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Abstract
Understanding the underlying molecular and structural similarities between seemingly
heterogeneous sets of drugs can aid in identifying drug repurposing opportunities and
assist in the discovery of novel properties of preclinical small molecules. A wealth
of information about drug and small molecule structure, targets, indications and side
effects; induced gene expression signatures; and other attributes are publicly avail-
able through web-based tools, databases and repositories. By processing, abstracting
and aggregating information from these resources into drug set libraries, knowledge
about novel properties of drugs and small molecules can be systematically imputed
with machine learning. In addition, drug set libraries can be used as the underlying
database for drug set enrichment analysis. Here, we present Drugmonizome, a database
with a search engine for querying annotated sets of drugs and small molecules for
performing drug set enrichment analysis. Utilizing the data within Drugmonizome, we
also developed Drugmonizome-ML. Drugmonizome-ML enables users to construct cus-
tomized machine learning pipelines using the drug set libraries from Drugmonizome. To
demonstrate the utility of Drugmonizome, drug sets from 12 independent SARS-CoV-
2 in vitro screens were subjected to consensus enrichment analysis. Despite the low
overlap among these 12 independent in vitro screens, we identified common biologi-
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cal processes critical for blocking viral replication. To demonstrate Drugmonizome-ML,
we constructed a machine learning pipeline to predict whether approved and preclinical
drugs may induce peripheral neuropathy as a potential side effect. Overall, the Drug-
monizome and Drugmonizome-ML resources provide rich and diverse knowledge about
drugs and small molecules for direct systems pharmacology applications.

Database URL: https://maayanlab.cloud/drugmonizome/.

Introduction

Currently, drug discovery efforts suffer from high attri-
tion rates, long research and development timelines, and
high financial costs (1, 2). Big Data applications to drug
discovery include in silico docking drug screens, network-
based and transcriptomics-based methods, as well as the
combination of in vitro screens with computational predic-
tions (3, 4). Drug repurposing is a strategy for elucidating
novel indications for previously approved compounds with
known safety profiles. This approach significantly miti-
gates the conventional drug discovery life cycle (5, 6).
The process of drug repurposing usually involves the high-
throughput screening of a library of approved and preclin-
ical compounds to observe a particular desired phenotype.
Such screens identify and prioritize potential therapeutic
leads. The identified lead compounds may be a heteroge-
neous group of small molecules whose common mecha-
nisms of action are unclear. In vitro screening techniques
can be supplemented with computational methods to fur-
ther investigate the connectedness among the top small
molecule hits.

At the same time, gene set enrichment analysis (7) is a
popular statistical method that computes significant over-
lap between an input gene set and libraries of annotated
gene sets. Several online tools such as Enrichr (8, 9),
WebGestalt (10) and DAVID (11) have used this paradigm
to enable users to better understand their results from
genomics, transcriptomics, epigenomics, proteomics and
other omics. Enrichment analysis can be applied to drug
and small molecule sets in a similar way. For example,
drug set enrichment analysis was applied to analyze drug-
induced gene expression profiles of small molecules that
shared a phenotype of interest (12). Huang et al. expanded
on the idea of drug set enrichment analysis by develop-
ing a tool called DrugPattern (13). DrugPattern analyzes
drug sets, where a set of drugs is grouped under a com-
mon biomedical term. DrugPattern was demonstrated to
predict drugs that may downregulate oxidized low-density
lipoprotein, a molecule associated with the development of
coronary heart disease. Predictions for novel compounds
were confirmed in vitro. These two previous efforts to
develop drug set enrichment analysis tools establish a good
foundation for such analyses. However, these resources
suffer from low coverage of unique small molecules and

their associated biomedical attributes, as well as outdated
web-based platforms that are not intuitive to use.

