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Abstract
The more than 1000 single-cell transcriptomics studies that have been published to
date constitute a valuable and vast resource for biological discovery. While various
‘atlas’ projects have collated some of the associated datasets, most questions related
to specific tissue types, species or other attributes of studies require identifying papers
through manual and challenging literature search. To facilitate discovery with published
single-cell transcriptomics data, we have assembled a near exhaustive, manually curated
database of single-cell transcriptomics studies with key information: descriptions of the
type of data and technologies used, along with descriptors of the biological systems
studied. Additionally, the database contains summarized information about analysis in
the papers, allowing for analysis of trends in the field. As an example, we show that the
number of cell types identified in scRNA-seq studies is proportional to the number of
cells analysed.

Database URL: www.nxn.se/single-cell-studies/gui

Introduction

The availability of large numbers of comprehensive single-
cell transcriptomics studies (16) is making possible the
study of biological variation in unprecedented detail (5).
One interesting aspect of this ‘big data’ biology consist-
ing of a large set of measurements from many cells is
that it can yield insights even after initial published anal-
ysis of individual datasets. Moreover, with hundreds of
datasets available, integration becomes a powerful tool
for exploration. However, integration of diverse datasets
requires standardization in how data is collected, shared
and curated (15).

A number of ‘atlas’ projects have been launched to
address this problem and to assist researchers in focused

domains. For example, The ‘Human Cell Atlas’ portal
aims to provide uniformly processed single-cell genomics
data from all of the human body (12). ‘JingleBells’ pro-
vides single-cell data, with a focus on immune cells
(11). The ‘conquer’ database provides uniformly pro-
cessed single-cell expression data to facilitate benchmark-
ing of computational tools (14). The ‘PanglaoDB’ database
provides single-cell RNA-seq count matrices from pub-
lic sequencing data in the National Center for Biotech-
nology Information Sequence Read Archive (3). The
‘EMBL-EBI Single-Cell Expression Atlas’ provides uni-
formly processed data from submissions to ‘ArrayExpress’
(https://www.ebi.ac.uk/gxa/sc/home). The Broad Institute
offers a ‘Single-Cell Portal’ which can be used to share
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custom scRNA-seq data (https://portals.broadinstitute.org/
single_cell). A database called ‘scRNASeqDB’ provides
links to a number of datasets from human scRNA-seq
experiments (1). These efforts all aim to tackle different
aspects of the considerable challenge of data management
resulting from the extraordinary rapid adoption of single-
cell genomics technologies.

We focus on a missing resource, namely a database
of single-cell transcriptomics studies generating data and
results, rather than primary data. The compilation of such
a database required us to read and manually curate large
numbers of publications, which we indexed according to
publication and study authors. Our database will allow
researchers interested in specific tissues to rapidly iden-
tify relevant studies. Furthermore, by virtue of providing
a comprehensive overview of the field, our database can
highlight understudied tissues. The database will facili-
tate appropriate citation of previous work when perform-
ing follow-up experiments. This database tracks metadata
applicable to most studies, such as the number of cell
types identified, and protocols used. We show that these
annotations enable analysis of trends in the field.

Database structure

This database aims to provide a link between datasets from
different tissues, pointers to data location and relevant ref-
erences. Together, these attributes make published data and
results readily discoverable. A secondary goal is to annotate
useful metadata associated with the primary studies.

The ‘Single-cell studies database’ considers the analysis
of many genes at once in single cells as a ‘single-cell tran-
scriptomics’ study. To allow for comprehensive coverage
within a meaningful domain, the scope of the database was
restricted in certain ways. For example, multicolor fluo-
rescence flow cytometry and mass cytometry experiments
were not included, even though both technologies can mea-
sure dozens of analytes per cell. The focus was restricted to
datasets with the expression of more than a hundred genes
measured in individual cells. Some targeted technologies
measuring fewer genes such as osmFISH were also included
when they could be directly related to higher throughput
counterparts (2, 13, 19).

