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Abstract
The ability to compare entities within a knowledge graph is a cornerstone technique
for several applications, ranging from the integration of heterogeneous data to machine
learning. It is of particular importance in the biomedical domain, where semantic similar-
ity can be applied to the prediction of protein–protein interactions, associations between
diseases and genes, cellular localization of proteins, among others.

In recent years, several knowledge graph-based semantic similarity measures have
been developed, but building a gold standard data set to support their evaluation is non-
trivial. We present a collection of 21 benchmark data sets that aim at circumventing the
difficulties in building benchmarks for large biomedical knowledge graphs by exploiting
proxies for biomedical entity similarity. These data sets include data from two success-
ful biomedical ontologies, Gene Ontology and Human Phenotype Ontology, and explore
proxy similarities calculated based on protein sequence similarity, protein family simi-
larity, protein–protein interactions and phenotype-based gene similarity. Data sets have
varying sizes and cover four different species at different levels of annotation completion.
For each data set, we also provide semantic similarity computations with state-of-the-art
representative measures.

Database URL: https://github.com/liseda-lab/kgsim-benchmark.

Introduction

The growing size of data produced by nearly all domains
of human endeavour brought with it new challenges in
handling the size, the complexity and the diversity of
data. One of the domains where this data deluge has
altered nearly every aspect of its workings is the life sci-
ences. High-throughput techniques in genomics and pro-
teomics produce large amounts of data about the function,

regulation and interaction of genes and proteins, and their
integration with clinical research has helped link thousands
of genes to related diseases.

The size of the data, but also the underlying complexity
in describing it, was a strong motivator for the adoption
of ontologies by the biomedical community. Since the early
2000s, biomedical ontologies have been increasingly used
to annotate data, which has resulted in a proliferation
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of ontologies (more than 800 currently stored in Bio-
Portal; https://bioportal.bioontology.org/) and ontology
annotated data sets, many available as linked open data
(e.g. Bio2RDF; https://bio2rdf.org/). The creation of these
resources, as is also the case of more general-purpose
knowledge graphs (KGs) such as DBpedia (1) or Yago, was
the result of tremendous efforts by the scientific commu-
nity to provide a way to make data understandable by both
humans and machines.

The ability to describe complex entities by linking them
to the ontology concepts that describe them supports the
computation of the similarity between entities with algo-
rithms that explore ontology features (2). Several tasks
can be supported by these semantic similarity metrics,
such as integration of heterogeneous data, entity matching,
comparison and clustering and generation of recommenda-
tions. In fact, computing similarity between instances is an
integral part of many machine learning techniques, both
supervised and unsupervised. In the biomedical domain,
the ability to compare entities, such as genes, cells, organ-
isms, populations, species, and finding their similarities
and differences is essential to support scientific inquiry.
While comparing the sequences of two genes or the struc-
tures of two proteins can be achieved directly, because both
have objective representations and measurable properties,
ontologies provide mechanisms of objective representation
that support measurement of more complex aspects, such
as function.

Biomedical semantic similarity has been successfully
applied to such diverse tasks as protein–protein interac-
tion (PPI) prediction (3–5), prediction of disease-associated
genes (3) or drug-target interaction prediction (6). It is
worth noting that in these applications, similarity is not
used to detect identity, but rather to predict the likelihood
of a given entity exhibiting a given property.

There are several measures available (2, 7), each with
their distinguishing characteristics. Given the variety of
approaches and measures for semantic similarity, it is fun-
damental to determine the best measure for each appli-
cation scenario. However, there is no gold standard for
similarity between complex biomedical entities, and a man-
ual assessment of similarity by domain experts is unfeasible,
not only due to the size of the data but also because
each expert is inherently biased towards a viewpoint of
the domain or a particular use case. Furthermore, each
of the existing measures formalizes the notion of simi-
larity in a slightly different way, and for that reason,
it is not possible to define what the best semantic sim-
ilarity measure would be, since it becomes a subjective
decision.

One possible solution is to compare semantic similar-
ity measures to other measures or proxies of similarity. In

the biomedical domain, entities can be compared through
different lenses. For instance, we can compare two genes
via their sequence similarity, two proteins via their struc-
tural similarity or two diseases by the metabolic pathways
they affect. These similarities do not provide the broad-
spectrum comparison that semantic similarity supports, but
they are known to relate to relevant characteristics of the
underlying entities. As such, these similarity proxies can
be compared to the semantic similarity to help understand
how well a semantic similarity approach captures entity
similarity.

We present a collection of 21 benchmark data sets that
aim at circumventing the difficulties in building bench-
marks for large biomedical KGs by exploiting proxies for
biomedical entity similarity. These data sets are grouped
according to the KGs and proxy measures they are based
on: (1) ‘Protein Family Similarity’, based on the Gene
Ontology (GO) (8); (2) ‘Protein–Protein Interaction’, also
based on the GO and (3) ‘Phenotype-based Gene Similar-
ity’, based on the Human Phenotype Ontology (HPO) (9).
The data sets vary in size, both in terms of individual
entities and entity pairs, from a few hundred to over hun-
dred thousand pairs. For each data set, we also provide
semantic similarity computations with four state-of-the-art
representative measures.

