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Abstract
Nowadays high-throughput omics technologies are routinely used in biological research.
From the omics data, researchers can easily get two gene lists (e.g. stress-induced genes
vs. stress-repressed genes) related to their biological question. The next step would
be to apply enrichment analysis tools to identify distinct functional/regulatory features
between these two gene lists for further investigation. Although various enrichment
analysis tools are already available, two challenges remain to be addressed. First, most
existing tools are designed to analyze only one gene list, so they cannot directly com-
pare two gene lists. Second, almost all existing tools focus on identifying the enriched
qualitative features (e.g. gene ontology [GO] terms, pathways, domains, etc.). Many
quantitative features (e.g. number of mRNA isoforms of a gene, mRNA half-life, pro-
tein half-life, transcriptional plasticity, translational efficiency, etc.) are available in the
yeast, but no existing tools provide analyses on these quantitative features. To address
these two challenges, here we present Yeast Quantitative Features Comparator (YQFC)
that can directly compare various quantitative features between two yeast gene lists. In
YQFC, we comprehensively collected and processed 85 quantitative features from the
yeast literature and yeast databases. For each quantitative feature, YQFC provides three
statistical tests (t-test, U test and KS test) to test whether this quantitative feature is statis-
tically different between the two input yeast gene lists. The distinct quantitative features
identified by YQFCmay help researchers to study the underlying molecular mechanisms
that differentiate the two input yeast gene lists. We believe that YQFC is a useful tool to
expedite the biological research that uses high-throughput omics technologies.

Database URL: http://cosbi2.ee.ncku.edu.tw/YQFC/

Introduction

Nowadays high-throughput omics technologies (e.g.
genomics, transcriptomics, proteomics, etc.) are routinely

used in biological research (1). From the omics data,
researchers can easily get two gene lists (e.g. stress-induced
genes vs. stress-repressed genes, drug-induced genes vs.
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drug-repressed genes, hub genes vs. nonhub genes, genes
with long mRNA half-life vs. genes with short mRNA
half-life, etc.) related to their biological question. The
ultimate goal is to understand the underlying molecu-
lar mechanisms that differentiate these two gene lists. To
achieve this goal, researchers need to know which bio-
logical features are good candidates for further investiga-
tion. Since enrichment analysis tools can help researchers
to identify possible biological features, which are wor-
thy of pursue, the enrichment analysis tool development
has become a popular research topic in the bioinformatics
field (2).

Many enrichment analysis tools are available for analyz-
ing yeast gene lists. First, DAVID (3) provides gene ontology
enrichment, pathway enrichment, protein domain enrich-
ment and chromosome enrichment analyses. Second, Yeast-
Mine (4) provides gene ontology enrichment, pathway
enrichment and publication enrichment analysis. Third,
modPhEA (5) provides phenotype enrichment analysis.
Fourth, YGA (6) provides physical/genetic interaction
enrichment and functional group enrichment analyses.
Fifth, YHMI (7) provides histone modification enrichment
analysis. Sixth, YARG (8) provides arsenic-related genes
enrichment analysis. Seventh, YEASTRACT (9) provides
single transcription factor regulation enrichment analysis.
Eighth, YCRD (10) provides cooperative transcription fac-
tor pair regulation enrichment analysis. Descriptions of
many other enrichment analysis tools could be found in a
review paper (2).

Although many enrichment analysis tools are already
available for testing various biological features, two chal-
lenges remain to be addressed. First, most existing tools are
designed to analyze one given gene list, so they (e.g. Yeast-
Mine, YHMI, YARG, YEASTRACT, YCRD, etc.) cannot
directly compare two given gene lists. Second, almost all
existing tools (e.g. YeastMine, DAVID, modPhEA, YHMI,
etc.) focus on finding the enriched qualitative features (e.g.
gene ontology [GO] terms, pathways, domains, pheno-
types, histone modifications, etc.). Many quantitative fea-
tures (e.g. mRNA expression level, mRNA half-life, tran-
scriptional plasticity, translational efficiency, protein abun-
dance, protein half-life, UTR length, number of mRNA iso-
forms of a gene, etc.) are available in the yeast, but no exist-
ing tools provide analyses on these quantitative features. To
address these two challenges, here we develop Yeast Quan-
titative Features Comparator (YQFC) to directly com-
pare various quantitative features between two yeast gene
lists.

