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Abstract

Biomedical relation extraction (RE) datasets are vital in the construction of knowledge
bases and to potentiate the discovery of new interactions. There are several ways to
create biomedical RE datasets, some more reliable than others, such as resorting to
domain expert annotations. However, the emerging use of crowdsourcing platforms,
such as Amazon Mechanical Turk (MTurk), can potentially reduce the cost of RE dataset
construction, even if the same level of quality cannot be guaranteed. There is a lack of
power of the researcher to control who, how and in what context workers engage in
crowdsourcing platforms. Hence, allying distant supervision with crowdsourcing can be
a more reliable alternative. The crowdsourcing workers would be asked only to rectify
or discard already existing annotations, which would make the process less dependent
on their ability to interpret complex biomedical sentences. In this work, we use a pre-
viously created distantly supervised human phenotype–gene relations (PGR) dataset to
perform crowdsourcing validation. We divided the original dataset into two annotation
tasks: Task 1, 70% of the dataset annotated by one worker, and Task 2, 30% of the dataset
annotated by seven workers. Also, for Task 2, we added an extra rater on-site and a
domain expert to further assess the crowdsourcing validation quality. Here, we describe
a detailed pipeline for RE crowdsourcing validation, creating a new release of the PGR
dataset with partial domain expert revision, and assess the quality of the MTurk plat-
form. We applied the new dataset to two state-of-the-art deep learning systems (BiOnt
and BioBERT) and compared its performance with the original PGR dataset, as well
as combinations between the two, achieving a 0.3494 increase in average F -measure.
The code supporting our work and the new release of the PGR dataset is available at
https://github.com/lasigeBioTM/PGR-crowd.

© The Author(s) 2020. Published by Oxford University Press. Page 1 of 15
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baaa104/6013761 by guest on 19 M

ay 2024

https://academic.oup.com/
mailto:dfsousa@lasige.di.fc.ul.pt
https://github.com/lasigeBioTM/PGR-crowd
http://creativecommons.org/licenses/by/4.0/


Page 2 of 15 Database, Vol. 00, Article ID baaa104

Introduction

Knowledge bases play a fundamental role in the way we
store, organize and retrieve information. More specifi-
cally, biological knowledge bases are commonplace for
researchers and clinicians to access all types of biomedical
data retrieved from the biomedical literature (1). Previous
works annotated the biomedical literature by resorting to
domain expert annotators (2), crowdsourcing platforms (3)
or distantly supervised techniques (4). These researchers’
main aim was to tackle the lack of annotated datasets
for biomedical information extraction systems. However,
when applying distantly supervised techniques, the annota-
tions are not as reliable as when done by domain experts,
and it still needs to be adequately reviewed before the
extracted information can be added to any biomedical
repository. Hence, the added advantage of automating
information extraction using distant supervision is slightly
impaired by the need to review it, which is costly and time-
and resource-consuming. Moreover, when targeting rela-
tion extraction (RE) between entities of different domains
or document summarization tasks (5), the revision process
becomes cumbersome compared with other information
extraction tasks, given its higher complexity that usually
requires knowledge of multiple domains.

The alternative way to create reliable gold standard
datasets that do not resort to domain expert curation could
be allying distant supervision with crowdsourcing (6–8).
Before integrating the data extracted from distant super-
vision pipelines into biological knowledge bases or using
it as training data for biomedical information extraction
systems, the data would go through a confirmation or
review phase in the form of crowdsourcing. Crowdsourc-
ing platforms are becoming increasingly popular to address
the lack of training corpora for natural language process-
ing (NLP) tasks (9). The most popular platform for this
purpose is Amazon Mechanical Turk (MTurk) (10–12).
Some platforms created a trust layer over MTurk to facili-
tate task specification and monitoring (13), such as Figure
Eight Inc. company (previously known as CrowdFlower)
(14, 15), which is widely used by researchers for biomedical
NLP-related tasks.

One of the problems of using crowdsourcing platforms
is the lack of domain expertise. While most platforms allow
us to specify some criteria (e.g. degree of education), in
exchange for an increased price per task, it is not feasi-
ble to specify expertise in particular biomedical domains.
Not only that, but there is no guarantee that the quality
promised is the quality provided because some malicious
workers often take advantage of the difficulty in imple-
menting a verification procedure and submit answers of
low quality (9). Task redundancy can be a solution, but it

also increases the costs of using crowdsourcing approaches,
partially defeating the purpose of these platforms. The
question should be whether the workers’ quality is good
enough for the purpose of the task and if the decrease in
costs compensates the difference in quality compared with
domain experts. In the case of the MTurk platform, some
studies have supported its suitability for a variety of tasks
(16). However, it fails in transparency about its work-
ers’ context (e.g. background), if MTurk constitutes their
primary form of income or not, what is their motivation
for completing the tasks and if this introduces bias to the
tasks at hand. These and other ethical questions have been
discussed in depth by some researchers (17, 18).

Previous works have combined distant supervision with
crowdsourcing, specifically for non-biomedical relations.
Gormley et al. (6) present an approach that allies dis-
tant supervision with MTurk crowdsourcing for relations
between nominals (e.g. places and persons). Liu et al. (7)
used a gated instruction (GI) protocol to perform crowd-
sourcing on person–location relations, building their own
interface. The GI protocol trains the workers to annotate
a sentence while providing motivational feedback, remov-
ing workers who do not meet with a pre-defined repu-
tation threshold at the end of the first stage of training.
Collovini et al. (8) used a pre-existing Portuguese nomi-
nal relations dataset to perform crowdsourcing with Figure
Eight Inc. company with the primary goal of expand-
ing Portuguese annotated data. However, none of these
approaches assessed the validity of their revised datasets
beyond worker statistics. Also, there is a lack of approaches
targeting the biomedical domain, which is inherently more
complex.