Here, we expand on previous drug set enrichment anal-
ysis efforts with Drugmonizome and Drugmonizome-ML.
Drugmonizome is a database with a web-based interface
for querying sets of small molecules and drugs to retrieve
enriched biomedical terms. In contrast to prior tools, the
drug set libraries within Drugmonizome are extracted from
many more resources. In addition, the user interface of
Drugmonizome provides fast enrichment analysis calcu-
lation, complex metadata queries and interactive visual-
ization of the enrichment results, among other advanced
features. Drugmonizome-ML is an interactive machine
learning pipeline that is a counterpart to Drugmonizome.
Drugmonizome-ML provides users with flexible options
for creating customized machine learning models to predict
novel attributes for small molecules and drugs, for example,
side effects or indications.

The utility of Drugmonizome and Drugmonizome-
ML is demonstrated via two case studies. To showcase
the capabilities of Drugmonizome, we performed meta-
analysis of 12 published in vitro drug screens to identify
consensus features of compounds found to be effective
against the coronavirus SARS-CoV-2. A case study that
utilizes Drugmonizome-ML predicts whether preclinical
small-molecule compounds and approved drugs will induce
peripheral neuropathy as a side effect, based on transcrip-
tomics and compound structural features.

Materials and methods

Harmonizing small molecule names and
identifiers

Due to the inherent inconsistencies in the way small
molecules and drugs are cataloged across various online
repositories (14, 15), resolving unique small molecule enti-
ties among these resources required a standardized lexicon
of small molecule names and synonyms. Previous efforts
used the UniChem connectivity search (16) to map Inter-
national Union of Pure and Applied Chemistry Chemical
Identifier (InChI) key representations of small molecules
from DrugBank (17) to unique identifiers from a vari-
ety of drug cataloging resources (18). The InChIKey is a
widely used text-based identifier system for chemicals. The
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DrugBank database currently includes over 12 000 well-
studied approved drugs and experimental small molecules
that are annotated with a variety of metadata (17). There-
fore, identifiers from popular chemical cataloging resources
such as PubChem (19) and PharmGKB (20) could be
cross-referenced with DrugBank to harmonize and stan-
dardize small molecule names and synonyms. This same
methodology was adapted for the 2019 version of Drug-
Bank. For this project, we created a master metadata
table of small molecules and their associated identifiers.
This includes synonymous names; InChIKeys; canoni-
cal simplified molecular-input line-entry system (SMILES)
strings, an ASCII representation of small molecule struc-
ture; and resource-specific identifiers from DrugBank. In
addition, experimental small molecules that were unique
to the library of network-based cellular signatures (LINCS)
project (21) were included in the master metadata table
with their resource-specific identifiers. If any of these small
molecule identifiers were not cataloged in DrugBank or
the LINCS Common Fund program, we queried PubChem
with the power user gateway-representational state transfer
(PUG-REST) (22) application programming interface (API)
(23) to retrieve the missing small molecule metadata. In
addition, experimental small molecules that were unique
to the LINCS project (21) were included in the master
metadata table with their resource-specific identifiers.

Creating the drug set libraries

Drug set libraries associate biomedical terms with drugs
and small molecules. Drug set libraries are stored as drug
matrix transposed (.DMT) files, a tab delimited file format
that describes a collection of term–drug set associations.
The 34Drugmonizome drug set libraries contain drug–term
associations collected from various online tools and repos-
itories. We required that each set of drugs must include at
least five small molecules. This requirement is to satisfy
the minimum requirement for contingency table statistics
with the Fisher’s exact test (24). Python scripts and Jupyter
Notebooks were developed to process the data from each
resource. These open-source pipelines generate the drug set
libraries. Drug set libraries can be grouped into several cat-
egories that include (i) drug targets and associated genes;
(ii) side effects, adverse events and phenotypes; (iii) gene
ontology (GO) and pathway terms; (iv) chemical structure
and sub-structure motifs; and (v) modes of action. Drug
targets and drug–gene co-occurrences from literature were
collected from several sources including (i) the Drug Repur-
posing Hub (25); (ii) DrugBank (17); (iii) DrugCentral (26);
(iv) Harvard Medical School LINCS KINOMEScan (27)
and (v) Geneshot (28). Drug-induced gene expression sig-
natures were extracted from (vi) L1000 fireworks display

