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Abstract
Variants within the non-coding genome are frequently associated with phenotypes in
genome-wide association studies. These non-coding regions may be involved in the
regulation of gene expression, encode functional non-coding RNAs, or influence splic-
ing and other cellular functions. We have curated a list of characterized non-coding
human genome variants based on the published evidence that indicates phenotypic con-
sequences of the variation. In order to minimize annotation errors, two curators have
independently verified the supporting evidence for pathogenicity of each non-coding
variant in the published literature. The database consists of 721 non-coding variants
linked to the published literature describing the evidence of functional consequences.
We have also sampled 7228 covariate-matched benign controls, that have a population
frequency of over 5%, from the single nucleotide polymorphism database (dbSNP151)
database. These were sampled controlling for potential confounding factors such as link-
age with pathogenic variants, annotation type (untranslated region, intron, intergenic,
etc.) and variant type (substitution or indel). The dataset presented here represents a
curated repository, with a potential use for the training or evaluation of algorithms used
in the prediction of non-coding variant functionality.

Database URL: https://github.com/Gardner-BinfLab/ncVarDB.

Context

The advent of high-throughput sequencing has allowed the
capture of millions of genome variants (1–3). The accessi-
bility of genome variation data has spawned an industry
of genome-wide association studies (GWAS), where genetic

variation and phenotypic variation, such as disease sus-
ceptibility, are linked by statistical association tests (4).
The combined results of GWAS have revealed that many
variants that are linked to phenotypic consequences reside
outside the protein-coding regions (5–7). These non-coding
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genetic variants can contribute to the phenotypic variation
in a multitude of ways, including influencing alternative
splicing and altering gene expression (8, 9). The study
of non-coding variation has been hampered by a lack of
molecular and computation tools for analysing the conse-
quences of these variants (6).

Non-coding variants may influence gene expression and
splicing, be functional non-coding RNAs (ncRNAs) or, as is
frequently the case, be of unknown importance (6, 10). The
experimental validation of every non-coding variant dis-
covered in silico is currently not feasible; therefore, compu-
tational methods that can prioritize variants that are likely
to have functional impacts are a research priority (11–13).
These computational methods require reliable training and
evaluation data to learn features that are indicative of a
functional impact. Many of the existing non-coding variant
annotation tools have been built using training and evalu-
ation datasets constructed from public repositories such as
ClinVar (14).

Recent benchmarks show that while these tools perform
well with ClinVar variants (e.g. area under the curve [AUC]
values >0.95), the tools do not perform as well against other
databases such as the Catalogue Of Somatic Mutations In
Cancer (15) (AUC values <0.78) (16, 17). The functional
probing of saturation mutation of disease-associated gene
promoters and enhancers has provided further independent
data for evaluating the accuracy of non-coding pathogenic-
ity prediction tools. This approach has also highlighted
the relatively poor predictive performance of these methods
(AUC values between 0.53 and 0.75) (18). The benchmark-
ing of pathogenicity prediction tools for protein coding
variants has highlighted the issue of overtraining of meth-
ods on the evaluation data, which is likely to also be a
problem for non-coding methods (19).

Errors in biological databases are an ever-present con-
cern for database curators, which impact the training,
development and evaluation of different methods (20). The
accuracy of functional annotations of genes (21, 22), taxo-
nomic origins of sequences (23), and variant classifications
(24) can unduly influence the conclusions of research that
relies on accurate database information. This issue has led
to calls to allow researchers to directly edit entries in leading
sequence databases in order to correct errors (25, 26).

In order to partially address the issues of overtraining
upon existing databases and minimize the number of errors
in human non-coding variant classification databases, we
have produced a manually curated variant classification
database (ncVarDB). Two separate data curators have
curated non-coding pathogenic variants directly from the
published literature and from public data repositories. The
current database release contains 721 pathogenic variants
and 7228 the single nucleotide polymorphism database
(dbSNP)-derived benign variants.

Data description

Two datasets were generated, one containing pathogenic
variants supported by the published literature and one
containing presumed benign variants. Multiple publicly
available data repositories were used in the curation
of these datasets. The pathogenic dataset was gener-
ated using the October 2019 release of ClinVar (14)
and OMIM (27), also accessed between April and
October 2019.