In YQFC, we comprehensively collected and processed
85 quantitative features from the yeast literature and yeast
databases. For each quantitative feature, YQFC provides
three statistical tests (t-test, U test and KS test) to test

whether this quantitative feature is statistically different
between the two given yeast gene lists. Both tables and
figures (box plots and cumulative distribution func-
tion [CDF] plots) are provided to visualize the testing
results.

Construction and contents

Collection of 85 quantitative features from 7
yeast publications and 6 yeast databases

We comprehensively collected and processed 85 quantita-
tive features from 7 yeast publications (11–17) and 6 yeast
databases (YeastMine, YeastNet (18), YAGM (19), SGD
(20), BioGRID (21), SPELL (22)). We classified these 85
quantitative features into 4 categories: 12 gene features,
4 mRNA features, 52 protein features, and 17 network
features (Table 1). The detailed source information of all
quantitative features in YQFC is given in Supplementary
Table 1.

YQFC collected and processed data of 85 quantitative
features in yeast. For each yeast gene, the values of all these
85 quantitative features are stored. Users can download our
unique and useful feature data from the Download page of
YQFC.

Three statistical tests (t-test, U test and KS test)
used to compare a quantitative feature between
two yeast gene lists

For each quantitative feature, YQFC provides three sta-
tistical tests (t-test, U test and KS test) to test whether
this quantitative feature is statistically different between
the two given yeast gene lists (denoted as L1 and L2).
For example, assume that a user wants to compare the
5′UTR length between L1 and L2. YQFC provides the
following three statistical tests to do this task. First, the
t-test (or called Student’s t-test) is used to determine if
the mean 5′UTR length of the genes in L1 is statistically
longer/shorter than the mean 5′UTR length of the genes in
L2 (23). Note that the t-test is a parametric test based on
the assumption that the observed data come from normal
distributions. Second, the U test (or called Mann-Whitney
U test) is used to determine if the median 5′UTR length
of the genes in L1 is statistically longer/shorter than the
median 5′UTR length of the genes in L2 under the location
shift assumption (24). Note that the U test is a nonpara-
metric test that does not assume anything about the dis-
tribution of the underlying populations. Third, the KS test
(or called Kolmogorov-Smirnov test) is used to determine
if the cumulative distribution of the 5′UTR length of the
genes in L1 is statistically larger/smaller than the cumula-
tive distribution of the 5′UTR length of the genes inL2 (24).
Note that the KS test is a nonparametric test that does not
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Table 1. The 85 collected quantitative features could be divided into 4 categories: 12 gene features, 4 mRNA features,

52 protein features and 17 network features

12 Gene features CDS length, 5′UTR length, 3′UTR length,
Number of publications, number of GO terms, number of GO slim terms, number of pathways, number of
mutant phenotypes, number of mRNA isoforms, number of transcriptional regulators, number of fungal
homologs, number of nonfungal and Saccharomyces cerevisiae homologs

4 mRNA features mRNA level (3 datasetsa), mRNA half-life, transcriptional plasticity, translational efficiency (5 datasetsb)
52 protein features Number of domains, number of PTMs, protein half-life, amino acid composition (20 kindsc), atomic

composition (5 kindsd), extinction coefficient at 280 nm (2 kindse), protein abundance (in the normal growth
condition, 23 datasetsf), protein abundance (in various stress conditions, 11 kindsg), protein physical details
(protein length, molecular weight, pI, aliphatic index, instability index), coding region translation calculation
(codon bias, codon adaptation index, frequency of optimal codons, hydropathicity of protein, aromaticity score)

17 network features Number of interactors in the following networks:
PI (3 datasetsh) network
GI network
CC network
CX network
DC network
GN (similar genomic context) network
GT (similar profiles of GI partners) network
PG (similar phylogenetic profiles) network
TS (3-D protein structure of interacting orthologous proteins) network
EPA network
FAA network
GIA network
LEA network
MPA network
PIA network
TFBA network
TFRA network

