BLAST
nr database (found at ftp://ftp.ncbi.nih.gov/blast/db/FA
STA/). (The AddPhylum program can be used to label nr
sequences by phylum and kingdom, which is useful for
BPPS.) It is recommended to first split a large sequence
database into smaller FASTA files using the program fasplit.
MAPGAPS can then be run in parallel on each of the
split files. Splitting the current version of nr into subsets
of 250 000 sequences results in about 750 sub-files. After
all subsets have been processed, the MAPGAPS output
files are concatenated into a single file. (iii) The program
PurgeMSA merges the output files while removing short
sequence fragments and redundant sequences. We suggest
removing those sequences matching <75% of the aligned
columns and retaining all but one sequence among those
sharing �98% sequence identity. In addition to the default
MAPGAPS cma-formatted MSA, which requires relatively
little memory and disk space, the ConvertMSA program
can convert this into mFASTA-format, which, however,
requires significantly more storage space and for large
superfamilies may exceed available memory. ConvertMSA
can also convert mFASTA-formatted MSAs into cma format
and cma-formatted MSAs into rich text format, such as in
Figure 3.

The MAPGAPS algorithm has been described in detail
previously (16) but is summarized here as follows: MAP-
GAPS takes as input files (named using an arbitrary prefix):

(i) an array of MSAs (in cma format with file extension
∗.cma) corresponding to the root, internal nodes and leaves
of the CD hierarchy; (ii) a ‘template’ MSA (in cma format
with extension ∗.tpl) that aligns the consensus sequences to
each other and to the root; and (iii) an optional heuristic
pruning tree (in depth-first traversal integer array format
(16) with extension ∗.dft). The template consists of a set
of multiply aligned consensus sequences—one sequence
for each profile with the first sequence representing the
consensus sequence for the template itself. Prior to a search,
MAPGAPS generates profiles (i.e. position-specific scoring
matrices), one for each MSA within the hiMSA. Using these
profiles as the ‘query’, MAPGAPS uses PSI-BLAST (21)
heuristics to search for database sequences with a signifi-
cant match against at least one of the profiles. It also prunes
the search space as follows. First, it scores each database
sequence against a profile of the entire superfamily. Those
sequences that attain a specified ‘threshold trigger score’
are then compared against the other profiles. Because the
profiles are arranged as a tree, only those sequences that
obtain at least a threshold trigger score against a parent
profile are searched against the associated child profile(s).
Each sequence that has a significant score against at least
one profile is assigned to its highest scoring profile. Of
course, multiple copies of a domain within a single sequence
may each be detected in this way. Alternatively, a single copy
of a domain may be detected as two or more short regions
of sequence similarity; MAPGAPS combines these into a
single, longer region of similarity. Finally, MAPGAPS uses
the template alignment to globally align all of the matching
database sequences to each other. In this way, as long as
the curated alignments within a hiMSA accurately represent
the subgroups within the superfamily, homologous residues,
which might otherwise be impossible to align correctly, can
be aligned with accuracy comparable to that of the curated
hiMSA (16).

Illustration with EEP and PH domains

We illustrate this process using hiMSAs for the exonu-
clease–endonuclease–phosphatase (EEP) and pleckstrin
homology (PH) domain superfamilies. The EEP superfamily
is functionally diverse and includes the ExoIII family of
apurinic/apyrimidinic endonucleases, inositol polyphos-
phate 5-phosphatases, neutral sphingomyelinases, dea-
denylases, bacterial cytolethal distending toxin B (CdtB),
deoxyribonuclease 1 (DNase1) and the endonuclease
domain of the non-LTR retrotransposon LINE-1. The
EEP hiMSA (cd08372) consists of 35 nodes (Figure 2A).
A MAPGAPS search of the nr, translated EST (22) and
environmental nr databases using the EEP hiMSA as
the query generated an alignment of 223 493 sequences.
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Figure 1. Steps required to create a large, high-quality MSA using the CDD hiMSAs and programs described here.

Figure 2. CDD hierarchies used here to create very large MSAs. A. Hierarchy for EEP domains (cd08372). B. Hierarchy for PH domains (cd00900). The

subtree is shown for the RanBD family; other (+) nodes may be expanded in a similar manner.

Removing sequence matching <75% of the columns in
the root node MSA or sharing �98% sequence identity
with other sequences left 108 153 sequences. This MSA
is sufficiently large to perform both DCA and BPPS
(as was described in (8)). A representative alignment of
33 sequences among those most distantly related in the
MSA is shown in Figure S1. Despite weak similarity and
an abundance of indels, the motif characteristic of this
superfamily is generally well aligned for these sequences.

The PH domain hiMSA (cd00900) consists of 335 nodes
(Figure 2B). We chose this domain because it is one of
the most difficult to align correctly and the superfamily
contains too many member sequences to align using con-
ventional methods: even after removing fragments with
<75% matches and reducing redundancy to <98%, the
MAPGAPS-generated MSA consisted of 130 774 sequences.
A representative MSA consisting of 42 sequences from
distinct phyla is shown in Figure 3. Each of these sequences
shares <25% identity to the other sequences and thus are
among the most difficult to align correctly. Despite the
weak sequence similarity and an abundance of indels, the

motifs characteristic of this superfamily are generally well
aligned.