(L1000FWD) (29); (vii) CREEDS (30) and (viii) search
tool for interactions of chemicals (STITCH) (15). Drug
to single nucleotide variant associations were extracted
and processed from PharmGKB (20). Side effect informa-
tion was collected from (i) Side Effect Resource (SIDER)
(31); (ii) predicted side effects from the side effect predic-
tion (SEP)-L1000 (32); and predicted side effects were also
curated from (iii) OFFSIDES (33). Gene ontology terms
were extracted from the Gene Ontology (34), and path-
way terms were extracted from KEGG (35). These terms
were associated with unique small molecules based on gene
expression profiles. Upregulated and downregulated gene
sets for each small molecule were separately queried via
the Enrichr API (8, 9). Term–drug pairs with a signif-
icant q-value (Benjamini–Hochberg correction, P<0.01)
were included in the drug set library. Small molecules were
grouped under their common upregulated or downregu-
lated GO or pathway terms. Mechanisms of action and
clinical indications for drugs were collected from (i) World
Health Organization Anatomical Therapeutic Chemical
(ATC) codes (36); (ii) The Drug Repurposing Hub (25) and
(iii) SIDER (31). Finally, we grouped the drugs and small
molecules by their shared structural features. As described
above, a master list of every unique small molecule, and
its metadata, retrieved across all resources was created.
This master list included SMILES. RDKit is an open-source
cheminformatics package capable of decomposing SMILES
strings into descriptive bit vectors that describe the molec-
ular features of a small molecule (37). The SMILES string
of each small molecule from the Drugmonizome master
list was converted into a bit vector array using the 166-
bit Molecular ACCess System (MACCS) key dictionary
(38) and the 881-bit PubChem fingerprint dictionary. Small
molecules sharing the same bits corresponding to a com-
mon structural feature were grouped into sets and con-
verted into respective MACCS and PubChem fingerprint
drug set libraries.

The Drugmonizome user interface

The Drugmonizome web-based application is built on an
instance of the Signature Commons (https://github.com/
MaayanLab/signature-commons). The Signature Com-
mons software architecture is a skeleton general-purpose
cataloging system with signature search capabilities. The
Signature Commons database employs a hierarchical cross-
referencing system that relies on universally unique identi-
fiers attached to each unique resource, drug set library, drug
set within each library, and small molecule entity within
each of the drug sets. The front page includes a metadata
search, where users can submit queries to retrieve informa-
tion about single drugs and any search term found within
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descriptions of resources, libraries, drug sets and small
molecules. The drug set enrichment analysis page enables
users to submit a set of small molecule entities for enrich-
ment analysis. These entities need to be entered as one
entity in each row and can be a drug name, an InChIKey,
a DrugBank ID, a Broad Institute (BRD) identifier or a
SMILES string, depending on the level of specificity the
user requires for the search. Entities within the Drugmo-
nizome database may share the same name, although their
stereochemistry may differ, as denoted by their associated
InChIKey. If users are concerned with stereochemistry, they
may opt to submit their queries as DrugBank ID, BRD-ID
or InChIKey. Once the entity list is submitted, a results
page is generated with identified enriched drug sets across
all resources. Users can expand each resource to view the
enrichment results from each drug set library. The specific
enriched drug sets and overlapping small molecule entities
are displayed in bar charts, volcano plots and interactive
sortable tables. The resources page includes all the tools,
databases and repositories from which the Drugmonizome
data were compiled. Clicking on any of the resource cards
directs users to a page that describes the resource. The
‘Tutorial’ and ‘API’ tabs include documentation for using
the Drugmonizome website and API. Lastly, the ‘About’
page includes a variety of global statistics that visualize
the coverage of biomedical terms and drug–term associa-
tions in Drugmonizome, including pie charts that visualize
the relative contributions of each resource to the overall
database.

Computing drug set enrichment

The Fisher’s exact test (24) is the core method used to cal-
culate the significance of overlap between two drug sets. It
calculates the probability of observing overlap between two
independent sets based on the hypergeometric distribution.
Drugmonizome utilizes an implementation of the Fisher’s
exact test that is optimized for speed. The enrichment anal-
ysis component, accessible via an API, is implemented as an
independent Java servlet running on a Dockerized Apache
Tomcat server.