In studies performing multi-omics experiments, only
cells with transcriptome readout are considered. This does
include data where multiple omics are measured in the same
cells, such as simultaneous RNA and DNA sequencing (7).

The primary identifier of each entry in the database
is the canonical digital object identifier (DOI) of a pub-
lication. Based on the DOI, four entries are included
using the CrossRef API (https://github.com/CrossRef/rest-
api-doc): ‘Authors’, ‘Journal’, ‘Title’ and ‘Date’. Additional
fields are based on the contents of the publication and

are manually annotated by investigating the text and sup-
plementary material of the publication. If the study was
deposited to the bioRxiv (https://www.biorxiv.org), the
‘bioRxiv DOI’ field indicates this. Attributes include:

• Reported cells total: the number of cells investigated
in the study.

• Technique: the technology or protocol used.
• Panel size: the number of genes investigated when tar-

geted technologies such as multiplexed smFISH were
applied.

• Measurement: the type of quantitative measurements
performed (e.g. RNA-seq, in Situ or microarray).

• Data location: the public repository accession ID for
the raw data.

• Organism: the species of origin of cells examined in
the study.

• Tissue: the tissue type from which single cells were
collected.

• Cell source: notes about the cells in the study.
• Disease: indicates disease states for which cells were

investigated in the study.
• Contrasts: the different experimental conditions stud-

ied, if any.
• Isolation: the method used to produce the single-cell

suspension.
• Developmental stage: the developmental stages or

ages of the organism’s cells were collected from.

Additionally, some fields are binary corresponding to a
‘Yes’ or ‘No’ entry. This is used for the following attributes:

• Cell clustering: did the study perform unsupervised
clustering of cells (4)?

• Pseudotime: were cellular trajectories inferred with
pseudotime methods (9)?

• RNA velocity: was a vector field inferred from spliced
and unspliced reads (6)?

• PCA: was a principal component analysis performed?
• tSNE: was the t-Distributed Stochastic Neighbor

Embedding algorithm used for visualization (18)?

Finally, the number of cell types or clusters identified
in each study is recorded under Number of reported cell
types or clusters. This is most commonly based on de novo
clustering, but in some cases, it is based on the number of
distinct presorted cell types.

Fields may be added over time as new forms of data
annotation and analysis become popular over time. Addi-
tion of new fields to existing studies is a quicker process
than starting without a list of studies.

While the manual curation of the data made possi-
ble description of numerous details from the papers in
the database, some entries are missing due to difficulty in
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finding information. However, we believe the overall con-
tent of the database is substantial enough to serve as a good
starting point for the community to contribute and fill in
the gaps. We show that even with some missing annotation,
the database in its current form makes possible analysis of
trends in the field.

The database can be accessed via a graphical user inter-
face (GUI) usingGoogle Sheets at http://www.nxn.se/single-
cell-studies/gui. This view allows searching on keywords
and for browsing studies. One tab, ‘Count summaries’, lists
all unique tissues, techniques, measurements and diseases
present in the database with the number of studies they
appear in. Importantly, this GUI also allows for the contri-
bution of information to the database through comments
on individual entries.

A version of the database in tab-separated values (TSV)
format can be downloaded from www.nxn.se/single-cell-
studies/data.tsv. This enables researchers to perform anal-
yses using the data.

New studies can be submitted through a form located at
http://www.nxn.se/single-cell-studies/submit. Submissions
require a DOI. The form also allows for entry of additional
metadata through optional fields. Claims in the submis-
sions are spot checked to ensure they refer to the original
text in the publication. Each new entry or change to the
database is performed manually on a case-per-case basis.

Corrections to existing entries are also performed indi-
vidually on a case-per-case basis as curators become aware
of mistakes. Users can make curators aware of mistakes
by creating a new submission with the existing DOI and
mention the mistake in the free text ‘Other notes’ field.
Additionally, any user can comment on individual cells
in the Google Sheets GUI or make direct contact with
curators.