Comparisons with large PFAM alignments

To evaluate the quality of our EEP and PH domain MSAs,
we compare them with corresponding PFAM (23) MSAs:
PF03372_full (Exo_endo_phos) and PF00169_full (PH),
which consist of 42 099 and 50 175 sequences, respectively.
Because available benchmark MSAs typically contain only a
few sequences, they are inadequate for evaluating the qual-
ity of these very large MSAs. Instead, we apply the STARC
program (9), which is based on the following principle:
over evolutionary time substitutions at one residue position
often result in compensating substitutions at other positions
in order to maintain critical interactions. For proteins shar-
ing a common structure, such contacts generally produce
correlated substitution patterns between residue pairs at
distinct positions in an MSA. STARC first applies direct
coupling (DC) analysis (24) to measure these correlations
and then estimates the statistical significance, expressed as
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Figure 3. Alignment of 42 representative, distantly related PH domains from distinct phyla and sharing ≤25% identity. Despite the weak similarity

and an abundance of indels, conserved residues characteristic of this superfamily are generally well aligned. Residues generally conserved in ‘all’

PH domains are colored as follows: acidic residues, red (without highlighting); basic residues, cyan; hydrophilic residue, pink; histidine, glycine and

proline, blue, green and black, respectively; hydrophobic and aromatic residues, red (highly conserved) or gray with yellow highlighting. Identifiers

for phyla (left column) and sequences (right column in lower aligned region) are color coded by taxa as follows: metazoan, red; fungal, dark yellow;

plant, green; protozoan, cyan.
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Figure 4. CDD versus PFAM alignment quality. S-scores estimate the statistical significance of the correspondence between pairwise correlations

in an MSA and 3D residue contacts in available structures. (For pdb identifiers see supplementary data S1 file.) Higher-quality MSAs should yield

higher S-scores. A. Comparison of CD08372-MAPGAPS versus PF03372_full EEP domain MSAs based on 20 EEP protein structures. B. Comparison

of CDD00900-MAPGAPS versus PF00169_full PH domain MSAs based on 76 protein structures. Two CDD MSAs were analyzed: one very diverse

sub-alignment of randomly sampled sequences (average column relative entropy = 0.26 nats) and another less diverse sub-alignment (denoted as

hiRE) consisting of sequences very similar to those in the PFAM MSA (avg. relative entropy = 0.83 nats). The PFAM MSA was of intermediate diversity

(avg. relative entropy = 0.69).

S ≡−log10 (P-value), of the correspondence between the
highest DC-scoring column pairs and 3D contacts within
protein structures (9). Because this correspondence depends
upon properly aligning homologous residues, S-scores pro-
vide a direct measure of MSA quality.

To apply this approach, we first ensured that both
the PFAM and the CDD-generated MSAs share the same
numbers of aligned columns and of sequences and are
preprocessed in the same way. For the EEP domain, ensuring
the same number of columns merely required trimming the
N- and C-terminal ends of the CDD MSA by one and seven
residues, respectively—after which both MSAs consist of
233 aligned columns. For the PH domain, this involved
trimming the N- and C-terminal ends of the PFAM MSA by
two and five columns, respectively, and removing columns
corresponding to insertions relative to the CDD MSA. The
resulting EEP and PH MSAs consist of 233 and 89 columns,
respectively. (See Figures S2–S4.)

For all MSAs, we again removed sequences with
deletions in >25% of the columns and all but one sequence
among each subset of sequences of unknown structure
sharing �98% identity. Finally, we randomly removed
sequences from the larger, CDD MSAs to bring the number
down to that of the proteins (of unknown structure) in
the PFAM MSAs, after which we added back in those
proteins of known structure that are also present in the
PFAM MSAs. The resulting EEP MSAs, which both consist
of 26 823 sequences, share comparable sequence diversity:
the average column relative entropies for CDD and PFAM
were 0.54 and 0.56 nats, respectively. However, for the PH
MSAs, which consist of 22 585 sequences, the CDD and

PFAM average column relative entropies were 0.26 and
0.69 nats, respectively. To eliminate possible bias due to the
higher CDD sequence diversity (i.e. lower relative entropy),
we created a second CDD PH MSA consisting of the 22 585
sequences most similar to the PFAM sequences. This CDD
MSA’s average column relative entropy was 0.83 nats. S-
scores for the EEP and PH domain MSAs indicate that all
three CDD-MAPGAPS MSAs are of higher quality than
the PFAM MSAs (Figure 4), while also being substantially
larger.

Discussion

Currently, large MSAs are typically constructed using
query-based iterative alignment programs, such as PSI-
BLAST (21) and JackHMMER (25). Because these
programs align sequences relative to a single query-defined
profile, they tend to misalign sequences distantly related
to the query. MAPGAPS can largely avoid this problem by
using as the query a curated hiMSA that well represents
each subgroup within a superfamily, as is the case for
EEP and PH domains. For hiMSAs with poor subgroup
representation, one can use BPPS to define new subgroups
given a sufficiently large input MSA derived from the
hiMSA. By facilitating curation of additional subgroups
iteratively, this approach also aids further refinement and
expansion of CDD hiMSAs. Although we focus here on
searches of the nr and EST databases, inclusion of other
protein data sources, such as translated sequences from the
Transcriptome Shotgun Assembly (26) and IMG/M (27)
databases, will allow construction of even larger MSAs
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that can lead to even better coverage of protein subgroups.
For example, DCA was substantially improved recently by
including a vast amount of IMG/M sequence data (28). This
approach should be particularly useful for protein sequence
machine learning applications, such as recent methods
based on convolutional neural networks (29) or restricted
Boltzmann machines (30), which require extremely large
and accurate MSAs.

Supplementary data
Supplementary data are available at Database Online.
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