In this work, we leveraged an existing dataset of biomed-
ical relations, created through distant supervision, and sub-
mitted it to the MTurk platform to perform crowdsourcing
validation. With the exhaustive review of the original and
new datasets’ performance, we assessed the viability of
combining distant supervision and crowdsourcing for the
field of biomedical RE.

Our work used an open-source dataset, the phenotype–
gene relations (PGR) dataset (4), based on distant
supervision, that features both human phenotype and gene
annotations and their relations. Some researchers already
used the PGR dataset as training data (19–21) while others
opt out of using it for being a silver standard (22). Since
it is a silver standard dataset, domain experts have not
reviewed it, leading to wrongly labeled relations and other
errors. These errors can be from named-entity recogni-
tion (NER) (e.g. acronyms of diseases annotated as genes),
which was also done automatically, or sentence format
errors. To rectify these errors, we used the MTurk platform
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to validate, alter or discard the PGR dataset’s relations.
We achieved this by dividing the original dataset into two
partitions, one of 70% (Task 1), where each relation
was rated by one Amazon worker, and another of 30%
(Task 2), where each relation was rated by seven distinct
workers. We validated our approach through inter-rater
agreement using the Fleiss’ kappa (23) and the Krippen-
dorff’s alpha (24) metrics for Task 2. Further, we also
provided the 30% partition of the PGR dataset used for
Task 2 to an external rater (on-site, without previous curat-
ing experience but holding a biochemistry degree) and a
domain expert (with previous curating experience, hold-
ing a PhD in bioinformatics). These different levels of
expertise enlightened the difficulties of curating the dataset
and the limitations associated with each level. To evalu-
ate and compare the quality of the crowdsourced Amazon
dataset, we applied it to two state-of-the-art deep learn-
ing systems and compared its performance with the orig-
inal PGR dataset, as well as combinations between the
two. The deep learning systems used were BiOnt (25) and
BioBERT (26), which feature RE between different biomed-
ical entities with high performance, and, in the case of
BiOnt, it was already used in conjunction with the PGR
dataset.

The MTurk workers’ performance compared with our
on-site curator and the domain expert was generally good
for accessingNER or sentence format errors (∼16%of rela-
tions). However, the MTurk workers struggle to identify
false relations (separate entities with no association in a
sentence). The struggle to identify these relations can be
due to the complexity of the sentences or quality issues
related to theMTurk platform validation of workers, which
we will discuss in more detail in the following sections.
Further, the inter-rater agreement for Task 2 showed a
slight to a fair agreement (∼0.20–0.21), which is below
what we expected, and we believe it could be related to
the problems of sentence complexity and quality reported.
Regarding the performance of the crowdsourced Amazon
dataset in applying the BiOnt and BioBERT systems, we
had an increase in average F-measure of 0.3494, taking into
account all the experiences concerning the original PGR
dataset.

The main takeaways of this work were the need
for further validation of the use of crowdsourcing plat-
forms, such as the MTurk platform, and the potential
of using distant supervision allied with crowdsourc-
ing to produce gold standard datasets with which we
can train viable models and detect relevant biomed-
ical relations. This work resulted in the following
contributions:

• Pipeline for RE crowdsourcing, in which we describe
in detail all the base concepts and steps taken to
produce the new crowdsourced dataset.

• New release of the PGR dataset, which will be made
freely available to the community.

• Assessment of the quality of results obtained with
the MTurk platform (through statistical analysis and
direct comparison with on-site rater and domain
expert).

Materials and methods

This section presents an overview of the PGR dataset (4), a
brief presentation of the Amazon MTurk platform and the
integration of the dataset into the MTurk platform (includ-
ing the design, configuration and evaluation stages). We
now describe how we proceeded with each of these stages:

(i) Design

(a) Set up the tasks (human intelligence task—
HIT) to be simple to understand and easy to
accomplish by the employees (i.e. workers or
turkers).

(b) Define the guidelines (instructions) with exam-
ples for the workers to better understand the
presented HITs.

(ii) Configuration

(a) Configure the MTurk platform specifying dif-
ferent criteria (for workers) and wage (i.e.
reward).

(b) Submit the HITs within the platform.

(iii) Evaluation

(a) Calculate the inter-rater agreement.
(b) Compare the PGR dataset before and after

MTurk crowdsourcing assessment by employ-
ing two different deep learning models (BiOnt
(25) and BioBERT (26))

An overview of the pipeline of the work described in this
paper is shown in Figure 1.

PGR dataset

The PGR dataset is a silver standard corpus of PubMed
abstracts featuring human phenotype and gene annotations
and their relations (4). In this dataset, all the annotations
were generated in a fully automated fashion (silver stan-
dard), taking a distant supervision approach, opposite to a
manually annotated dataset where domain experts generate
the annotations (gold standard).
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Figure 1. The pipeline to incorporate the PGR dataset into the Amazon MTurk platform, including the design, configuration and evaluation stages.