Every day a snapshot of the database is saved (in TSV
format) using Google Cloud Functions, and all these snap-
shots are available in a public Google Storage bucket at
gs://single-cell-studies. An example snapshot is provided
as Supplementary Table 1, which has data on 550 studies
published between 2003 and August 17, 2019.

Results

The earliest single-cell transcriptomics study recorded in
the database was published in 2004. Since 2013, almost
every month at least one study has been published. The
rate of study publication has increased steadily, and in
January, February and March of 2020, there were over
50 single-cell transcriptomics studies published per month
(Figure 1). In the first half of 2020, the median scRNA-seq
study investigated approximately 31,000 cells (Table 1).

Individual studies have increased in scale over time, and
every few months, a new study is released that breaks
the previous record in terms of number of cells assayed.

During the first half of 2020, approximately 1,400,000
cells were added to the pool of public data every month
(Figure 2).

Many tissues have been investigated by single-cell tran-
scriptomics methods, but the brain is the most popular with
171 associated citations out of 1033 (Table 1). Another
trend observed from this database is that authors of single-
cell transcriptomics papers are increasingly making use of
the bioRxiv preprint server. In total, 254 of 1033 studies
were deposited to bioRxiv (25%, Figure 3). Single-cell stud-
ies are published in many different journals, with Nature
and Cell having published the most (Table 1). The increas-
ing popularity of these kinds of studies means the field, as
measured by the number of active authors, has grown over
time. Since 2016, the cumulative number of unique authors
has doubled approximately every 15 months (Supplemen-
tary Figure 1).

Additionally, we used the Open Citations API (https:
//opencitations.net/) to obtain cross-citation numbers
between all articles in the database. Studies on brain (6921
citations total) and cell cultures (6026 citations total) had
the most citations (Table 2a). The most cited studies in
the database were Macosko et al. (8) (190 citations out of
1036) and Trapnell et al. (17) (124 citations out of 1036,
Table 2b).

By tracking the types of analyses performed with single-
cell transcriptomics data, it is possible to learn something
about what the community as a whole is aiming to learn
from the assays. The most common application is to sur-
vey molecular ‘cell types’ by clustering cells based on gene
expression. Almost every study performs clustering (90%).
The t-SNE visualization method became nearly univer-
sally applied after its first use for single-cell analysis in
2015, although the fraction of studies per month using
it has decreased slightly in the last year, possibly due to
the introduction of Uniform Manifold Approximation and
Projection (10). ‘Pseudotime’ is less frequently examined
but is still very popular with about half of published studies
investigating pseudotime trajectories (Figure 4).

Since de novo clustering and cell type discovery is almost
always performed, we annotated the number of clusters of
cells identified in the studies. This revealed a high corre-
lation between cell type numbers and the number of cells
investigated. For small studies (up to about 1000 cells), on
average, one cell type is identified per 150–200 cells assayed
(linear regression, see ‘Methods’). For large studies with
hundreds of thousands of cells, the rate is closer to one
cell type per 3000 cells assayed (Figure 5). Stratifying the
studies by the 11 most studied tissues showed that most
tissues have a significant dependency between cells studied
and cell types or clusters (log-linear regression, Wald test).
The exceptions were blood, bone marrow, skin and kidney
(Supplementary Figure 2).
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Figure 1. Studies over time. (Upper) The number of single-cell transcriptomics studies published per month. (Lower) The number of scRNA-seq
studies published per month stratified by method.

Table 1. Single-cell study trends (left) Number and size of single-cell transcriptomics studies in 2019. (middle) Most common

tissue investigated with single-cell transcriptomics. (‘Culture’ refers to in vitro studies of cell lines). (right) Journals which have

published most single-cell transcriptomics studies. (‘bioRxiv’ means the study is so far only available on bioRxiv).