Creating the Drugmonizome-ML Appyter

Appyters are self-contained web-based bioinformatics
applications that are created directly from Jupyter Note-
books (39). By inserting Jinja syntax into a Jupyter Note-
book, the notebook becomes a template. This template
is compiled into a full-stack Dockerized web-based appli-
cation that presents the user with an HTML form that
collects global variables needed for the notebook execution.
Once the user fills the form and clicks submit, the note-
book is executed in the cloud and the user is presented with

the rendered executed notebook. The Drugmonizome-ML
Appyter is an interactive web-based bioinformatics appli-
cation built on top of the Drugmonizome database. The
Drugmonizome-ML Appyter input form is composed of
three sections: input dataset selection, target label selec-
tion and settings for the machine learning pipelines. Input
features include all the drug set libraries included in Drug-
monizome, as well as other datasets. Specifically, the
Drugmonizome-ML Appyter includes features extracted
from SEP-L1000 (32). These features include L1000 gene
expression signatures (40), cell morphological features (41)
and chemical fingerprints. The target label selection pro-
vides users with the ability to specify the target vector for
predictions such as side effects, drug targets and indica-
tions. An autocomplete input field provides the ability to
fetch a target vector from existing Drugmonizome drug
sets. Optionally, users can upload a custom list of drugs
with a common phenotype as the target binary target vector
for classification. Lastly, the Drugmonizome-ML Appyter
machine learning pipeline includes several scikit-learn (42)
options for data normalization, dimensionality reduction,
feature selection, classification algorithms and methods to
evaluate the classifier. Once the input form is filled, a
Jupyter Notebook is launched in the cloud with all user-
selected settings, a model is trained and then the trained
model is used to make predictions. After a job is completed,
the results are stored in the cloud and can be shared via a
unique URL that provides access to the executed Appyter
notebook.

Predicting peripheral neuropathy as a side effect
using Drugmonizome-ML

A set of 19 898 compounds with L1000 gene expression
features for 978 landmark genes were downloaded and
processed from SEP-L1000 (32), and Morgan chemical
fingerprints (radius=4, nbits=2048) were computed for
each compound with RDKit. The binary Morgan finger-
print features were TF-IDF normalized to normalize for
the frequency of different chemical structures. Out of the
19 898 compounds present within the input dataset, 226
drugs known to have the side effect ‘peripheral neuropa-
thy’ were identified within the SIDER side effects drug set
library and used as the positive class to make predictions
for additional compounds that may cause this side effect
based on shared properties with the positive-label com-
pounds. The semantic mapping of small molecules between
the SEP-L1000 and Drugmonizome drug set libraries was
performed by matching the complete InChIKeys. To opti-
mize the learning algorithm and hyperparameters, we used
the scikit-learn Grid Search with 10-fold cross-validation
and evaluated the Logistic Regression, Support Vector
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Table 1. List of drug set libraries served by Drugmonizome