The first release of the PGR dataset focused mostly
on the initial release of the dataset (10/12/2018). A
small subset of relations (6%) was manually reviewed
to evaluate the PGR dataset quality and use as a test
corpus for machine learning model evaluation. The sec-
ond release (11 March 2019) captured a more clear-
cut search of the type of abstracts to retrieve, such as
abstracts regarding diseases, their associated phenotypes
and genes, increasing from ∼2.5 relations per abstract to
∼3.0 relations per abstract, and the overall number of
relations by 2-fold. In this work, we will use the second
release of the PGR dataset to generate an improved third
release.

The relations identified in the PGR dataset are either
‘Known’ if present in the knowledge base of relations pro-
vided by the human phenotype ontology (HPO) group (27)
or ‘Unknown’ otherwise. Figure 2 presents examples of the
two types of relations (‘Known’ and ‘Unknown’). Figure 2
also displays the most prominent problem in silver standard
datasets. The ‘Unknown’ relation is marked as false due to
the relation between the FBXL4 gene and the human phe-
notype ‘cancer’ not being represented in the gold standard
knowledge base, even though it is true.

Table 1 presents the numbers for the second release of
the PGR dataset.

Amazon MTurk

The Amazon MTurk is a crowdsourcing web service (mar-
ketplace) that facilitates the use of human intelligence to

Table 1. The number of abstracts, phenotype and gene anno-

tations, and known, unknown and total relations for the

second release (11 March 2019) of the PGR dataset (partial

table from (4))

Annotations Relations

Abstracts Phenotype Gene Known Unknown Total

2657 9553 23786 2480 5483 7963

individuals and businesses that are in demand to com-
plete specific tasks (29). In this web service, the employees
(i.e. workers or turkers) execute tasks (i.e. HITs) submit-
ted by employers (i.e. requesters) to earn a pre-defined
wage (i.e. reward). The type of HITs that MTurk allows
requesters to submit ranges from sentiment analysis and
document classification in the language domain to image
classification in the vision domain. Requesters post-HITs
to workers who meet their specified criteria (e.g. degree of
education), and pre-defined both a reward and maximum
time allotted to complete each task. Both requesters and
workers remain anonymous throughout the process (work-
ers can be identified through Amazon’s internal identifier).

The three main benefits of the MTurk platform are as
follows: (i) optimized efficiency by allowing requesters to
outsource tasks that need to be handled manually, but
do not require the requester or their employees’ exper-
tise; (ii) increased flexibility for requesters to quickly scale
their businesses without needing to scale their in-house
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Figure 2. Examples of the two types of relations (‘Known’ and ‘Unknown’) in the PGR dataset (partial figure from (28)). The sentence of abstract
PMID:23 669 344 was simplified to capture more clearly the ‘Known’ relation.

workforce and (iii) cost reduction by eliminating the need
for requesters to employ a temporary workforce and all the
management costs associated with it (10).

Some previous works using MTurk in the biomedi-
cal field include NER and curation of biomedical entities
labels. Yetisgen-Yildiz et al. (11) used MTurk to extract
named entities such as medical conditions, medication and
laboratory tests, from clinical trial descriptions. Good et al.
(30) used it for disease mention annotation in PubMed
abstracts. Similarly to our approach, Khare et al. (12)
used MTurk to curate indications from drug labels, i.e.
to judge whether a drug is used in managing a high-
lighted disease. In particular, with medical corpora, MTurk
was also used to validate medical information shared on
Twitter (31) and classify medical notes relevant for a par-
ticular subject (e.g. diabetes) (32). Further, researchers
used MTurk with electronic health records (EHR), for
instance, to identify mentioning of abnormal ear anatomy
in radiology reports (33), to validate the simplification of
EHR for patients (34) and as a preprocessing step to cre-
ate data for autism detection systems (35), among other
applications.

Integration into Amazon MTurk platform

The MTurk platform provides a wide range of customiz-
able templates to start a new project. The template closest
to our previously described curation task was the docu-
ment classification template, within the language field, that
we leveraged to set up our PGR HITs. To facilitate the
evaluation of the workers’ performance, we divided the
original dataset into partitions of 70% (Task 1), where
each relation was rated by one Amazon worker and 30%
(Task 2), where each relation was rated seven times, by
seven distinct workers. We also had to define guidelines
(instructions) with examples for the workers to understand
the task at hand thoroughly. Further, each project required
defining criteria to select the workers that better suited the
project’s goals and determining the reward per HIT for

each worker before submission. Finally, after receiving the
results (which took about two weeks), we had to evaluate
our workers’ performance. The evaluation was done by
calculating the inter-rater agreement and comparing the
PGR dataset’s performance before and after curation with
existing deep learning tools.

We describe the detailed steps we took and the reasoning
for each decision in the following sections.

Design

HITs
As stated previously, we adapted the document classifi-
cation template to set up our HITs. Thus, the workers
were presented with a sentence with two entities in bold
(the human phenotype and the gene entities) and a set of
three possible classifications (true relation, false relation or
wrongly labeled relations due to errors in the NER stage or
wrong sentence format). Figure 3 represents an example of
a HIT as presented to the workers (Task 2).

Guidelines
In this work, we considered that rather than defining strict
guidelines, it would be more intuitive for the workers to be
presented with examples of instances and their gold labels
(Supplementary Material Figure 1). Nonetheless, the pri-
mary goal of the task presented to the workers was ‘to
choose among three possible options to classify the rela-
tion between a phenotype and a gene in each sentence’.
The guidelines presented to the workers are illustrated in
Supplementary Material Figure 1. We opted out of more
exhaustive guidelines to keep the task time manageable and
more straightforward to understand. Adding an option to
each HIT that expressed decision difficulties of the work-
ers was considered by our team. However, eventually, we
feared that it would become the default option, given the
complexity of most sentences.