Biomedical KGs

Ontologies are structured representations of a domain of
human knowledge that are made up of classes, descrip-
tors of the features of the entities in that domain and a
set of relations between these classes (10). Ontologies can
be used to describe real-world entities through the process
of semantic annotation: entities are linked with the ontol-
ogy classes most fitting to describe them. A set of entities
annotated with a given ontology constitute a KG. With this
structured representation of reality, it is possible to compu-
tationally reason over the entities, streamlining a process
that would be much more expensive and time consuming if
done by humans.

One task that was made possible with the develop-
ment of KGs was the calculation of semantic similarity
between the entities. A semantic similarity measure is
a function that, given two ontology classes or two sets
of classes describing two individuals, returns a numer-
ical value reflecting the closeness in meaning between
them (7). Figure 1 illustrates how two proteins are repre-
sented by their GO classes and how they can be compared
through semantic similarity measures. An accurate assess-
ment of the similarity between a pair of entities depends
on how well they are annotated, both regarding breadth
(i.e. including annotations for all aspects of the entity that
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Figure 1. Semantic similarity in the Gene Ontology between proteins P19367 and Q16740. Blue circles are classes that only annotate protein P19367,
the green circles are classes that only annotate protein Q16740 and grey circles are classes that annotate both proteins.

can be described within the ontology domain) and depth
of annotations (i.e. choosing the most specific classes of
the ontology that best describe the entity). If two entities
are shallowly annotated with the same non-specific classes,
they can be rendered similar but be, in fact, very dissimi-
lar, which would impact semantic similarity performance
(11, 12).

The GO is the most successful case of the use of an
ontology in the biomedical domain. The GO is a directed
acyclic graph that covers three distinct aspects of gene
product’s role: Molecular Function (its activity at the
molecular level), Cellular Component (the location of its
activity relative to biological structures) and Biological Pro-
cess (a larger biological program in which its molecular
function is utilized) (8). The GO Annotation is a project
that aims to provide assignments of GO classes to pro-
teins of any species, i.e. annotations (13). The annotations
provide a standardized way to describe proteins, which
makes them directly comparable with semantic similarity
metrics.

GO-based semantic similarity is the main research focus
of semantic similarity in molecular biology, with several
GO-based semantic similarity measures being developed
through the years (7, 14, 15). Overall, semantic similar-
ity in the GO has been applied mainly for validating and
predicting functions and interactions, and for analysing
transcriptomics and proteomics data (7). In predicting and
validating the function of gene products, these measures
can be combined with other similarity metrics, as structural
similarity (16) or sequence similarity (17, 18) for better

results. In PPI prediction and validation, similarly, semantic
similarity can be the sole approach (5, 19) or be used to
improve already existing techniques (20). Finally, the role
of semantic similarity in the analysis of transcriptomics and
proteomics data is mainly the improvement of clustering of
co-expressed gene products (21–23).

Another example of an ontology of interest in the
biomedical domain is the HPO. The HPO contains
about 15 000 concepts describing phenotypic abnormal-
ities found in human hereditary diseases and is divided
into independent subontologies that cover different cat-
egories: ‘Phenotypic abnormality’, ‘Mode of inheri-
tance’, ‘Clinical course’, ‘Clinical modifier’ and ‘Fre-
quency’. The HPO has been used to integrate sequenc-
ing data from multiple biotech centres to identify
patients with mutations in the same gene and compa-
rable phenotypes, to record detailed clinical phenotypes
of patients with rare inherited disorders, to annotate
clinical cases with standard phenotype variants in order
to cluster phenotypically overlapping patients and finally
to increase interoperability between clinical laboratories
(9, 24).

Semantic similarity using the HPO has many applica-
tions. Different semantic similarity-based techniques can be
used to rank diseases annotated with HPO based on how
similar they are to several queries of HPO classes (9, 25).
This method allows for the clinical diagnosis of patients by
finding the most similar disease to their set of symptoms
Similarly, Masino et al. (26) use semantic similarity and
the HPO to predict the disease-causing gene in patients.
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Some HPO-based semantic similarity measures have been
developed throughout the years (9, 27, 28).

Related work

Building a gold standard data set to support semantic
similarity evaluation is not trivial. Accomplishing this man-
ually is extremely time-consuming, and existing manual
gold standards are minimal when compared to the size of
the ontologies they correspond to. For instance, Pedersen
et al. (29) created a set of only 30 term pairs extracted
from Unified Medical Language System Metathesaurus.
The Unified Medical Language System (30) contains over 1
million biomedical concepts and 5 million concept names,
originating from more than 100 incorporated controlled
vocabularies and classification systems.

To mitigate this challenge, some semantic web-related
applications have turned to crowdsourcing (e.g. in ontol-
ogy matching (31) and in the verification of relations (32))
which brings with it a series of new challenges.

The evaluation task can be inherently biased towards a
particular viewpoint of the domain or a particular use case.
This can be of extreme relevance in biomedical semantic
similarity, where two genes may be deemed similar across
many different axes: molecular function, expression, cel-
lular localization, disease involvement, etc. The evaluation
task success is also highly dependent on the ability to pro-
vide crowdsourced workers with enough information to
make a decision.