CC, co-citation; CDS, coding sequence; CX, co-expression; DC, domain co-occurrence; EPA, expression profile association; FAA, functional annotation association; GI, genetic interaction;
GIA, genetic interaction association; LEA, literature evidence association; MPA, mutant phenotype association; pI, isoelectric point; PI, physical interaction; PIA, physical interaction
association; PTM, posttranslational modification; TFBA, transcription factor-binding association; TFRA, transcription factor regulation association; UTR, untranslated region.
aWe collected three datasets of mRNA levels generated from microarray (11) and RNA-seq (12).
bWe downloaded five datasets of translational efficiency from Csárdi et al. (16) who collected them from the literature.
cAmino acid composition contains 20 kinds of amino acids.
dAtomic composition contains five kinds of atoms: carbon, hydrogen, nitrogen, oxygen, and sulfur.
eExtinction coefficient at 280 nm contains two kinds: (i) all cys residues appear as half cystines and (ii) no cys residues appear as half cystines.
fWe downloaded 23 datasets of protein abundance measured in the normal growth condition from Ho et al. (17) who collected them from the literature.
gWe downloaded the datasets of protein abundance measured in 11 different stress conditions (dithiothretiol, H2O2, hydroxyurea, methyl methanesulfonate, etc.) from Ho et al. (17) who
collected them from the literature.
hWe collected three datasets of protein-protein physical interaction from BioGRID (21) and YeastNet (18).
PI (physical interaction, 3 datasetsh) network
GI (genetic interaction) network
CC (co-citation) network
CX (co-expression) network
DC (domain co-occurrence) network
GN (similar genomic context) network
GT (similar profiles of genetic interaction partners) network
PG (similar phylogenetic profiles) network
TS (3-D protein structure of interacting orthologous proteins) network
EPA (expression profile association) network
FAA (functional annotation association) network
GIA (genetic interaction association) network
LEA (literature evidence association) network
MPA (mutant phenotype association) network
PIA (physical interaction association) network
TFBA (transcription factor binding association) network
TFRA (transcription factor regulation association) network

assume anything about the distribution of the underlying
populations.

Implementation of the web interface of YQFC

Figure 1 illustrates the configuration of YQFC. The web
interface of YQFC was developed in Python using the
Django MTV framework. The 85 processed quantitative

feature data were deposited in MySQL. All tables, box
plots, and CDF plots were produced by the JavaScript
and feature-rich JavaScript libraries (jQuery, DataT-
ables and Plotly.js) to visualize data on the web-
page. Except for the main website (http://cosbi2.ee.
ncku.edu.tw/YQFC/), we also have two backup sites
(http://cosbi4.ee.ncku.edu.tw/YQFC/ and http://cosbi6.ee.
ncku.edu.tw/YQFC/).
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Figure 1. The configuration of YQFC.

Figure 2. The input page. To use YQFC, users have to go through a three-step process.

Utility and discussion

The usage of YQFC

YQFC is a web tool for identifying the distinct quan-
titative features between two input yeast gene lists. To
use YQFC, users have to go through a three-step process

(Figure 2). [Step 1] Users need to input two gene lists to be
compared. Standard names, systematic names, or aliases
are all acceptable. If users only have one input gene list,
they can use our precomplied gene lists (e.g. 6604 ORF
genes, 299 tRNA genes, 27 rRNA genes, etc.) to serve
as the second input gene list. In other words, YQFC also
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Figure 3. The result page (the first part). The first part contains the information of the user’s settings (i.e. the number of genes in L1, the number of
genes in L2, the selected quantitative features, the selected multiple hypotheses correction method, and the selected p-value threshold).

supports analysis of a single gene list. [Step 2] Users need
to select the quantitative features to be analyzed. [Step 3]
Since YQFC tests many quantitative features (i.e. multiple
hypotheses testing), users have to select a statistical method
(Bonferroni correction or false discovery rate (FDR)) for
multiple hypotheses correction and set the P-value thresh-
old. Note that using different correction method will give
you different corrected P-value. Bonferroni correction is
more conservative than FDR That is, Bonferroni correc-
tion has a smaller type I error rate, resulting in a smaller
power, than FDR does. The P-value threshold determines
the statistical significance of how different of a quanti-
tative feature is between the two input gene lists. The
more stringent the P-value threshold, the higher the sta-
tistical significance of the identified distinct quantitative
feature.