We selected non-coding variants from the ClinVar
database (see Supplementary Data for details) and assessed
the cited (by ClinVar) literature for confirmation of each
variant. In cases where there was no citation available for
the entry, the entry was excluded. In cases where the cita-
tion either did not contain genomic position information or
contained information for a different mutation, the variant
was also excluded.

To identify the well-characterized disease-associated
variants that lie within non-coding genes, Online
Mendelian Inheritance in Man (OMIM) was mined for
ncRNA variants. We manually identified ncRNA variants
and again confirmed that the pathogenicity of each variant
was correctly mentioned in the citation. With further litera-
ture searches, additional three variants were included, such
as variants in RMRP, the variation that may cause carti-
lage hair hypoplasia. After these methods, 721 pathogenic
variants were kept for use.

We generated a set of benign non-coding variants from
variants in the dbSNP151 database (1) using the Univer-
sity of California, Santa Cruz (UCSC) table browser tool
(28, 29). Variants with a minor allele frequency (MAF)
between 5 and 20% are likely to be benign, as stated in
the 2015 American College of Medical Genetics guidelines
(30). Any variant with a MAF between 5 and 20% in
the entire dbSNP151 database was selected, with no alter-
nate chromosomes included. This set was then randomly
sampled with 10 benign variants being sampled for each
pathogenic variant, the proportions of variant positions
(e.g. intergenic, untranslated region [UTR] or intronic) and
variant types (e.g. substitution, insertion or deletion) were
kept the same. In order to control for linkage, no vari-
ant within 30 kb of a ncVarDB pathogenic variant was
selected. These are estimated to have a <1% chance of being
in linkage with the non-coding pathogenic variants (31). A
comparison of the datasets is provided in Figure 1.

A potential confounding factor in this database is the
lack of pathogenic variants that lie in intergenic regions.
There is a low number of intergenic variants in the ncVarDB
pathogenic dataset in comparison to other variant posi-
tions. Some potential reasons for this are discovery bias or
verification bias. Because the original variant discovery was
performed using database searches in ClinVar and OMIM,
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Figure 1. The location and single-nucleotide polymorphism (SNP) types of ncVarDB variants in comparison to variants from the dbSNP database. A
comparison of the variant positions and the type of variants in every SNP in dbSNP dataset excluding variants from alternate contigs (dbSNP), every
non-coding SNP with a MAF between 5 and 20% (5–20%MAF dbSNP), the ncVar benign dataset and the ncVar pathogenic dataset. (A) A comparison
of the frequency of genomic positions of variants present in each dataset. Positions are based on the genomic notation submitted with the variant
in either dbSNP or ClinVar. (B) A comparison of the frequency of variant types for each dataset. Variant types have been simplified to three types to
avoid type expansion.

without searching specifically for intergenic regions, the
variants lying in those regions may have not been cap-
tured by the original variant screening process. Another
possibility is that as the variants in the database have been
biologically validated for phenotypic changes, these vari-
ants are more likely to be in genic regions as these regions
are traditionally of more interest to researchers studying
genetic diseases.

The control benign dataset has been assembled automat-
ically and not manually curated. Rare errors can occur in

the benign dataset due to errors or ambiguities in the dbSNP
database (see Supplementary data). There are very few
variants on the mitochondrial chromosome in the dbSNP
database that have a known molecular function and MAF
value; as a result, ncVar benign dataset by chance does not
contain variants on the mitochondrial chromosome.

The two datasets contain the following:
ID: An ID for this database
Genome: The genome that the variant was found in
Chr: The chromosome the variant is in
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Pos: The starting position of the variant (referring to
the first affected nucleotide). In case of a substitution
(or a deletion), the starting position is the first nucleotide
in the substituted (or deleted) sequence. In case of an inser-
tion the starting position is the position of the nucleotide
after which a new sequence is inserted.