In previous work, we have developed Collaborative
Evaluation of Semantic Similarity Measures (CESSM) (33).
This tool enables the comparison of new GO-based seman-
tic similarity measures against previously published ones
considering their relation to sequence, Pfam (34) and
Enzyme Commission (EC) (35) number similarity. CESSM
was released in 2009 and updated in 2014, and since then it
has been widely used by the community, being adopted to
evaluate over 25 novel semantic similarity measures devel-
oped through different methods, with more recent ones
focusing on common information content (IC)-based met-
rics (36) but also based on vector representations/graph
embeddings (37). CESSM was built as a web-based tool
to support the automatic comparison against the bench-
mark data. Over time, we identified some limitations of
its use: users looking to perform iterative evaluations were
limited by access through a graphical user interface; users
were unable to calculate other metrics of performance not
supported by the tool; users were limited to a single ontol-
ogy (GO) and a single functional perspective given by the
Pfam and EC proxies which focus on protein function sim-
ilarity. Despite its limitations, CESSM’s methodology for

evaluation of semantic similarity measures showed effec-
tiveness and its data set was successfully used for other
tasks than the evaluation techniques of semantic similarity
measures supported by the tool (3).

Other data sets have also been used to evaluate KG-
based semantic similarity. MateTee, a KG-based semantic
similarity metric (38) was evaluated both with CESSM and
with a gold standard based on DBpedia entities of the type
Person. AnnSim (39) was also evaluated on CESSM, but it
also included additional evaluations based on drug–target
interaction prediction using other data sets. However, the
drug–target interaction data sets only provide the proxy-
based similarity (in this case, a link between drug and
target) and do not provide the necessary KG annotations
for each data item. These are likely to change over time,
so a fair and unbiased comparison between different tools
would need to be run with the exact versions of the data.

Finally, there are related contributions in the area
of benchmark data for several machine learning tasks
in KGs, such as link prediction (40, 41) and classifi-
cation (42). The Open Graph Benchmark includes a
biomedical KG but focuses only on link property predic-
tion (43). KG-based semantic similarity can be applied
in these contexts, but these benchmark data sets do
not support a direct evaluation of semantic similarity
measures.

Materials and methods

Ontologies and KG data

The benchmark data sets in this collection are grouped
according to the KGs and proxy measures they are based
on: (1) ‘Protein Family Similarity’, based on the GO, (2)
‘Protein–Protein Interaction’, also based on the GO and (3)
‘Phenotype-based Gene Similarity’, based on the HPO.

The protein benchmark data sets are constituted by pro-
teins, identified by their UniProt Accession Numbers. Each
protein is annotated with classes (also commonly referred
to as terms) from the GO. There are species-specific data
sets (Drosophila melanogaster, Escherichia coli, Homo
sapiens and Saccharomyces cerevisiae) and a data set that
groups these species (‘All’). In September 2019, 12 490
D. melanogaster, 5341 E. coli, 19 464H. sapiens and 6048
S. cerevisiae proteins were annotated with GO.

The gene benchmark data set is constituted by genes,
identified by their Entrez Gene Code and annotated with
classes from the HPO. These annotations link the genes
with the HPO classes which best describe the disease in
which the genes have been shown to play a role. The
benchmark KG contains 4293 human genes and their anno-
tations to the HPO (dated November 2019).
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KG-based semantic similarity

The approaches used to quantify semantic similarity can
be distinguished based on which entities they intend to
compare: there are approaches for comparing two classes
within an ontology and approaches for comparing two
individuals each linked to their own set of classes. When
comparing classes, these measures can be node-based,
meaning they explore the properties of each class involved,
or edge-based, which rely on the distance between the
classes. However, edge-based measures are based on the
assumption that the nodes and the edges are uniformly dis-
tributed through the ontology, which is mostly not true
for biomedical ontologies, making node-based measures
more reliable (7). These typically rely on the IC of a class,
which is a measure of how informative, or rather, specific a
class is. The IC can be calculated based on the graph struc-
ture (intrinsic approach) or based on the usage of the class
in annotating entities in a corpus (extrinsic approach). In
this work, we focus on two IC measures, presented below,
which are representative of each type.

ICSeco (44) is a structural IC based on the number of
direct and indirect children of a class c and is given by

ICSeco (c) = 1− log [hypo(c)+ 1]
log [maxnodes]

where hypo(c) is the number of direct and indirect children
from class c (including class c) and maxnodes is the total
number of classes in the ontology.

ICResnik (45) is a corpus-based approach and based on
the number of entities annotated with class c in a KG:

ICResnik (c) =− logp(c)

where p(c) is the probability of annotation in the corpus.
The normalized version of ICResnik is given by

ICnorm (c) =
ICResnik (c)

logN

with N being the total number of annotations.
To calculate semantic similarity for two individuals,

each described with a set of classes, both pairwise and
groupwise approaches can be used. Pairwise approaches
assess the similarity between two individuals by combining
the semantic similarities between their annotating classes.
Groupwise approaches employ vector or graph-based mea-
sures that process annotations taken together as a whole.
One semantic similarity measure representative of each
approach is used to build the benchmark data sets.