After submission, YQFC will perform three statistical
tests (t-test, U test and KS test) to test whether a selected
quantitative feature is statistically different between the
two input gene lists (denoted as L1 and L2). This pro-
cess will go through all the selected quantitative features.
Once the analysis process is complete, YQFC will return
the results with two parts. The first part (Figure 3) contains
the information of the user’s settings (i.e. the number of
genes in L1, the number of genes in L2, the selected quanti-
tative features, the selected multiple hypotheses correction
method, and the selected P-value threshold). The second
part contains the result of each selected quantitative fea-
ture shown as two sections: (i) Summary and (ii) Statistical
testing results. In the ‘Summary’ section, users can choose

‘Table View’ or ‘Figure View’. ‘Table View’ (Figure 4a)
provides a table containing two kinds of information. First,
the numbers of genes (in L1 and L2, respectively), which
have the feature values are given. If users click on the
number, they will see the names and the feature values
of these genes. By clicking on a feature value, users will
see the original sources of the feature value. Second, the
mean and median feature values of the genes (having fea-
ture values) in L1 and L2, respectively, are given. ‘Figure
View’ (Figure 4b) provides two kinds of plots for visu-
alization. Box plots are used to display variation in the
feature values in L1 and L2, respectively. CDF plots are
used to show the probability that the feature value X is
less than or equal to a specific value x (i.e. Prob(X≤ x)).
In the ‘Statistical testing results’ section (Figure 4c), users
can see a table with six P-values. Three P-values (calcu-
lated by t-test, U test and KS test) represent the statistical
significance of claiming the quantitative feature of L1 is
larger than that of L2 (denoted as QF(L1)>QF(L2)).
The other three P-values (calculated by t-test, U test and
KS test) represent the statistical significance of claiming
the quantitative feature of L1 is smaller than that of L2
(denoted as QF(L1)<QF(L2)). To draw the users’ atten-
tion, the P-values which are less than the P-value threshold
are highlighted with the yellow background. To ensure the
robustness of the testing results, we suggest the users to
investigate the quantitative features with statistical signif-
icance in all three statistical tests (t-test, U test and KS
test). As for the P-value threshold, we suggest the users to
use 0.01 or less. The more stringent the P-value threshold,
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Figure 4. The result page (the second part). The second part contains the result of each selected quantitative feature shown as two sections:
(i) Summary and (ii) Statistical testing results. In the “Summary” section, users can choose “Table View” or “Figure View”. (a) “Table View” provides
a table containing two kinds of information. First, the numbers of genes (in L1 and L2, respectively) which have the feature values are given. If
users click on the number, they will see the names and the feature values of these genes. By clicking on a feature value, users will see the original
sources of the feature value. Second, the mean and median feature values of the genes (having feature values) in L1 and L2, respectively, are given.
(b) “Figure View” provides two kinds of plots for visualization. Box plots are used to display variation in the feature values in L1 and L2, respectively.
Cumulative distribution function (CDF) plots are used to show the probability that the feature value X is less than or equal to a specific value x
(i.e. Prob(X≤x)). (c) In the “Statistical testing results” section, users can see a table with six p-values. Three p-values (calculated by t-test, U test,
and KS test) represent the statistical significance of claiming the quantitative feature of L1 is larger than that of L2 (denoted as QF(L1)>QF(L2)). The
other three p-values (calculated by t-test, U test, and KS test) represent the statistical significance of claiming the quantitative feature of L1 is smaller
than that of L2 (denoted as QF(L1)<QF(L2)). To draw the users’ attention, the p-values which are less than the p-value threshold are highlighted
with the yellow background.
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the less testing results that can be called statistical
significance.