Resource Dataset Drugs Attributes Average drugs per term

Geneshot Tagger Predicted Genes 3938 13882 55.60
Geneshot Enrichr Predicted Genes 3938 11845 62.03
Geneshot AutoRIF Predicted Genes 3938 11695 66.03
Geneshot GeneRIF Predicted Genes 3938 9193 78.65
Geneshot Coexpression Predicted Genes 3938 9087 78.95
STITCH Targets_500 7303 9063 89.05
L1000FWD Downregulated Genes 4884 7622 139.10
L1000FWD Upregulated Genes 4884 7611 142.88
Geneshot Literature Associated Genes 3938 7503 37.80
PharmGKB Predicted Side Effects 1435 7137 70.72
CREEDS Upregulated Genes 71 2535 11.67
CREEDS Downregulated Genes 72 2532 11.76
SIDER Side Effects 1635 2078 74.60
L1000FWD Upregulated GO Biological Processes 4195 1228 58.03
L1000FWD Downregulated GO Biological Processes 4013 1068 51.05
L1000FWD Predicted Side Effects 4852 1013 99.34
SIDER Indications 1546 867 21.66
PubChem PubChem Fingerprints 13379 669 2594.72
DrugBank Drug Targets 4467 611 17.42
PharmGKB Single Nucleotide Polymorphisms 483 554 10.02
DrugCentral Genes 1555 540 19.16
DrugRepurposingHub Genes 1720 375 15.57
ATC ATC Codes 2233 308 9.91
KINOMEscan Kinases 54 301 9.33
L1000FWD Upregulated KEGG Pathways 3662 245 120.58
L1000FWD Downregulated KEGG Pathways 3309 236 87.29
L1000FWD Upregulated GO Molecular Function 2427 183 56.77
RDKit MACCS Fingerprints 14308 163 4080.18
L1000FWD Downregulated GO Molecular Function 2158 158 48.56
L1000FWD Downregulated GO Cellular Component 3246 157 100.82
DrugRepurposingHub Mechanisms of Action 1854 154 13.37
L1000FWD Upregulated GO Cellular Component 3366 153 101.87
DrugBank Enzymes 1473 72 59.73
DrugBank Transporters 832 51 46.80
DrugBank Carriers 458 14 44.78

Machine, Extra Trees (ET) and Random Forest classifiers
based on the Area Under the Receiver Operating Character-
istic Curve (AUROC) and Area Under the Precision-Recall
Curve (AUPRC) methods. Class weights were set to the
inverse of class frequency to handle the class imbalance
present within the input dataset. After model selection, we
trained the best-performing ET model using 10-fold strati-
fied cross-validation with three repeats. We then examined
the validation-set predictions for each compound to iden-
tify additional compounds that were not known to induce
peripheral neuropathy before but received high prediction
scores.

Results

Drugmonizome database

In total, small molecule data from 13 unique resources
were transformed into 35 drug set libraries with a total

of 10 395 794 drug–attribute associations organized into
110 903 drug sets spanning a variety of biomedical asso-
ciation terms (Table 1, Figure 1). 14 579 unique drugs
and small molecules from DrugBank (17) and the LINCS
project (21) are included in the Drugmonizome database.
The Drugmonizome website includes a metadata search
engine that enables users to input any search term. The
returned results include matching drug sets, drugs, small
molecules and other relevant entities. Information about
drugs and small molecules can be accessed from land-
ing pages for each small molecule or drug. These landing
pages include a listing of all drug sets that contain the
small molecule. Information about each drug set includes
drug set size and the resource which the drug set was
derived from. Additionally, the user can explore which
small molecules are included in each matching set. The
drug set enrichment analysis input form enables users to
submit their own list of small molecules for enrichment
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Figure 1. Counts of unique drug–term associations for each library. Terms are colored by their term type groupings.

analysis (Figure 2). Users can input small molecule lists by
name, InChIKey, SMILES string and resource-specific iden-
tifiers such as those from DrugBank or the Broad Institute
for LINCS small molecules IDs. A results page is generated
for each drug set library where drug sets from each library
are ranked based on overlap with the input drug set based
on the Fisher’s exact test. The results from each library can
be further examined by looking at all metadata associated
with the enriched term. The drug set enrichment analysis
can also be accessed programmatically using the Drugmoni-
zome documented OpenAPI (43). Drugmonizome also has
a resources tab that lists information about the 13 unique
resources with links, PubMed IDs and other identifying
resource-level metadata.

Drugmonizome COVID-19 case study

In late 2019, the novel coronavirus, SARS-CoV-2, emerged
in China and has since claimed many lives and caused wide-
spread economic disruption (44, 45). Countless research
groups in the scientific community refocused their efforts
toward discovering therapeutics for COVID-19. Given
the immense resources required for developing and test-
ing novel small molecules, many groups turned to drug
repurposing—an alternative avenue for expedited discov-
ery of therapeutics with known safety profiles. The COVID-
19 Drug and Gene Set Library (46) was developed to
collect drug and gene sets related to COVID-19, includ-
ing drug sets extracted from 12 publications that describe