Ref: The reference genome sequence
Alt: The variant sequence
Mutation_type: the type of mutation of the variant

(substitution, insertion, deletion)
Mutation_position: The genomic position of the variant

(intronic, 5utr, 3utr, ncRNA, intergenic)
MAF: The frequency of the minor allele (Alt)
X_ref: Any ID’s from other databases e.g. dbSNP [REF]

ClinVar [REF], OMIM [REF], Literature

The pathogenic dataset has extra two columns:
Pubmed_ID: A pubmed identifier that relates to litera-

ture that confirms the pathogenicity of the variant
Phenotype: The phenotype associated with the variant

(sourced from XXXX)
The database can be found in ncVarDB (32).

Data analysis

We classified ncVarDB variants using popular software
tools: Functional Analysis Through Hidden Markov Mod-
els with an eXtended Feature set (FATHMM-XF) (33),
Combined Annotation Dependent Depletion (CADD) v1.4
(11, 34) and Deleterious Annotation of genetic variants
using Neural Networks (DANN) (12). FATHMM-XF and
CADD v1.4 use statistical learning techniques (a support
vector machine and a logistic regression model, respec-
tively) to assign scores to variants based on conservation
scores and other genomic features. Although there are dif-
ferences in classification methods and the sets of features in
the two software tools, the main difference is in the training
sets. FATHMM-XF used previously identified pathogenic
and benign variants from public databases. The training
set for CADD consists of high frequency derived alleles
in the human genome (compared to the inferred genome
of the human-ape ancestor) as a ‘proxy-benign’ (neutral)
group and simulated, free of selective pressure, variants as
a ‘proxy-pathogenic’ group. DANN uses the same training
set as CADD but uses a deep neural network algorithm for
the classification.

The online FATHMM-XF tool was used for scor-
ing our pathogenic and benign variants. This pro-
gramme does not score insertions, deletions and more
than one nucleotide long substitutions. It does not
score variants on chromosomes X, Y and M. Exclud-
ing these variants and several additional variants that
caused an error (see Supplementary data), we performed a

Figure 2. ROC curves for the classification analyses of the ncVar dataset
by three different software tools: FATHMM-XF, CADD v1.4 and DANN.
FATHMM-XF and CADD predict the pathogenicity of the ncVarDB vari-
ants with noticeably higher specificity and sensitivity than DANN. Over-
all good performance of all three tools additionally validates the ncVar
dataset.

receiver operating characteristic (ROC) curve analysis on
569 (79% of all ncVarDB pathogenic variants) pathogenic
and 6823 (94% of all ncVarDB benign variants) benign
ncVarDB variants that received FATHMM-XF score.

We used online CADD scoring implementation with raw
scores for ROC curve analysis. CADD does not score vari-
ants on chromosome M. In total, 656 (91%) pathogenic
and 7228 benign variants (all variants) were scored by
CADD.

For DANN analysis, we downloaded precomputed
scores provided by the authors for single nucleotide vari-
ants. DANN does not score variants on chromosomes Y
and M. The positions of the DANN scored variants are
provided relative to GRCH37/hg19 assembly. We con-
verted positions of ncVarDB variants to positions relative
to GRCH37/hg19 assembly using the UCSC hgLiftOver
tool (29). Due to conversion errors, several variants were
further excluded (see Supplementary data), which resulted
in 633 (88%) pathogenic and 6989 (97%) benign DANN
scored variants.

FATHMM-XF and CADD performed well on the
ncVar dataset with AUCs of 0.948 and 0.944, respec-
tively (Figure 2). The AUC for DANN analysis was 0.851
(Figure 2). Several previous comparisons of scoring meth-
ods showed closer AUC values (up to 0.06 difference) for
CADD and DANN analyses (12, 34, 35).

The accurate classification of the ncVar dataset by
the three popular scoring tools additionally validates the
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dataset. These analyses are also an example of the poten-
tial use of the ncVar dataset for evaluation of the scoring
method performance.

Data validation and quality control

To ensure a high level of fidelity, each variant was inspected
by two different data curators. Each variant in this database
contains a link to a PubMed article that was used to verify
that variant.

Re-use potential

This database contains a test set and a control set contain-
ing pathogenic variants and benign variants. This has a
wide range of potential uses, such as training algorithms
for predicting a non-coding variant functionality.