A case study
Microarray experiments have identified approximately 900
environmental stress response (ESR) genes whose mRNA
levels respond to various environmental stresses (e.g. heat
shock, oxidative stress, osmotic stress, etc.) in a stereotyp-
ical manner (25). These ESR genes can be divided into 585
repressed ESR (rESR) genes and 281 induced ESR (iESR)
genes. Previous studies have shown that many rESR genes
are housekeeping genes (e.g. ribosomal genes and genes
involved in growth-related processes), while iESR genes
are usually involved in various stress defense mechanisms
(6, 25). We are interested in knowing which quantitative
features can differentiate rESR genes from iESR genes.
Therefore, we input these two gene lists (first list: 585 rESR
genes and second list: 281 iESR genes) into our YQFC as a
case study (Supplementary Table 2).

Many interesting observations have revealed from the
analysis results of our YQFC. To ensure the statistical
significance and robustness of the observations, we only
discuss those with FDR-corrected P-values < 0.001 in all
three statistical tests (t-test, U test and KS test). First, in the
normal growth condition, rESR genes have higher mRNA
level, larger protein abundance and larger translational effi-
ciency than iESR genes do (Table 2). These observations are
not surprising. Since many rESR genes are housekeeping
genes, their proteins are highly needed in the normal growth
condition. On the contrary, iESR genes are involved in the
stress defense mechanisms, so their proteins are not highly
needed in the normal growth condition. Second, rESR
genes also have larger protein abundance than iESR genes
do (Table 2) in various stress conditions (e.g. dithiothre-
tiol, H2O2, hydroxyurea, and methyl methanesulfonate).
This indicates that even in the stress conditions, the needed
quantity of housekeeping proteins are still larger than that
of the stress response proteins to maintain the cell physi-
ology. Third, in the normal growth condition, rESR genes
have shorter mRNA half-life than iESR genes do (Table 3),
consistent with a previous study reporting that ribosomal
genes (belonging to rESR genes) have short mRNA half-life
(26). Fourth, iESR genes have larger transcriptional plas-
ticity, more transcriptional regulators and longer 5′UTR
length than rESR genes do (Table 3). Since iESR proteins
are only highly needed in the stress conditions, their expres-
sion must be under complicated controls. Having larger
transcriptional plasticity and more transcriptional regula-
tors indicate that the transcription of iESR genes may be
more tightly regulated than that of rESR genes. Our finding
is supported by a previous study reporting that the stress-
induced genes are under amore complicated transcriptional

regulation than the housekeeping genes (27). Since 5′UTR
is known to contain translational regulation signals (28),
having longer 5′UTR suggests that the translation of iESR
genes may be under more complicated regulation than
that of rESR genes. For example, uORFs are one kind of
translational regulation signals (29). It is known that the
proportion of genes that contain uORFs in the 5′UTR is
much greater for translationally up-regulated genes than
down-regulated genes under various stress conditions (29).
Therefore, we suspect that this observation is also hold for
iESR genes vs. rESR genes. Indeed, we found that the pro-
portion of genes that contain uORFs in the 5′UTR is much
greater for iESR genes than rESR genes (Supplementary
Table 3). Fifth, rESR genes have more GO term annota-
tions, higher mRNA isoforms, and more interactors in the
physical/genetic networks than iESR genes do. The bio-
logical meaning of these observations still needs further
investigation. Several other quantitative features that can
differentiate rESR genes from iESR genes could be found in
Tables 2 and 3.

Quantitative comparison vs. qualitative
enrichment analysis

Since quantitative comparison between a single input gene
list (L1) and the background gene list (L2) is possible
in YQFC, users may want to correlate the quantitative
comparison results with the qualitative enrichment anal-
ysis results. The qualitative enrichment analysis is to test
the enrichment of a qualitative feature (e.g. GO terms)
in the single input gene list compared to the background.
Here we provide an example to illustrate the differences
between these two testing strategies. Assume that we want
to compare the 5′UTR length of 281 iESR genes and the
background (4418 genes which have 5′UTR length data).
For quantitative comparison, YQFC found that the 5′UTR
length of 281 iESR genes (L1) is statistically significantly
longer than that of the background (L2) when using U test
or KS test with P-value threshold 0.01 (Figure 5). Note that
only 233 out of 281 iESR genes have 5′UTR length data.