Monthly statistics Top tissues Top journals

Month Studies Median cells Tissue Studies Journal Studies

0 November 2019 12 39,895 Brain 171 bioRxiv 136
1 December 2019 29 15,601 Culture 107 Nature 82
2 January 2020 57 35,173 Blood 35 Cell 73
3 February 2020 50 36,044 Pancreas 33 Nat Commun 70
4 March 2020 68 31,514 Lung 32 Cell Reports 66
5 April 2020 38 30,396 Heart 25 Science 48
6 May 2020 13 22,000 Bone marrow 22 Cell Stem Cell 28

Table 2. Top citation summary, a) Top cited tissues. b) Single-cell studies most cited by other single-cell studies.

DOI Citations Shorthand Date

10.1016/j.cell.2015.05.002 190 Macosco et al. Cell 2015-05
10.1038/nbt.2859 124 Trapnell et al. NBT 2014-03
10.1038/nbt.3192 114 Satija et al. NBT 2015-04
10.1038/ncomms14049 107 Zheng et al. NComm 2017-01
10.1016/j.cell.2015.04.044 77 Klein et al. Cell 2015-05
10.1038/nmeth.2639 72 Picelli et al. NMeth 2013-09
10.1126/science.aad0501 72 Tirosh et al. Science 2016-04
10.1126/science.aaa1934 57 Zeisel et al. 2015-02
10.1038/nature12172 54 Shalek et al. Nature 2013-05
10.1038/nmeth.2645 54 Brennecke et al. NMeth 2013-09

Discussion
The curated database described here is hosted at https:
//www.nxn.se/single-cell-studies. It has been designed for
easy access to the underlying data and for in depth analysis
in Python or R. The database was designed to facilitate

access to published single-cell research, so that, for exam-
ple, a researcher can find all single-cell studies of the
pancreas to explore the results and analyse public data.
We found that analysis of other aspects of the studies
described in the papers, namely attributes such as type of
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Figure 2.Scale of experiments and data over time. (Upper): The number of cellsmeasured in a study, stratified by themeasurementmethod. (Middle):
The number of cells measured in scRNA-seq experiments, stratified by scRNA-seq protocol. (Lower): The aggregate number of cells measured per
month.

Figure 3. Preprint usage over time. The number of studies published in a given month stratified by whether they at some point were deposited to
bioRxiv. (Including studies currently only available on bioRxiv).

protocol, number of cells or the number of clusters iden-
tified, revealed interesting trends in the field. We believe
that our finding that the number of clusters identified is
directly proportional to the number of cells analysed merits
some scrutiny in light of the biological significance that is
frequently associated with the number of clusters detected.

The database is also designed to enable contributions by
the community via a mechanism for suggesting additions,
adding data and for commenting. Forms for these functions
are hosted at https://www.nxn.se/single-cell-studies/gui and
https://www.nxn.se/single-cell-studies/submit.

Methods
The growth rate of single-cell transcriptomics authorships
was studied by taking the cumulative unique new authors
each month, then calculating the month-to-month percent
increase. The doubling time in months was calculated as
log(2)/log(1+ [yearly average monthly change]).

To investigate the relation between the number of
reported cell types of clusters and the reported cells total
we divided the data into five quantiles based on the
log10(reported cells total). For each quantile, we fitted
a linear regression [cell types]=b * cells+ c, so that 1/b
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Figure 4. Popularity of forms of analysis over time. (Top) The number of studies doing clustering per month. (Middle) The number of studies using
t-SNE per month. (Bottom) The number of studies doing pseudotime analysis per month.

Figure 5. Cluster and cell numbers. The number of cells studied versus the number of clusters or cell types reported in a study. Red curves correspond
to linear regression stratified to five quantiles of ‘Reported cells total’.
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corresponds to the number of cells needed to increase the
number of cell types by 1.

For tissue-specific trends in reported cells versus number
of clusters, we identified the 11 most studied tissues. For
each tissue, we fitted a linear regression log([cell types])=
b * log(cells)+ c and evaluated the Wald test P-value for
the coefficient b. The relation between number of cells and
number of clusters was determined to exist if the P-value
was less than 0.05.
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