As we do not have access to tools that validate each
worker through MTurk (e.g. to determine if they are of
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Figure 3. An example of a HIT presented to the workers and the available options.

malicious intent), we validated our guidelines by launch-
ing a small subset of 10 sentences. These sentences served
exclusively to validate the approach, although we recog-
nize that more extensive guideline testing could be per-
formed with more financial resources and more validation
functionalities by MTurk.

Configuration

Criteria
As we stated before, requesters can pre-define specific cri-
teria that the workers have to meet to work on a task.
However, specifying that criteria have an added cost per
HIT that would make the total value for the task too expen-
sive, invalidating the use of the crowd (domain expertise
would be about the same value). Therefore, the criteria
chosen and the cost of the crowdsourcing project described
in this work are detailed in Table 2. The requirement that
workers be ‘Masters’ (high-performing workers accord-
ing to MTurk) adds $0.001 to the MTurk fee, but since
the platform rounds it up to the cent, the total value is
unaltered.

We opted for this distribution of assignments, one for
Task 1 and seven for Task 2, due to budget constraints.
Ideally, we would like to have seven assignments for both
tasks to fully evaluate the impact and differences of having
multiple workers rating each HIT. However, considering
these constraints, we considered that having a focused task,
such as Task 2, with seven assignments for 30% of the
dataset (i.e. an odd number to facilitate consensus) would
be more relevant than having fewer judgments per relation.
The number seven was chosen as a better guarantee of qual-
ity to reduce the impact of lower-quality annotations. Using
a lower odd number such as three or five, an annotation
at random or malicious would be more detrimental for the
final assignment. A higher number would necessarily impli-
cate a higher cost and would not necessarily add significant

Table 2. Summary of the crowdsourcing task criteria and

associated costs

Setting Task 1 Task 2

Reward per assignment
(USD)

0.02 0.02

MTurk fee (USD) 0.01 0.01
Number of assignments
per task

1 7

Minimum time per
assignment

3s 3s

Require that workers
be masters to do your
tasks (high-performing
workers according to
MTurk)

Yes Yes

Number of tasks 5574 2389
Total cost (USD) 167.22 501.69

quality benefits to the task, as stated by Kappel et al. (36)
and Cooke et al. (37).

Submission
We designed a web page template for the tasks and defined
the project properties, as required by the MTurk platform.
We provided the input instances as a CSV file, where each
line corresponded to a HIT. Alternatively, platforms such as
Figure Eight Inc. company (12) simplify task specifications
and monitor MTurk tasks. However, we worked directly
with the MTurk platform.

Evaluation

Inter-rater agreement
The original dataset was divided into 70%, where each
relation was rated by one Amazon worker and 30%,
where each relation was rated seven times by seven distinct
workers. The goal of rating a subset of relations with
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overlap (Task 2) was to assess if the raters agreed with
each other about the exact rating to be attributed (among
the three previously described), by measuring the inter-rater
agreement. To determine the last metric, we used both the
Fleiss’ kappa (23) and the Krippendorff’s alpha (20) metrics
appropriate for nominal ratings. The Fleiss’s kappa met-
ric is a statistical measure that estimates the reliability of
agreement between a fixed number of raters, assuming that
our raters were chosen at random from a larger popula-
tion. Similarly, Krippendorff’s alpha is a statistical measure
of the agreement, useful when we have multiple raters and
multiple possible ratings. We opted by using the twometrics
to validate our work. A low deviation between the twomet-
rics will assure an unbiased estimate (38). Furthermore, we
added an additional rater from our research center with no
previous curating experience, but with a strong background
in biochemistry, to rate the overlapping subset of relations.
The cost of this addition was $1247 for the rating of the
2389 relations in Task 2. This additional rater was funda-
mental to understanding the challenges that our workers
faced and improving our curation pipeline and guidelines
in the future. The extra rater took one month to complete
Task 2.

To reach a majority consensus between the workers
(for Task 2), we used a voting scheme, similar to the
approach of Shu Li et al. (14). According to the voting
scheme, Figure 4 illustrates how we chose to classify a
relation true, false or be excluded. We considered that if
at least half of the answers voted to exclude the relation
from the dataset, the relation should be excluded. Our

default label was false because we considered that false rela-
tions are more challenging to assess; hence, if a worker
is in doubt between true and false, the most likely label
would be false. For example, if on one HIT five out eight
raters agreed to exclude, we accepted that rating. How-
ever, if five agreed true or false, we classified it as false,
since considering it a valid sentence (not to exclude), with
no agreement, our default label is false. The false label is
also a safer option in our target domain. Having a true
relation that is, in fact, false (false positive) is more detri-
mental for the learning process than a false negative. We
could have considered using the amount of time spent on
each question by the workers to build a voting schema,
but each HIT only took a few seconds to complete. Thus,
because each HIT only takes a few seconds, other worker
factors could be at play beyond difficulties in rating a
specific sentence. These factors can be a slower Internet
connection, language barrier, or even just taking a break
mid-work.