For qualitative enrichment analysis, first we need to
define a set of genes with long 5′UTR length from the back-
ground (4418 genes which have 5′UTR length data). Let us
define a set of genes with long 5′UTR length by including all
the genes whose 5′UTR lengths are within the largest X%
(X=10, 20, 30, 40) of the background. Then we can use
the hypergeometric test to check whether the iESR genes
are enriched with genes with long 5′UTR length.

If we set the P-value threshold for calling enrichment as
0.01, then we can conclude that iESR genes are enriched
with genes with long 5′UTR length only when X=40 but
not 10, 20 or 30 (Table 4). It can be seen that the testing
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Table 2. YQFC found that rESR genes are statistically larger than iESR genes in 23 QFs. To ensure the statistical significance

and robustness of the findings, we only consider those with FDR-corrected P-values < 0.001 in all three statistical tests (t-test,

U test and KS test)

QF(rESR) >QF(iESR) P-value (t-test) P-value (U test) P-value (KS test)

Number of mRNA isoforms 2.393E-36 1.047E-33 1.421E-24
Number of GO terms 1.074E-04 2.751E-06 1.341E-06
mRNA level—mRNA expression level 1.925E-37 1.390E-53 3.282E-44
Translational efficiency—Dataset1 (Csárdi) 3.143E-17 1.955E-29 7.422E-27
Protein abundance (normal condition)—Dataset1 (Mean molecules per cell) 3.597E-11 2.328E-23 1.580E-18
Protein abundance (stress condition)—2 mM dithiothreitol, 2 h 8.394E-05 7.610E-07 9.150E-05
Protein abundance (stress-condition)—1mM H2O2, 1 h 3.487E-07 6.236E-13 5.831E-09
Protein abundance (stress-condition)—0.2M hydroxyurea, 160 min 1.193E-11 3.315E-16 1.748E-10
Protein abundance (stress-condition)—0.2M hydroxyurea, 2 h 3.708E-08 1.920E-10 1.715E-08
Protein abundance (stress-condition)—0.03% methyl methanesulfonate, 2 h 3.371E-06 2.133E-10 2.027E-09
Codon bias 9.216E-38 7.312E-21 2.745E-16
Codon adaptation index 1.313E-45 1.472E-28 6.607E-21
Frequency of optimal codons 3.524E-38 2.1344E-21 2.180E-16
Atomic composition—Hydrogen 3.4931E-16 1.449E-15 8.345E-12
Atomic composition—Nitrogen 1.134E-06 7.026E-07 1.582E-05
Amino acid composition—A 7.937E-07 2.9351E-07 5.746E-06
Amino acid composition—E 3.997E-06 7.183E-05 1.094E-05
Amino acid composition—K 2.466E-15 1.033E-11 8.844E-12
Amino acid composition—R 2.879E-16 6.514E-11 9.999E-10
Amino acid composition—V 3.859E-07 2.224E-06 1.899E-04
Number of interactors in the PI network—BioGRID 1.123E-14 2.408E-41 2.631E-34
Number of interactors in the GI network 3.556E-19 1.530E-18 1.226E-19
Number of interactors in the CX network 3.079E-07 1.900E-05 6.763E-06

QFs quantitative features

Table 3. YQFC found that iESR genes are statistically larger than rESR genes in 17 QFs. To ensure the statistical significance

and robustness of the findings, we only consider those with FDR-corrected P-values < 0.001 in all three statistical tests (t-test,

U test and KS test)

QF(iESR) >QF(rESR) P-value (t test) P-value (U test) P-value (KS test)