‘Best Match Average’ (BMA) is a pairwise approach
based on the pairwise measure in which the similarity
between two classes corresponds to the IC of their most

informative common ancestor (45). In BMA, only the best-
matching class for each class in each set of classes describ-
ing the individuals (i.e. the most similar) is considered to
calculate the pairwise similarity, given by

BMA(A,B) =

∑
c1∈CA

sim(c1,c2)

2 |CA|
+

∑
c2∈CB

sim(c1,c2)

2 |CB|

where A and B are entities, C is the set of classes c each
entity is described with and sim(c1,c2) and sim(c2,c1) are
the highest similarity values found for class c1,c2. The sim-
ilarity between two classes can be found using Resnik’s
similarity (45):

sim(c1,c2) =max [IC(c)] : c ∈ A(c1)∩A(c2)

where A(ci) is the set of ancestors of ci.
SimGIC (46) is a groupwise approach which resorts to

the Jaccard similarity, in which each class c is weighted by
its IC. It is given by

simGIC(A,B) =

∑
c∈CA∩CB

IC(c)∑
c∈CA∪CB

IC(c)

where A and B are entities, C is the set of classes c each
entity is annotated with.

To produce data sets that are representative in terms
of semantic similarity measures, we combined both IC
measures with each entity similarity measure to arrive at
four state-of-the-art semantic similarity measures employed
in the benchmark: BMAResnik,BMASeco,simGICResnik and
simGICSeco.

Building the benchmark data sets

To build these benchmark data sets, we developed a general
methodology (Figure 2) divided in three steps. The first step
consists of selecting the entities of the KG that will make
up the pairs in the data sets. These entities should be well
characterized in the context of the ontology to avoid the
shallow annotation bias and have enough information to
compute proxy similarity between them.

Next step is generating the pairs of entities. In doing
so, we tried to guarantee a wide range of similarity among
the pairs of entities, from null to total identity to ensure
representativeness in the pairs of entities (see ‘Technical
validation’).

Finally, having selected the pairs of entities for the
data set, the two types of similarity measures need to be
calculated: semantic similarity (see KG-based semantic sim-
ilarity) and similarity proxies that are relevant for the type
of entities and data sets at hand.
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Figure 2. General methodology for the development of the data sets.

Protein benchmark data sets

We have created two types of protein benchmark data sets,
one based on protein family similarity and another based
on PPIs. In building them, the first step is to select the
proteins that will constitute them. This includes filtering
proteins without sufficient GO annotations, as well as pro-
teins for which the necessary information to compute proxy
similarity is not available.

Protein selection based on GO annotations

In GO semantic similarity, not only is the depth of the
GO terms an important feature, as previously exposed, as
is the breadth of annotations within the three GO aspects
(Molecular Function, Cellular Component, and Biological
Process) since measures may wish to handle them differ-
ently. To tackle these issues, we created two different types
of data sets according to the following criteria:

‘One aspect’: The proteins must have at least one anno-
tation in each GO aspect, and in at least one aspect, there
should be at least one leaf-class annotation.

‘All aspects’: The proteins must have at least one anno-
tation in each GO aspect, and in each aspect, there should
be at least one leaf-class annotation.

This ensures that all proteins are sufficiently annotated
to support semantic similarity calculations in either one or
all aspects of GO. It also results in all proteins in the ‘All
aspects’ data set being included in the ‘One aspect’ as well.

Measuring protein similarity

We employ three proxies of protein similarity based on
their biological properties: sequence similarity, functional
domain similarity and PPIs.

Sequence similarity: Protein sequence similarity mea-
sures the relationship between two sequences, and it estab-
lishes the likelihood for sequence homology. Sequence
similarity (simSeq) will be calculated through the relative
reciprocal BLAST score (46):

simSeq (A,B) =
BLASTbitscore (A,B)+BLASTbitscore (B,A)
BLASTbitscore (A,A)+BLASTbitscore (B,B)

where A and B are two proteins.
The relationship between sequence similarity and sema-

ntic similarity is non-linear (46) but becomes more rel-
evant the higher the sequence similarity is (47). While
sequence similarity can be used to evaluate the performance
of a semantic similarity measure, it should not be the sole
evaluator in this task.

Pfam similarity: Protein family similarity is computed
by comparing the functional regions (commonly termed
domains) that exist in each protein sequence using the equa-
tion below. Protein functional domains are extracted from
the Pfam references contained in the UniProt database.
Pfam similarity (simPfam) is calculated as a Jaccard similar-
ity, using the ratio between the number of families common
to proteins A and B and the total number of distinct families
through proteins A and B:

simPfam (A,B) =
|fA ∩ fB|
|fA ∪ fB|

where A and B are two proteins with the set of families fA
and fB, respectively.

The more functional domains two proteins share, the
more likely will be that their semantic similarity in the
GO is high, especially in the Molecular Function aspect
since these domains are usually responsible by assigning
functions to proteins (34).
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Table 1. PPI benchmark data sets, with original publication

reference and protein’s species

Data set Species

STRING-SC (4) S. cerevisiae
STRING-HS (4) H. sapiens
STRING-EC (4) E. coli
STRING-DM (4) D. melanogaster
DIP-HS (5) H. sapiens
BIND-SC (53) S. cerevisiae
DIP/MIPS-SC (53) S. cerevisiae
GRID/HPRD-BAL-HS (51) H. sapiens
GRID/HPRD-UNBAL-HS (51) H. sapiens

Protein–protein interactions: In these data sets, PPI has
a binary representation: 1 if the proteins interact, 0 other-
wise. The data sets we employed to extract interacting and
non-interacting pairs correspond to a set of well-known
benchmarks for PPIs covering the four species (presented
in Table 1). We consider two proteins to be similar if they
interact. PPIs have some correlation to semantic similar-
ity in the GO: if two proteins are co-localized in the cell
and involved in the same large-scale process, they are most
likely to interact and will share some GO terms in the
Biological Process and Cellular Component aspects. Both
Sousa et al. (48) and Maetschke et al. (4) show this to be
true, whose PPI predicting approaches demonstrate higher
predictive power when using terms from these two aspects.
However, two proteins can be very similar through dif-
ferent lenses (e.g. having high sequence, semantic or Pfam
similarity) but not interact.