To further assess the quality and challenges of curating
the PGR dataset and validate the previous approach, a
domain expert with a bioinformatics background and expe-
rience in using and curating corpora also curated Task 2.
This domain expert was an in-house researcher. There-
fore, there was no direct cost associated with his curation
task, although we could extrapolate that would be at least
the same as the extra rater. The same guidelines provided
to the Amazon workers were provided to the external
rater (on-site), which did not access external information.
The domain expert had access to external information as

Figure 4. Flowchart illustrating how to reach majority consensus, according to the answers provided by the workers plus our extra rater on-site.
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needed. The external rater (on-site) could contact the expert
for further elucidations on some of the HITs. The domain
expert took 2 weeks to complete Task 2.

Not only the extra rater and domain expert ratings
took longer to obtain, but they also were more expensive.
To consider that their ratings are more worthwhile than
MTurk workers’ ratings, these have to surpass them in per-
formance when applying to RE deep learning systems. Even
then, we have to ponder cost and time and how much that
affects the evaluation metrics for it to be worth choosing
one route over the other. Introducing more information to
MTurk workers, as was provided to the domain expert, is a
route that we did not explore due to the necessary increase
in the cost per HIT. More information would take more
time to be processed. Therefore, the payment for each HIT
had to be increased, invalidating the cost-benefit of using
MTurk in detriment of domain expertise.

Deep learning systems
To further access the quality of the crowdsourced curated
dataset, we applied it to two distinct deep learning sys-
tems that target the biomedical domain: BiOnt (25) and
BioBERT (22).

The BiOnt system is a deep learning system based on
the BO-LSTM system (39) used to extract and classify rela-
tions via long short-termmemory networks and biomedical
ontologies. This system detects and classifies 10 types of
biomedical relations, such as human PGRs. It takes advan-
tage of domain-specific ontologies, like the HPO (27) and
the gene ontology (GO) (40). The BiOnt system represents
each entity as the sequence of its ancestors in their respec-
tive ontology. To create our models, we used the default
parameters indicated in the original research. The relevant
configurations for model training were the mini-batch gra-
dient descent optimization algorithm (RMSprop), learning
rate (0.001), loss function (categorical cross-entropy) and
dropout rate (0.5 for every layer except the penultimate and
output layers).

The BioBERT system is a pre-trained biomedical lan-
guage representation model for biomedical text mining
based on the BERT (41) architecture. This system can
perform diverse biomedical text mining tasks, namely
NER, RE and question answering, when trained on
large-scale biomedical corpora. The architecture’s nov-
elty is that their authors designed these systems (BioBERT
and BERT) to pre-train deep bidirectional representations
by jointly conditioning on both left and right context in
all layers. This feature allows easy adaption to several
tasks without loss in performance. The default relevant
parameters for BioBERT are the same as for BERT. The
configurations for model training were the mini-batch gra-
dient descent optimization algorithm (Adam), learning rate

(1e-4) and dropout probability (0.1 on all layers). The
training loss is the sum of the mean masked language
model likelihood and the mean next sentence prediction
likelihood.

For comparison, we tested both the original PGR dataset
(second release, Table 1) and the crowdsourced Ama-
zon dataset and combinations between the two (detailed
in Table 6). We primarily used the ‘Amazon Task 1’
data as training data and the ‘PGR original test set’, the
‘Amazon/extra-rater consensus Task 2’ data and the ‘expert
Task 2’ data as test data. We also made combinations
between the two tasks using the ‘Amazon/extra-rater con-
sensus Task 2’ data and the ‘expert Task 2’ data as training
data, and the ‘PGR original test set’ as test data. It is neces-
sary to point out that the ‘PGR original test set’ refers to the
first release of the dataset (since the second release did not
have a test set), so there is no overlap between the datasets
used for training and testing.

Results and discussion

Ratings statistics

To assess the workers’ performance, we conducted some
statistical analyses, including the time spent on average
rating each sentence. Figures 5 and 6 reflect the work-
ers’ average time with each sentence, with a cutoff of
50 seconds (using box plot and standard deviation anal-
ysis). We decided to set the cutoff for work time to
50 seconds because we considered that as enough time for
a worker to make an assessment, and anything longer than
that was probably the worker having a mid-task break (the
longest time for aHIT completionwas 40 322 seconds,∼11
hours). Thus, we had multiple HITs that lasted well above
50 seconds. However, to paint a clearer picture of most
responses, we limited the statistical analysis to the workers
that took <51 seconds to complete a HIT. Therefore, we
did not impose a time limit for completing a HIT not to
constrain workers to have to rush their decisions.

Our domain expert did a similar time self-evaluation,
which resulted in an average of ∼20 seconds per sen-
tence (for Task 2). The domain expert consulted some
abstracts to clarify whether an abbreviation referred to a
gene or other type of entity for a specific sentence. Through
Figures 5 and 6, it is possible to assess that workers took
an average of 13 seconds per HIT (sentence). By compar-
ing this time to the average time done by our domain expert
(20 seconds), it is possible to question the level of attention
with which our workers performed their ratings, question-
ing the trust that we can deposit on MTurk crowdsourcing.
However, considering that our domain expert took some
time checking some abstracts to which workers did not
have access, it can justify the differences in average time.
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Figure 5. Box plot expressing the average worker work time distribution (in seconds) per sentence (with a cutoff of 50 seconds).