5′UTR length 9.172E-07 1.932E-14 2.831E-12
Number of transcriptional regulators 1.544E-06 6.367E-06 7.281E-04
mRNA half-life 3.335E-32 6.538E-78 3.760E-71
Transcriptional plasticity 1.747E-07 4.046E-08 6.679E-07
Aromaticity score 8.413E-17 6.953E-21 6.270E-17
Extinction coefficient at 280 nm—All Cys residues appear as half cystines 1.701E-06 3.080E-08 4.875E-08
Extinction coefficient at 280 nm—No Cys residues appear as half cystines 1.864E-06 3.687E-08 5.844E-08
Atomic composition—Carbon 1.967E-25 5.450E-25 5.226E-18
Amino acid composition—F 1.485E-06 9.373E-12 1.123E-08
Amino acid composition—H 7.552E-06 3.296E-07 3.961E-06
Amino acid composition—N 1.161E-08 2.001E-08 4.775E-06
Amino acid composition—P 1.303E-10 5.362E-12 1.515E-08
Amino acid composition—W 7.552E-06 1.842E-06 1.128E-05
Amino acid composition—Y 5.226E-13 1.106E-14 5.057E-13
Number of interactors in the PIA network 7.839E-08 3.209E-06 8.477E-05
Number of interactors in the LEA network 5.942E-04 5.907E-05 3.889E-05
Number of interactors in the MPA network 4.532E-05 3.046E-06 1.371E-04

QFs quantitative features
PIA physical interaction association
LEA literature evidence association
MPA mutant phenotype association
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Figure 5. Quantitative comparison of 5’UTR length between 281 iESR genes and the background (4418 genes which have 5’UTR length data). (a)
Table View (b) Figure View (c) Statistical testing results. It can be seen that the 5’UTR length of 281 iESR genes (L1) is statistically significantly longer
than that of the background (L2) when using U test or KS test with p-value threshold 0.01. Note that only 233 out of 281 iESR genes have 5’UTR
length data.
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Table 4. For qualitative enrichment analysis, first we need to define a set of genes with long 5′UTR length from the background

(4418 genes, which have 5′UTR length data). Let us define a set of genes with long 5′UTR length by including all the genes

whose 5′UTR lengths are within the largest X% (X=10, 20, 30, 40) of the background. Then we can use the hypergeometric

test to check whether the iESR genes are enriched with genes with long 5′UTR length. If we set the P-value threshold for calling

enrichment as 0.01, then we can conclude that iESR genes are enriched with genes with long 5′UTR length only when X=40

but not 10, 20 or 30

X Expected ratio in background Observed ratio in iESR genes P-value for enrichment calculated by hypergeometric test

10 10% (441/4418) 12.88% (30/233) 0.08381
20 20% (883/4418) 24.46% (57/233) 0.04971
30 30% (1325/4418) 36.05% (84/233) 0.02398
40 40% (1767/4418) 48.07% (112/233) 0.006232

results of the qualitative enrichment analysis are sensitive
to how we define a set of genes with long 5′UTR length.
Therefore, we suggest researchers to use quantitative com-
parison rather than qualitative enrichment analysis when
quantitative feature data are available.

Conclusion

In this study, we have developed a web tool called YQFC.
We have comprehensively collected 85 quantitative features
(including 12 gene features, 4 mRNA features, 52 pro-
tein features and 17 network features) in YQFC. For each
quantitative feature, YQFC provides three statistical tests
(t-test, U test and KS test) to test whether this quantita-
tive feature is statistically different between the two input
yeast gene lists. In the case study, we demonstrated the
functionality and usefulness of YQFC by identifying 40 dis-
tinct quantitative features between rESR genes and iESR
genes (Tables 2 and 3). The distinct quantitative features
(e.g. 5′UTR length, mRNA half-life, transcriptional plas-
ticity, translational efficiency, etc.) identified by YQFC
may help researchers to study the underlying molecular
mechanisms that differentiate rESR genes from iESR genes.
We believe that YQFC is a useful tool to expedite the
biological research that uses high-throughput omics tech-
nologies. In the future, we will keep updating YQFC once
new quantitative features become available in the yeast lit-
erature or yeast databases. Now is YQFC Version 1.0.
When YQFC has a minor update, we will change the ver-
sion number to 1.1, 1.2, etc. In the future, if YQFC has a
major update, we will change the version number to 2.0.
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