The semantic similarity measures employed for these
data sets are the previously presented ones.

Protein family similarity data set

In the Protein family similarity data sets, two similarity
proxies are employed: sequence and protein family simi-
larity. Protein family similarity is computed using equation
for simPfam and Pfam assignments to proteins. Thus, pro-
teins in these data sets should also have at least one domain
identified in the Pfam database, which further filters down
the number of proteins in this data set. After selecting the
eligible proteins, pairs were randomly generated. This, of
course, results in a very large number of proteins having
zero simPfam, so we randomly filtered the pairs to ensure the
same number of pairs with zero, partial and total simPfam.

PPI data set

In the PPI data sets, two similarity proxies are employed:
sequence and PPIs. Although sequence similarity is not as
highly correlated to protein interactions as it is with molec-
ular functions, it has been successfully used to predict PPIs.

By combining the initial protein selection criteria with the
PPI benchmark data sets, we filtered the pairs down to only
include pairs where both proteins met the set criteria. Then,
the pairs of proteins were grouped by species, excluding all
existing duplicates, and the data sets were filtered to ensure
that the number of pairs of interacting and non-interacting
proteins was the same in each data set.

Gene-phenotypes benchmark data set

The gene-phenotypes benchmark data set is constituted by
genes, identified by their official gene symbol and annotated
with the HPO. For this data set, all human genes meeting
the following criteria were considered:

(1) The gene must be described with at least three
distinct HPO classes in the subontology ‘Pheno-
typic Abnormality’ (i.e. not ancestors/descendants
of each other);

(2) The gene must have a link with at least one phe-
notype in any ‘Phenotypic Series’ (PS), and the
mechanism behind that link must be known.

This ensures that the benchmark is composed of suffi-
ciently annotated genes, for which the proxy similarity is
possible to compute. These criteria take into consideration
that disease-causing genes are typically associated with sev-
eral phenotypic abnormalities and that HPO annotations
are not as frequent at the leaf level.

Measuring genes’ phenotypes similarity

The proxy similarity is based on OMIM’s PS (49),
which are groups of identical or similar phenotypes and
their associated genes. To date, OMIM has 464 dif-
ferent PS composed of 3777 phenotypes. Information
on how genes relate to PS was retrieved from OMIM
(https://www.omim.org/phenotypicSeriesTitles/all). PS sim-
ilarity (simPS) is defined as a Jaccard similarity, the ratio
between the number of PS common to genes A and B and
the total number of distinct PS through genes A and B:

simPS (A,B) =
|PSA ∩PSB|
|PSA ∪PSB|

where A and B are two genes with the set of Phenotypic
Series PSA and PSB, respectively.

Similarly to simPfam in the protein family protein data
sets, simPS correlates to semantic similarity because the
more PS two genes are associated with, the more likely it is
that they share HPO classes in the ‘Phenotypic Abnormal-
ity’ subontology, since PS are a set of similar phenotypes.

The semantic similarity measures employed for this
data set are the previously presented ones, calculated con-
sidering only the terms in the subontology ‘Phenotypic
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Figure 3. Semantic similarity inside the Phenotypic Abnormality sub-ontology in the Human Phenotype Ontology between the genes ACAT1 and ELN.
Blue circles are classes that only annotate gene ACAT1, green circles are terms that only annotate gene ELN, grey circles are classes that annotate
both genes and white circles are classes whose annotations are discarded due to not belonging to the Phenotypic Abnormality sub-ontology.

Abnormality’ (Figure 3), since these are the ones that truly
influence the functional similarity of the genes.

Genes-phenotypes data set

After selecting the eligible genes, pairs of genes were ran-
domly generated. Since most genes share no PS and would
have zero simPS, we randomly filtered the pairs to ensure the
same number of pairs with zero, partial and total simPS.

Results

Protein benchmark data sets

The proposed methodology was employed to produce the
data sets described in Table 2. This resulted in 16 data
sets, divided by species, level of annotation completion and
similarity proxy, and 4 additional data sets, combining all
species’ protein pairs in the same proxy group. Data sets
sizes range from as little as 287 different proteins and 200
pairs, to 26 000 proteins and 104 000 pairs. Regarding
the PPI data sets, there are small differences between the
number of proteins and pairs in the ‘One Aspect’ and ‘All
Aspect’ data sets. Given that these data sets are based on
benchmark data sets of PPIs, it is likely that the proteins
therein are well characterized, particularly in the case of
H. sapiens data sets. This means that most of the proteins
in the original data sets meet the criteria for “All Aspects’,
explaining the small difference in the sizes of the data sets.

Genes-phenotypes benchmark data set

Having followed the proposedmethodology, a data set with
2026 distinct human genes and 12 000 pairs was produced.