Figure 6. Standard deviation expressing the average worker work time distribution (in seconds), and the histogram of the occurrence events (with a
cutoff of 50 seconds).
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Table 3. The inter-rater agreement score, using both Fleiss’

kappa and Krippendorff’s alphametrics, considering only the

Amazon workers, the Amazon workers plus the extra rater

(on-site) and the extra rater (on-site) plus the domain expert

(Task 2)

Inter-rater agreement

Inter-rater
agreement
metric

Amazon
workers

Amazon
workers+ extra
rater (on-site)

Extra
rater (on-
site)+ expert

Fleiss’ kappa 0.2028 0.2050 0.6549
Krippendorff’s
alpha

0.2029 0.2051 0.6550

We considered providing the same access to the workers,
but that would invariably make them spend more time on
each HIT, raising the cost of each HIT and the overall task.
In those conditions, even if we considered paying $0.10
($0.09+$0.01 MTurk fee) as a fair reward per assignment
instead of the $0.03, that would raise our total budget
>3-fold, invalidating the cost-benefit of using MTurk in
detriment of domain expertise.

To further characterize the workers that performed our
tasks, we checked their WorkerId tab in the results file pro-
vided by MTurk. There, we realized that six sentences were
rated but did not have an associated WorkerId. Both tasks
(7983 relations, 22 255 HITs) were performed by only 64
different workers, making 348 HITs per worker. Therefore,
if we had a malicious worker that classified their respec-
tive HITs at random or close to it, it would damage the
whole dataset. The MTurk platform should guarantee a
more diverse group of workers working on the same task
since that is what employees expect, even to avoid some
bias ratings or a more strict selection process.

Inter-rater agreement

Table 3 presents the inter-rater agreement score, using both
Fleiss’ kappa (23) and Krippendorff’s alpha (24) metrics,
for the dataset corresponding to Task 2, considering only
the Amazon workers, the Amazon workers plus the extra
rater (on-site) and the extra rater (on-site) plus the domain
expert.

The number of different workers classifying the senten-
ces on Task 2 (33) reflects that workers rated, on average,
77 different sentences. Although for each set of seven iden-
tical sentences, MTurk guarantees unique workers, there
is no guarantee that a worker works on all sentences or
that a worker only rates one sentence. Ideally, we would
like to have seven workers working on all the sentences,

or non-repeating workers for all ratings. Given this small
number of workers working on Task 2 and the high num-
ber of sentences to rate (2389), it is challenging to find
an inter-rater agreement metric that can return an accu-
rate value of agreement between the workers. The Fleiss’
kappa metric assumes that the raters are deliberately cho-
sen and fixed, while the Krippendorff’s alpha metric is
indicated for when we have multiple raters and multiple
possible ratings. Since none of the two cases is precisely
right, we do not have a metric that fully expresses our
experiment’s results with Task 2. We can say that probably
the agreement between raters was only fair (on a qualita-
tive scale). Some of the reasons for fair agreement could
be difficulties in understanding the task, complex biomed-
ical sentences beyond the scope of the average worker
or random answers provided by malicious workers. The
cost of using an extra rater was two times higher than
the workers’ revisions, and we can safely assume that
the cost of domain expertise would be even higher (if
not in-house). Thus, even though the inter-rater agree-
ment is higher between the extra rater plus expert, we
can only reflect on the cost-benefit concerning MTurk
workers upon further evaluation of performance, such as
training the RE deep learning systems with the resulting
datasets.

It was particularly interesting to have an extra rater (on-
site) to express doubts while performing the task. Some of
these doubts could be the ones that the workers had, while
others we considered to be beyond their expertise. One of
the most prominent problems for our on-site rater was if
the gene entities tagged were, in fact, gene entities or their
protein products that frequently share the same names. One
could argue that a relation between a gene product and a
human phenotype implies a relation between a gene and
a human phenotype. Nonetheless, the extra rater consid-
ered that these relations hold even if the mention was of
a protein and not the gene if this distinction was not clear
by the sentence (only when reading the abstract or full-text
article) or if the gene name was not capitalized. This par-
ticular problem was not one that a person not familiarized
with biochemistry-related domains would have. However,
assessing if an abbreviation that is used both as a gene name
and in other biomedical topics (e.g. disease abbreviation) is
a gene is a transversal problem to both the workers and our
extra rater on-site.

The difficulties that our extra rater experienced are evi-
dent by the inter-rater agreement between this rater and
our domain expert. On a qualitative scale, that ranges from
poor agreement (<0) to almost perfect agreement (>0.81), it
reflects a substantial agreement (0.61–0.80). One example
sentence where they disagreed was:
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Table 4. The original and final numbers both in total count and percentage, for Tasks 1 and 2, of true, false, excluded and total

relations, considering the majority consensus and the domain expert numbers separately

Relations

Dataset True False Excluded Total

Task 1 (70%) Original 1751
(31.41%)

3823
(68.59%)

– 5574 (100%)

Amazon
workers

4220
(75.71%)

283 (5.08%) 1071
(19.21%)

4503
(80.79%)

Task 2 (30%) Original 729 (30.51%) 1660
(69.49%)

– 2389 (100%)

Amazon
work-
ers+ extra
rater (on-
site) (after
reaching
consensus)

1179
(49.35%)

613 (25.66%) 597 (24.99%) 1792
(75.01%)

Expert 1281
(53.62%)

343 (14.36%) 765 (32.02%) 1624
(67.98%)

While examining pedigrees of JEB patients with LAMA3 mutations,
we observed that heterozygous carriers of functional null mutations
displayed subtle enamel pitting in the absence of skin fragility or other
JEB symptoms (PMID:27827380)

where the domain expert considered a true relation and
the extra rater a false relation; this happens because the
relation is one of negation (absence), which often confuses
non-experts with being false. However, an implication of
relation of any sort is a true relation that can be classified
as positive or negative. This confusion is also noticeable by
the diversity in the workers’ answers for this sentence (four
classified as true, two as false and one as an error).