SARS-CoV-2 in vitro drug screens (47–58). While there is
not much overlap among the hits from the 12 independent
in vitro drug screens (Figure 3), these drug sets share the
common phenotype of inhibiting SARS-CoV-2 infection in
cell-based assays. Drugs and small molecules were predom-
inantly cataloged by name. Therefore, these entities could
only be resolved by their common name because identi-
fiers were not supplied in most cases (Supplementary Table
S1). The drug sets from these in vitro screens were indepen-
dently submitted to Drugmonizome for enrichment analysis
to highlight potential common themes across the screening
results. To determine commonalities among the drug hits in
perturbing the same biological processes, the top enriched
terms from the up- and downregulated L1000FWD GO
Biological Processes drug set libraries were collated. The
top 20 terms across the enrichment results were determined
by the largest cumulative −log P-values, and the contri-
bution to the total by each drug screen was visualized as
stacked bar plots (Figure 4). Notably, among the pooled
enrichment results for the 12 in vitro drug screens hits
there was a common theme of upregulated terms related to
cholesterol metabolism, including regulation of cholesterol
metabolic process (GO:0090181), regulation of choles-
terol biosynthetic process (GO:0045540), sterol biosyn-
thetic process (GO:0016126) and cholesterol biosynthetic
process (GO:0006695). It was recently demonstrated that
drugs that upregulate the genes related to cholesterol
biosynthesis can block SARS-CoV-2 in human cell lines and
organoids (59).
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Figure 2. The Drugmonizome signature search workflow. A set of drugs is submitted for enrichment analysis across all the Drugmonizome gene set
libraries. The enrichment results are provided in tables that enable further exploration of the overlapping drugs.

Figure 3. UpSet plot detailing the overlap among drug hits across 12 independent published in vitro drug screen studies.
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Figure 4. Top 20 enriched GO Biological Processes terms for the 12 in vitro SARS-CoV-2 drug screens. Enriched terms are ranked by the sum of the
−log(P-value) of the term across all screens. The enriched terms are applied to the consensus downregulated (A) and upregulated (B) genes for
each drug in each set based on the data provided from L1000FWD (29).

Drugmonizome ETL scripts, consensus analysis
and machine learning Appyters

Appyters are bioinformatics web-based applications cre-
ated from Jupyter Notebooks (39). By placing special code
inside a standard Jupyter Notebook, and compiling the
notebook with the Appyter SDK, the notebook is con-
verted into a fully functional web application. The Appyter
web-based application first presents the user with an input
form, where they can upload files and submit input param-
eters. When submitted, the Jupyter Notebook is executed
in the cloud and a report is generated and presented to
the user. Users are also provided with a permanent link
to the executed notebook, options to download the note-
book, download the output from the notebook and apply
further customization to the results. The Appyters Cat-
alog provides a collection of Appyters developed by the
community. The Drugmonizome extracting, transforming
and loading (ETL) Appyters are a collection of Appyters
that convert data from various online resources that pro-
vide knowledge about drugs and small molecules into drug
set libraries for Drugmonizome. Hence, several Appyters

for ETL data from each resource in Drugmonizome were
created for the purpose of automating the process of updat-
ing all drug set libraries. The Jupyter Notebooks used to
create these Appyters are openly shared and versioned on
GitHub. This approach provides simple mechanisms to
continually update the Drugmonizome resource. The Drug-
monizome Consensus Appyter streamlines the analysis of
a collection of drug sets. After uploading a file contain-
ing drug sets, users can select the Drugmonizome drug set
libraries for enrichment analysis, as well as how many top
consensus terms to visualize. When executed, the Appyter
produces a report that contains a stacked bar chart with
the cumulative ranks of enriched terms from each library.
An example is the chart provided for the SARS-CoV-2
in vitro drug screens case study (Figure 4). The Appyter
also produces downloadable tables and heatmaps.