Technical validation

Benchmark data sets are key to finding the best perform-
ing tools for a specific application. There are a number of
requirements for good benchmark data sets, namely rele-
vance, representativeness, non-redundancy, scalability and
reusability (50). In the context of these benchmark data
sets for semantic similarity measures, this means that the
data sets should include data relevant for the biomedical
domain, have representative cases in both terms of similar-
ity metrics and their values, or contain both positive and
negative examples (e.g. positive and negative interactions
between proteins, avoid overlapping of cases among them)
to make a comparative study between them more relevant,
should support the same study in different sized data sets
and are of special utility if they can be used for different
purposes. Representativeness is of particular relevance in
these data sets, as the data sets should provide a balanced
cross-section of biomedical entities.

The collection of 21 benchmark data sets we present
aims at supporting the large-scale evaluation of semantic
similarity measures based on biomedical KGs. It represents
an evolution compared with the previous efforts in this
area, both in terms of the size and diversity of the data
employed (Table 3). The benchmark data can be used to
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Table 2. Species, number of proteins and pairs, annotation completion and proxy measure they are based on for all protein

data sets

PPI Protein family

One aspect All aspects One aspect All aspects

Species Proteins Pairs Proteins Pairs Proteins Pairs Proteins Pairs

D. melanogaster 455 364 287 200 7470 31350 5300 17682
E. coli 371 734 263 420 1231 3363 724 1332
H. sapiens 7093 30826 6718 29672 13246 31350 11666 25527
S. cerevisiae 3776 27898 2888 16904 4782 38166 3660 29265
All 11695 59822 10156 47196 26729 104229 21350 73806

Table 3. Comparison between both updates of CESSM and the presented resource (KG similarity benchmark data sets)

Resource CESSM 2009 CESSM 2014 KG similarity benchmark data sets

Entities 1039 1626 30520
Pairs 13 430 22302 175489
Ontologies GO GO GO & HPO
Species Non-specific Non-specific 4

evaluate the multiple components of a semantic similarity
measure, i.e. IC, class-based similarity and instance-based
similarity approaches. It can also be used to evaluate the
impact of semantic similarity on downstream tasks such
as PPI prediction or gene–disease association prediction. In
this section, we go over the main features of these data sets,
displaying their validity for the proposed application.

Protein benchmark data sets

Figures 4, 5 and 6 show the distribution of simPfam in
the Protein Family data sets and semantic similarity in the
Protein Family and PPI data sets, respectively. These dis-
tribution plots were designed using the data from the ‘One
Aspect’, All species data set from the PPI and Protein Fam-
ily data sets since they enclose all the pairs of proteins in
their respective species-specific data sets of both annotation
levels.

Figure 4 shows the simPfam score distribution for all
the pairs of proteins in the Protein Family data sets. As
expected, there is a balance between pairs of proteins with
zero and total simPfam. The partial simPfam pairs are more
likely to have a similarity value between 0.1 and 0.5.

In Figure 5, we see that all similarity measures have a
similar behaviour, except for BMAResnik. While the number
of pairs grows as the value of BMAResnik increases up until
a similarity value of 0.4, this is not true for the other mea-
sures. With these, the number of pairs mostly decreases as
similarity rises, with some exceptions in both ends of the
similarity axis (e.g. the number of pairs of proteins rises
when simGIC, for both ICs, equals 1).

A similar analysis can be done in Figure 6 for the
same semantic similarity measures, where we see a distinct
behaviour for BMAResnik, when compared to the other sim-
ilarity measures. Even though the PPI data sets are balanced
in terms of pairs of interacting/non-interacting proteins,
and interacting pairs are expected to have higher semantic
similarity, it is clear that their similarity values are skewed
to lower values, with no raise in the number of pairs when
the similarity reaches its maximum value.

Pearson correlation coefficient between all semantic sim-
ilarity measures and the protein family proxies (simPfam and
simSeq) was then assessed for the protein family data sets
(Table 4), as well as between all semantic similarity mea-
sures and simSeq and PPI for the PPI data sets (Table 5).
Tables 4 and 5 present only correlation with simGICSeco,
since it was the highest-scoring semantic similarity metric
for most of the proxy measures, but the extended results
are available online (https://github.com/liseda-lab/kgsim-
benchmark). We found a positive correlation in all tests.
In the PPI data sets, BMA is shown to have a higher corre-
lation with PPI, while simGIC correlates better with simSeq,
with both properties being IC independent. In the Pro-
tein Family data sets, once more, simGIC correlates better
with simSeq than any BMA approach and, although this
is not true for all data sets, BMA approaches show bet-
ter correlation with simPfam than simGIC (data available
online at https://github.com/liseda-lab/kgsim-benchmark).
In the Protein Family data sets, lower correlations were
generally found for the ‘One aspect’ data sets, but this
was not observed in the PPI data sets. In the PPI data
sets, there is in most cases a lower correlation to sequence
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Figure 4. Distribution of simPfam values across all species’ protein pairs in the protein family data sets.

Figure 5. Distribution of all semantic similarity metrics (BMAResnik,BMASeco, simGICResnikand simGICSeco) values across all species’ protein pairs in the
protein family data sets.

similarity, as expected (51), with the exception of the
H. sapiens sets.