Corpus statistics

Table 4 presents the final numbers, both in total count and
percentage for each task. For Task 2, we considered the
majority consensus described previously and the domain
expert numbers separately. All percentage points are refer-
ring to the original totals for Tasks 1 and 2. For instance,
the expert excluded percentage is 32.02% (765 relations)
of the original total for Task 2 (2389 relations). The totals
always refer to the sum of the number of true and false
relations.

From analyzing Table 4, what becomes immediately evi-
dent is the inversion between the number of true and false
relations from the original datasets to the Amazon crowd-
sourced datasets. These final numbers demonstrate quite
clearly that most relations described in the original PGR
dataset as false were, in fact, true. This inversion can be due
to how the PGR dataset was built, using a gold standard
knowledge base of human PGRs. At the time of the dataset

creation, this knowledge base was quite incomplete, since,
for instance, if a child ontological term had a relation with
a gene, its immediate parent would not necessarily share
the same relation, which should be explicit. Thus, these
parent concepts in PGR relations would always hold false.
The inversion can help populate the knowledge base with
more general concepts and reinforce that true relations are
generally more trustworthy than false ones within the orig-
inal PGR dataset, as it is safer to prove a positive than a
negative.

The column excluded represents pre-annotated NER or
sentence format errors independently identified by Ama-
zon workers (for both tasks) plus the extra rater and the
expert (for Task 2). Table 4 shows that understanding the
difference between an annotation error (excluded) and a
false relation requires more expertise than the one that
MTurk provides, and inexperienced raters have (even if in
the field). Thus, we need expert knowledge to differentiate
between false relations and an annotation error, such as in
the following annotation error example:

We show that themiR-106b-25 cluster upregulates NOTCH1 inmulti-
ple breast cancer cell lines, representing both estrogen receptor (ER+)
and triple negative breast cancer (TNBC) through direct repression of
the E3 ubiquitin ligase, NEDD4L. (PMID:29 662 198)

where the workers had difficulties accessing that miR just
by itself is not a gene entity, but stands for microRNA genes
(a large group of genes).

We consider the third release of the PGR dataset as the
revised dataset by Amazon workers for Task 1 plus the
revised dataset by the domain expert for Task 2. Table 5
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Table 5. The number of abstracts, phenotype and gene anno-

tations, and true, false and total relations for the third release

of the PGR dataset consisted of the revision of the Amazon

workers (Task 1) plus domain expert revision (Task 2)

Annotations Relations

Abstracts Phenotype Gene True False Total

1921 1943 2207 5501 626 6127

condenses the final numbers, considering abstracts, pheno-
type and gene annotations, true, false, and total relations.
It is necessary to highlight that we did not consider NER
annotations not participating in relations.

Deep learning impact

Table 6 presents the performance of both the original PGR
dataset and the crowdsourced Amazon dataset, and combi-
nations between the two, on the BiOnt (25) and BioBERT
(version 1.1) (26) systems, in terms of precision, recall,
F-measure and accuracy. Each experiment identifies the
method and dataset employed (both for training and test-
ing), referring to either Task 1 or Task 2 data. To assess
the dataset performance (before and after crowdsourcing)
when applied to deep learning systems, we used the authors’
suggested parameters. The only exception to the default
parameters, since we had a class imbalance, was to add a
class weight of 5 to the label false to both systems (the full
multiplier to balance was∼14.9 for the Task 1 dataset). The
full multiplier results from dividing the percentage of true
relations by the percentage of false relations for the training
dataset. For the class weight, we chose a number between 1
and the full multiplier, which is usually the standard prac-
tice (42), to maintain a more accurate representation of the
natural unbalance between labels when applying the mod-
els to real-world data. Using this class weight translates
to treating every training instance with the label false as
five instances of the label true, meaning that we assign a
higher value to these instances in the loss function. Hence,
the loss becomes a weighted average, where the weight of
each sample is specified by the class weight and its corre-
sponding class, providing a weight or bias for each output
class. To achieve this, we had to alter the loss function of
the BioBERT system to allow class weights.

The deep learning systems’ performance is quite similar,
with BioBERT achieving slightly better results. In both sys-
tems, the performance of the new PGR dataset (through
MTurk crowdsourcing) was superior to the one of the
original PGR dataset, with a slight decrease in precision
but a considerable gain in recall. We chose to include the
accuracy metric to consider the ability to recognize true
negatives (due to the class imbalance). Overall, the best

performance was the Amazon MTurk (Task 1) as training
corpus and the expert (Task 2) as test corpus. This perfor-
mance can be due to the amount of available training data
in Task 1 and the more reliable test set from the domain
expert. The PGR original test set underperformed proba-
bly due to its small size, which was not representative of
the data (260 relations). Also, other experiences with using
the majority consensus (Task 2) and the expert (Task 2) as
training sets showed that these smaller corpora also hold
the ability to train a model. We achieved an increase in the
average F-measure of 0.3494, taking into account all the
experiences concerning the original PGR dataset. That is,
considering the difference between the average F-measure
(0.8179) for both deep learning methods (excluding the
original PGR dataset) and the average F-measure (0.4685)
for the original PGR dataset performance on both deep
learning methods. We used the default parameters for both
systems as a first pass for feasibility, achieving the range of
results expected, as stated in the original articles supporting
those systems. However, as future work, these parameters
can be tuned not only for these tasks but to similar ones
using these systems.