Drugmonizome-ML Appyter and the peripheral
neuropathy case study

The Drugmonizome-ML Appyter is a customizable mach-
ine learning pipeline that is available as an Appyter. Using
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Figure 5. Drugmonizome-ML classifier for prioritizing drugs that may induce peripheral neuropathy. (A) Input feature space with Uniform Manifold
Approximation and Projection (UMAP) dimensionality reduction. Each point represents one of 19 898 compounds with 3026 features per compound.
Compounds with the known side effect of peripheral neuropathy are highlighted in yellow. (B) ROC and (C) PRC across cross-validation splits after
hyperparameter optimization for each classifier to predict peripheral neuropathy. Each curve shows the mean ROC and standard deviation after
10-fold cross-validation for each classifier.

an HTML input form, Drugmonizome-ML enables users
to choose feature matrices and target vectors to construct
machine learning tasks for predicting drug attributes. The
user has the option to choose from various scikit-learn
(42) settings to customize and evaluate a user-selected clas-
sifier algorithm. As a case study, we trained a classifier
to identify preclinical and approved drugs that may cause
peripheral neuropathy as a side effect. Peripheral neuropa-
thy is a debilitating side effect for many drugs, common
among chemotherapeutics (60). It causes loss of sensation
or pain in the hands and feet, as well as overall weak-
ness and pain. Peripheral neuropathy is also a side effect
of diabetes (61). Since many critical side effects may be
missed during clinical trials, computationally predicting
side effects such as peripheral neuropathy for new drug
applications can alert physicians about potential side effects
to watch for during clinical trials. A collection of 19 898
compounds characterized by their effects on gene expres-
sion and their chemical fingerprint features were used to
train and evaluate a classifier that can predict associations
between compounds and peripheral neuropathy. The input
dataset for constructing the classifier consisted of L1000
gene expression signatures of 978 landmark genes after

perturbationwith each compound (32, 40) andMorgan fin-
gerprints (radius=4, nbits=2048) generated with RDKit
(37). Compounds known to cause peripheral neuropathy
were curated from SIDER (31). We evaluated various clas-
sifier algorithms after hyperparameter optimization based
on AUROC and AUPRC (Figure 5). Based on this anal-
ysis, we selected the ET classier due to its short training
time and marginally better AUPRC. We trained an ET
classifier (n_estimators=1250, class_weight=balanced,
max_features= log2, criterion= entropy) with 10-fold
cross-validation repeated three times to predict novel com-
pounds that may cause peripheral neuropathy as a side
effect. The top-ranked predicted compounds are ranked by
their mean prediction probabilities (Tables 2 and 3).

Discussion

The ability to perform drug set enrichment analyses for
sets of small molecules against drug set libraries curated
from public repositories and biomedical literature using
the Drugmonizome web-based interface can shed light on
the connectedness of sets of small molecule hits generated
from drug screens. The COVID-19 case study highlighted
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Table 2. Top 15 drugs predicted by the ET model that are known to be associated with peripheral neuropathy from SIDER

InChIKey Name Known Prediction probability

JURKNVYFZMSNLP-UHFFFAOYSA-N Cyclobenzaprine (BRD-K42348709) TRUE 0.8592
KRMDCWKBEZIMAB-UHFFFAOYSA-N Amitriptyline (BRD-K53737926) TRUE 0.8311
MJIHNNLFOKEZEW-UHFFFAOYSA-N Lansoprazole (BRD-A49172652) TRUE 0.7613
ZZVUWRFHKOJYTH-UHFFFAOYSA-N Diphenhydramine (BRD-K47278471) TRUE 0.7153
ZKMNUMMKYBVTFN-HNNXBMFYSA-N Ropivacaine (BRD-K50938786) TRUE 0.582
BCGWQEUPMDMJNV-UHFFFAOYSA-N Imipramine (BRD-K38436528) TRUE 0.5591
WUBBRNOQWQTFEX-UHFFFAOYSA-N Aminosalicylic acid (BRD-K80267133) TRUE 0.4977
YREYEVIYCVEVJK-UHFFFAOYSA-N Rabeprazole (BRD-A39390670) TRUE 0.457
PHTUQLWOUWZIMZ-GZTJUZNOSA-N Dosulepin (BRD-K54759182) TRUE 0.3622
XRECTZIEBJDKEO-UHFFFAOYSA-N Flucytosine (BRD-K82143716) TRUE 0.3463
ODQWQRRAPPTVAG-BOPFTXTBSA-N Doxepin (BRD-K37694030) TRUE 0.3403
UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin (BRD-K62737565) TRUE 0.333
KBOPZPXVLCULAV-UHFFFAOYSA-N Mesalazine (BRD-K28849549) TRUE 0.3244
GBXSMTUPTTWBMN-XIRDDKMYSA-N Enalapril (BRD-K57545991) TRUE 0.3153
HCYAFALTSJYZDH-UHFFFAOYSA-N Desipramine (BRD-K60762818) TRUE 0.3102