Genes-phenotypes benchmark data sets
The distribution of the simPS values and semantic similarity
values for this data set is shown in Figures 7 and 8.
Figure 7 shows the simPS score distribution for the
pairs of genes in the gene-phenotypes data set. As
expected, there is a balance between pairs of proteins
with zero and total simPS. The partial simPS pairs are

more likely to have a similarity value between 0.1 and
0.5. In Figure 8, we see distinct behaviours for both
simGIC and BMA. While both BMA approaches have
a behaviour similar to that of a normal distribution,
the simGIC approaches have their values skewed to
the left.

Pearson correlation coefficient between simPS and all
semantic similarity measures used are presented in Table 6,
showing that all measures have a positive relation with
simPS.
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Figure 6. Distribution of all semantic similarity metrics (BMAResnik, BMASeco, simGICResnik and simGICSeco) values across all species’ protein pairs in
the protein–protein interaction data sets.

Table 4. Pearson correlation coefficient between semantic similarity (simGICSeco and protein family proxies (simSeq and simPfam)

for all protein family data sets

One aspect All aspects

Species simSeq simPfam simSeq simPfam

D. melanogaster 0.532 0.638 0.469 0.600
E. coli 0.386 0.455 0.421 0.450
H. sapiens 0.769 0.664 0.774 0.675
S. cerevisiae 0.642 0.568 0.636 0.549
All 0.592 0.616 0.619 0.605

Figure 7. Distribution of simPS values across all the pairs in the gene-phenotypes data sets.
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Figure 8. Distribution of all semantic similarity metrics (BMAResnik, BMASeco, simGICResnik and simGICSeco) values across all species’ protein pairs in
the gene-phenotypes data sets.

Table 5. Pearson correlation coefficient between semantic

similarity (simGICSeco) and sequence similarity (simSeq) and

PPIs for all protein–protein interaction data sets

One aspect All aspect

Species simSeq PPI simSeq PPI

D. melanogaster 0.488 0.719 0.516 im0.670
E. coli 0.229 0.624 0.181 0.604
H. sapiens 0.549 0.389 0.560 0.390
S. cerevisiae 0.300 0.563 0.353 0.538
All 0.375 0.473 0.440 0.445

Discussion

A big issue in the evaluation of semantic similarity measures
is the diversity in the studies employed to do so. Semantic
similarity measures are usually tested in a small and con-
trolled set of data, developed for that study alone. This
unsystematic assessment practice can lead to biases in the
published results, especially if not compared with those of
the state-of-the-art similarity measures in the same con-
ditions, i.e. using the exact same version of the KG and
the same entity pairs. Moreover, not employing a common
strategy or, at least, the same data, makes the results from
these studies not directly comparable across them.

This work aimed at tackling these issues by provid-
ing data sets with pairs of entities of different species,
annotated with different ontologies and providing a com-
bination of different similarity proxies and multiple state-
of-the-art semantic similarity measures.

In order to guarantee that the semantic similarity mea-
sures can capture the functional similarity between the
entities, their meaning must be well captured within the
ontology context. This meant selecting entities annotated
with more specific ontology classes (classes with fewer child
classes), as sharing one, or more, of these classes will
result in a higher and more significant semantic similarity
between the two entities. This was done in order to tackle
the shallow annotation problem for semantic similarity
measures, which results in similarity values that are incon-
sistent with human perception due to shallowly described
entities (11).

The definition of biological functional similarity is
ambiguous because its exact meaning varies based on the
context in which it is used (52). This bias is especially rel-
evant when similarity is being defined by domain experts.
For instance, let us imagine two protein kinases. These are
proteins that modify other proteins by adding a phosphate
group to them. A biochemist could deem the two proteins
as very similar because they are both kinases; therefore,
they have the same function. However, when analysing the
two proteins from a physician’s perspective, they might be
more interested in the role these two proteins play at the
whole-organism level. The two kinases may be involved
in different signalling pathways, and different mutations in
these kinases might cause different diseases. Thus, from a
physiological point of view, the two kinases are dissimilar.
Not only is it unfeasible to ask domain experts to do this
manual verification of similarity for every pair of biological
entities there is, due to the amount of data in these domains,
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Table 6. Pearson correlation coefficient between simPS and

state of the art semantic similarity measures (BMAResnik,

BMASeco, simGICResnik and simGICSeco) for the gene-pheno-

types data set

Pearson’s correlation

BMAResnik 0.572
BMASeco 0.590
simGICResnik 0.478
simGICSeco 0.482

their perception will always be biased to their field of study
or area of expertise.

The benchmark takes advantage of proxies of entity sim-
ilarity for the evaluation of semantic similarity measures
as a device for determining functional similarity of two
biomedical entities. These measures of similarity, despite
still capturing only one functional aspect of the entities at
a time, bear two advantages: they rely on objective rep-
resentations of the entities (e.g. gene sequence, protein
structure, existence of PPIs, metabolic pathways affected
by the disease) and calculate similarity using mathemat-
ical expressions or other algorithms Not only can these
algorithms compare entities at a much faster rate than
human experts, but they can also quantify the result from
that comparison, as opposed to a similar/dissimilar assess-
ment.