For the same test set (‘PGR original’), BiOnt performs
better with a higher number of instances (‘Amazon Task 1’)
than with fewer instances with a higher number of workers
per HIT (‘Amazon/extra-rater consensus Task 2’). Whereas
for BioBERT, which can perform better with less training
instances, higher quality training instances perform better
than a sizable number of instances. However, the differ-
ences are minimal, which implicates that when choosing
quality versus quantity, the focus can be on what is more
cost-effective for the task at hand, considering equivalence
between 30% of the dataset reviewed by seven workers and
70% reviewed by one worker.

Table 6 also showed that a low inter-rater agreement
(‘Amazon/extra-rater consensus Task 2’) implicates a sig-
nificant decrease in performance for the same model com-
pared with the domain expert test data (‘Expert Task 2’).
Regardless, both systems can learn and effectively rate the
‘Amazon/extra-rater consensus Task 2’ unseen data, even
at a lower precision. It is possible that the metrics used to
estimate the inter-rater agreement, stated in Table 3, do not
entirely reflect theMTurk set up involving the sameworkers
doing multiple HITs. Thus, this detail justifies the differ-
ence in performance not being higher as expected due to
the inter-rater agreement differences.

Our extra rater’s work had a two times superior cost
than the revisions done by MTurk workers. Since our
domain expert was in-house, we cannot make a proper
comparison between his cost and the MTurk platform, but
we can assume that would be at least the same as the extra
rater, if not superior. Therefore, it is possible to state that
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Table 6. Precision, recall, F -measure and accuracy of the application of the PGR dataset (original, new and combinations

between the two) to the BiOnt and BioBERT systems

Method Precision Recall F-measure Accuracy

BiOnt PGR original 0.8140 0.3070 0.4459 0.4821
Amazon Task 1 (train)+PGR
original (test)

0.7000 0.9825 0.8175 0.7024

Amazon Task 1
(train)+Amazon/extra-rater
consensus Task 2 (test)

0.6810 0.9670 0.7992 0.6726

Amazon Task 1 (train)+Expert
Task 2 (test)

0.8142 0.9721 0.8861 0.7989

Amazon/extra-rater consensus
Task 2 (train)+PGR original
(test)

0.6880 0.8509 0.7608 0.6369

Expert Task 2 (train)+PGR
original (test)

0.6894 0.9737 0.8072 0.6845

BioBERT PGR original 0.8542 0.3445 0.4910 0.5143
Amazon Task 1 (train)+PGR
original (test)

0.6744 0.9856 0.8000 0.6775

Amazon Task 1
(train)+Amazon/extra-rater
consensus Task 2 (test)

0.6700 0.9763 0.7946 0.6680

Amazon Task 1 (train)+Expert
(test)

0.8103 0.9906 0.8915 0.8096

Amazon/extra-rater consensus
Task 2 (train)+PGR original
(test)

0.7315 0.9160 0.8134 0.7143

Expert Task 2 (train)+PGR
original (test)

0.7857 0.8319 0.8082 0.7314

The highest scores for each metric are presented in bold.

the benefit of using MTurk, even with all its caveats, is
superior cost-wise. It also takes into account the low avail-
ability of experts for some domains. With enough data, it
is possible to achieve satisfactory results at a fraction of
a price. However, it all depends on the budget and time
available, as domain expertise knowledge remains superior.

Conclusion and future directions

This work describes our proposal for a complete pipeline
for RE crowdsourcing. The pipeline generated an openly
available new release of the PGR dataset and domain expert
revision into 30% of the original dataset. Additionally, we
assessed MTurk workers’ performance by comparing them
to an extra rater on-site and a domain expert. Moreover,
we applied the new dataset as training data in two state-
of-the-art deep learning systems (BiOnt (25) and BioBERT
(26)) to measure the usefulness of the annotations. This
study showed that it is possible to use the crowd’s wis-
dom to improve existing silver standard datasets since,
in our case, it was able to exclude previous annotation
errors (16.46%) and modify wrongly labeled relations.

This improvement had a significant impact on model train-
ing since we had a 0.3494 average increase in F-measure,
taking into account all the experiences when comparing it
with the original PGR dataset. This work also showed that
a lower inter-rater agreement does implicate a decrease in
performance for the same model. However, the cost-benefit
of using MTurk versus expert domain revision can still jus-
tify the use of the platform, as well as access to domain
experts.

Regarding future work, it will be interesting to improve
on the existing pipeline by providing different guidelines
and assess if that would make a difference in performance.
We would like to be able to validate workers through
MTurk, for example, to discard workers of malicious intent
or that do not meet with a specified threshold. Also, we
could differentiate between what constitutes a false and a
negative relation (28). To solve the lack of domain expertise
of MTurk workers, we could create a specialized crowd-
sourcing platform for the RE biomedical field, similar to
the one developed by the company Unbabel that focuses on
translation (43), as well as other biomedical crowdsourcing
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projects (3, 44). Finally, we could apply the same meth-
ods to datasets from other biomedical domains and assess
performance differences.
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