Supplementary data

Supplementary data are available at Database Online.

Acknowledgements
None declared.

Funding
This work was supported by a Dean’s Bequest Fund, Otago School
of Medical Sciences and a New Zealand Tertiary Education Com-
mission Centre of Research Excellence grant to the Bio-Protection
Research Centre.

Availability of supporting data

All entries in these datasets link back to several publicly
available data repositories.

Conflict of interest The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contributions
Harry Biggs: Data curation, visualization, writing, validation, inves-
tigation.
Padmini Parthasarathy: Data curation, writing, methodology, vali-
dation, investigation.
Alexandra Gavryushkina: Supervision, methodology, data analysis,
data compilation, writing.
Paul P. Gardner: Conceptualization, funding acquisition, supervi-
sion, writing.

Data description

Two TSV files and two VCF files containing variant infor-
mation. Pathogenic variant information has been manually
curated.

References
1. Kitts, A., Phan, L., Ward, M. et al. (2014) The Database of

Short Genetic Variation (dbSNP). NCBI Bookshelf.
2. 1000 Genomes Project Consortium, Abecasis, G.R., Altshuler,

D. et al. (2010) A map of human genome variation from
population-scale sequencing. Nature, 467, 1061–1073.

3. Sudmant, P.H., Rausch, T., Gardner, E.J. et al. (2015) An inte-
grated map of structural variation in 2,504 human genomes.
Nature, 526, 75–81.

4. Visscher, P.M., Wray, N.R., Zhang, Q. et al. (2017) 10 years
of GWAS discovery: biology, function, and translation. Am. J.
Human Genet., 101, 5–22.

5. Hindorff, L.A., Sethupathy, P., Junkins, H.A. et al. (2009)
Potential etiologic and functional implications of genome-
wide association loci for human diseases and traits. Proc. Natl.
Acad. Sci. USA, 106, 9362–9367.

6. Cooper, G.M. and Shendure, J. (2011) Needles in stacks of
needles: finding disease-causal variants in a wealth of genomic
data. Nat. Rev. Genet., 12, 628–640.

7. Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of
noncoding variants with deep learning–based sequence model.
Nat. Meth., 12, 931–934.

8. Suzuki, H., Kumar, S.A., Shuai, S. et al. (2019) Recurrent
non-coding U1-snRNA mutations drive cryptic splicing in
Shh medulloblastoma. Nature, 574, 707–711. https://doi.org/
10.1038/s41586-019-1650-0.

9. Muniz, L., Deb, M.K., Aguirrebengoa, M. et al. (2017) Con-
trol of gene expression in senescence through transcriptional
read-through of convergent protein-coding genes. Cell Rep.,
21, 2433–2446.

10. MacArthur, D.G., Manolio, T.A., Dimmock, D.P. et al. (2014)
Guidelines for investigating causality of sequence variants in
human disease. Nature, 508, 469–476.

11. Kircher, M., Witten, D.M., Jain, P. et al. (2014) A general
framework for estimating the relative pathogenicity of human
genetic variants. Nat. Genet., 46, 310–315.

12. Quang, D., Chen, Y. and Xie, X. (2015) DANN: a deep
learning approach for annotating the pathogenicity of genetic
variants. Bioinformatics, 31, 761–763.

13. Shihab, H.A., Rogers, M.F., Gough, J. et al. (2015) An
integrative approach to predicting the functional effects of
non-coding and coding sequence variation. Bioinformatics,
31, 1536–1543.

14. Landrum, M.J., Lee, J.M., Riley, G.R. et al. (2014) ClinVar:
public archive of relationships among sequence variation and
human phenotype. Nucleic Acids Res., 42, D980–D985.

15. Bamford, S., Dawson, E., Forbes, S. et al. (2004) The COS-
MIC (Catalogue of Somatic Mutations in Cancer) database
and website. Br. J. Cancer, 91, 355–358.

16. Li, J., Drubay, D., Michiels, S. et al. (2015) Mining the coding
and non-coding genome for cancer drivers. Cancer Lett., 369,
307–315.