Out of the 21 data sets developed in this work, 20
are benchmark data sets for GO-based semantic similarity
measures, because the GO is the most widely used ontol-
ogy in the study of semantic similarity measures and its
applications. The GO-based benchmark data sets can be
divided by the similarity proxies employed in them. For
each of the data sets, the combination of similarity prox-
ies can be either (1) PPIs and sequence similarity or (2)
protein family and sequence similarity. Sequence similar-
ity is considered for both these data sets not only because
it can be computed for any two proteins for which the
protein sequence is known but also because sequence simi-
larity does not show a strong enough relation with semantic
similarity (47) to be used alone, as a sole evaluator of
semantic similarity measures. As exposed before, PPIs and
protein family are known to have different relation with
the GO aspects. While protein family similarity is expected
to correlate better with more matching classes from the
Molecular Function subontology, the existence of a PPI
is more likely to be in agreement with overlapping classes
in the Cellular Component and Biological Process subon-
tologies. Thus, a semantic similarity measure that has a
positive relation with both these proxies is a semantic sim-
ilarity measure that does a good job in capturing entity

similarity as it is capable of considering different aspects
of it.

The HPO-based data set considers only one similarity
proxy, PS similarity. This similarity proxy can be seen
as an evaluation of how well semantic similarity captures
the probability of two genes being involved in the same
disorders.

The diversity in the structure of the KGs and the similar-
ity proxies selected for the construction of these data sets
suggests that testing the same semantic similarity in differ-
ently targeted data sets can be a good evaluator of its ability
to generalize to different KGs, entity types and applications.

Furthermore, the data sets follow the guidelines for
quality benchmark data sets, namely relevance, representa-
tiveness, non-redundancy, scalability and reusability. Even
though benchmark data sets should be non-redundant, the
overlap between data sets of the same species, but at a dif-
ferent level of annotation completion, can be used to evalu-
ate the impact of more thoroughly described proteins in the
performance of semantic similarity measures. The ‘All’ data
sets in each level of annotation completion are a compila-
tion of all the protein pairs in each of the species-specific
data sets. Even though, once more, there is redundancy
between these and the species-specific data sets, the ‘All’
data sets are far larger and can be used for a comparative
evaluation of the scalability of the semantic similarity mea-
sures or semantic similarity-based approaches. Representa-
tiveness was a feature of special importance when designing
these data sets, for instance, upon selecting pairs of proteins
based on their protein family similarity, because the eval-
uation of semantic similarity measures should be done in
both similar and dissimilar pairs of entities. Additionally,
should these data sets be used for supervised learning appli-
cations, these predictors will benefit from learning from a
more general data set. If the cases used for training are par-
ticularly biased towards a single feature, the performance
of the predictor will be biased as well.

Usage notes

All data sets are available online (https://github.com/liseda-
lab/kgsim-benchmark) with a CC BY 4.0 license. In addi-
tion, we make available all the data that was used to
compute the semantic similarity measures in two differ-
ent formats (1) Separate files for the ontologies (OBO
or OWL format) and the annotations for each species to
make up the KG, and (2) KGs, in OWL format, contain-
ing both the ontology and the annotations of each species.
This allows for a direct comparison with the pre-computed
semantic similarity measures, as well as facilitates the direct
comparison between different works, without needing to
implement and/or compute the results.
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The benchmark supports simple evaluation metrics,
such as computing Pearson’s correlation coefficient, but
it also supports more complex evaluations. For instance,
the PPI data sets also support prediction of PPIs based on
semantic similarity (48).

The steps to perform the benchmark evaluation for a
new KG-based semantic similarity measure are as follows:

(1) Select the benchmark data sets that will be used,
download them and the associated KG data sets;

(2) Using the novel measure, calculate the similarity for
all entity pairs in the benchmark data sets using the
benchmark KG;

(3) Compute evaluation metrics against proxy simi-
larity values and representative semantic similarity
scores;

(4) Upload the novel semantic similarity results to a
data-sharing platform to support future direct com-
parisons.

Concluding remarks

The collection of benchmark data sets we present aims at
supporting the large-scale evaluation of KG-based seman-
tic similarity based on four different similarity proxies:
protein sequence similarity, existence of PPIs, protein fam-
ily similarity and PS similarity. The first three proxies
represent protein similarity and can be used to evaluate
GO-based semantic similarity measures, whereas the lat-
ter is a proxy for gene similarity for the evaluation of
HPO-based semantic similarity measures.

All data sets and KG data used to compute semantic sim-
ilarity are available online. This allows for a direct compari-
son with the pre-computed semantic similarity measures, as
well as facilitates the direct comparison between different
works using this resource. For this reason, the benchmark
will purposefully remain static for a few years, following
the approach used by CESSM (33), released in 2009 and
updated in 2014. Parallel updates to the benchmark data
sets will include newKGs, with updated attributes for entity
selection and new similarity proxies.

The benchmark supports simple evaluation metri-
cs, such as computing Pearson’s correlation coefficient
between the semantic similarity measures and the similarity
proxies, but it also supports more complex evaluations. For
instance, the PPI data sets also support prediction of PPIs
based on semantic similarity, as done in Sousa et al. (48).
Despite being domain-specific, we expect this collection to
be useful beyond the biomedical domain. Similarity com-
putation within a KG is a fundamental building block of
many semantic web applications ranging from data integra-
tion to data mining, meaning the benchmark data sets can

be used for the evaluation of semantic similarity measures
developed outside the biomedical domain.

Additionally, the general approach developed for the
creation of the data sets is generalizable to any domain
where a similarity proxy can be created, making the devel-
opment of analogous benchmark data sets outside the
biomedical domain a possibility.
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