17. Drubay, D., Gautheret, D. and Michiels, S. (2017) Abstract
388: a benchmark study for identifying cancer drivers in the
non-coding part of the genome. Cancer Res., 77, 388.

18. Kircher, M., Xiong, C., Martin, B. et al. (2019) Saturation
mutagenesis of twenty disease-associated regulatory elements
at single base-pair resolution. Nat. Commun., 10, 3583.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baaa105/6013764 by guest on 08 M

ay 2024

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baaa105#Supplementary_Data
https://doi.org/10.1038/s41586-019-1650-0
https://doi.org/10.1038/s41586-019-1650-0


Page 6 of 6 Database, Vol. 00, Article ID baaa105

19. Grimm, D.G., Azencott, C.-A., Aicheler, F. et al. (2015) The
evaluation of tools used to predict the impact of missense vari-
ants is hindered by two types of circularity. Hum. Mutat., 36,
513–523.

20. Weber, L.M., Saelens, W., Cannoodt, R. et al. (2019) Essential
guidelines for computational method benchmarking.Genome
Biol., 20, 125.

21. Brenner, S.E. (1999) Errors in genome annotation. Trends
Genet., 15, 132–133.

22. Devos, D. and Valencia, A. (2001) Intrinsic errors in genome
annotation. Trends Genet., 17, 429–431.

23. Nilsson, R.H., Ryberg, M., Kristiansson, E. et al.
(2006) Taxonomic reliability of DNA sequences in pub-
lic sequence databases: a fungal perspective. PLoS One,
1, e59.

24. Shah, N., Hou, Y.-C.C., Yu, H.-C. et al. (2018)
Identification of misclassified ClinVar variants via dis-
ease population prevalence. Am. J. Human Genet., 102,
609–619.

25. Pennisi, E. (2008) DNA DATA P: proposal to ‘wikify’ Gen-
Bank meets stiff resistance. Science, 319, 1598–1599.

26. Finn, R.D., Gardner, P.P. and Bateman, A. (2012) Making
your database available throughWikipedia: the pros and cons.
Nucleic Acids Res., 40, D9–D12.

27. OMIM - Online Mendelian Inheritance in Man. OMIM -
Online Mendelian Inheritance in Man. https://www.omim.
org/ (5 November 2019, date last accessed).

28. Karolchik, D. et al. (2004) The UCSC Table Browser data
retrieval tool. Nucleic Acids Res., 32, D493–D496.

29. Kent, W.J., Sugnet, C.W., Furey, T.S. et al. (2002) The human
genome browser at UCSC. Genome Res., 12, 996–1006.

30. Nykamp, K., Anderson, M., Powers, M. et al. (2017) Sher-
loc: a comprehensive refinement of the ACMG–AMP variant
classification criteria. Genet. Med., 19, 1105–1117.

31. Lynch, M., Xu, S., Maruki, T. et al. (2014) Genome-wide
linkage-disequilibrium profiles from single individuals.Genet-
ics, 198, 269–281.

32. ncVarDB. ncVarDB; Github. https://github.com/Gardner-
BinfLab/ncVarDB.

33. Rogers, M.F., Shihab, H.A., Mort, M. et al. (2018)
FATHMM-XF: accurate prediction of pathogenic point muta-
tions via extended features. Bioinformatics, 34, 511–513.

34. Rentzsch, P., Witten, D., Cooper, G.M. et al. (2019) CADD:
predicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Res., 47, D886–D894.

35. Drubay, D., Gautheret, D. and Michiels, S. (2018) A bench-
mark study of scoring methods for non-coding mutations.
Bioinformatics, 34, 1635–1641.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baaa105/6013764 by guest on 08 M

ay 2024

https://www.omim.org/
https://www.omim.org/
https://github.com/Gardner-BinfLab/ncVarDB
https://github.com/Gardner-BinfLab/ncVarDB

	ncVarDB: a manually curated database for pathogenic non-coding variants and benign controls
	Context
	Data description
	Data analysis
	Data validation and quality control
	Re-use potential
	Supplementary data
	Acknowledgements
	Funding
	Availability of supporting data
	Ethics approval and consent to participate
	Consent for publication
	Author contributions
	Data description
	References