Table 3. Top 15 drugs predicted by the ET model that are unknown to be associated with peripheral neuropathy

InChIKey Name Known Prediction probability

NRUKOCRGYNPUPR-OQMCATNJSA-N PLX-4720 (BRD-K16478699) FALSE 0.9757
NRUKOCRGYNPUPR-OQMCATNJSA-N Teniposide (BRD-A35588707) FALSE 0.9396
STQGQHZAVUOBTE-INJOJONLSA-N Daunorubicin (BRD-K91966436) FALSE 0.8372
VSJKWCGYPAHWDS-FQEVSTJZSA-N Camptothecin (BRD-K37890730) FALSE 0.7782
FPIPGXGPPPQFEQ-OVSJKPMPSA-N Retinol (BRD-K22429181) FALSE 0.7499
LTMKESNXUBQKBP-UHFFFAOYSA-N Lapatinib (BRD-M07438658) FALSE 0.7442
HHJUWIANJFBDHT-KOTLKJBCSA-N Vindesine (BRD-K59753975) FALSE 0.7429
XECQQDXTQRYYBH-UHFFFAOYSA-N Norcyclobenzaprine (BRD-K63165456) FALSE 0.6919
FPIPGXGPPPQFEQ-UHFFFAOYSA-N Tretinoin (BRD-K64634304) FALSE 0.6753
XUBOMFCQGDBHNK-UHFFFAOYSA-N Gatifloxacin (BRD-A74980173) FALSE 0.6338
AJLFOPYRIVGYMJ-INTXDZFKSA-N Mevastatin (BRD-K94441233) FALSE 0.6235
KPQZUUQMTUIKBP-UHFFFAOYSA-N Secnidazole (BRD-A70083328) FALSE 0.5208
METKIMKYRPQLGS-LBPRGKRZSA-N Atenolol (BRD-K44993696) FALSE 0.4875
KGUMXGDKXYTTEY-FRCNGJHJSA-N 4-Hydroxyretinoic acid (BRD-A96799240) FALSE 0.4861
BUJAGSGYPOAWEI-UHFFFAOYSA-N Tocainide (BRD-A92670106) FALSE 0.4753

a global theme that connects results from 12 indepen-
dent in vitro drug screens. Despite the minimal overlap
among the hits across these screens, GO terms related to
regulation of cholesterol metabolism and cell cycle were sig-
nificantly enriched across the 12 independent drug sets. It
should be noted that the cholesterol biosynthesis metabolic
pathway is not just producing cholesterol, it is known to
produce more than 300 metabolites. A few of these are
likely critical to the virus life cycle. It has been reported
that patients with high cholesterol and hypertension are at
a higher risk of developing COVID-19 (62), and previous
literature reports that cholesterol has important functions
in regulating immune function, namely through alteration
of plasma membrane cholesterol content, which may have
effects on viral entry into cells (63, 64). Furthermore, sev-
eral independent studies suggest that statins, which are

cholesterol-lowering drugs, may reduce the severity of
COVID-19 (65–68). While this evidence appears as a con-
tradiction, lowering vs. increasing the level of cholesterol,
it may be because the drugs that block the virus in vitro
simply induce the expression of the cholesterol biosynthesis
pathway and do not necessarily increase the production of
cholesterol. Specifically, these drugs collectively upregulate
the genes belonging to this pathway, while it was shown
that the virus downregulates the same genes (59). Further
understanding the exact metabolites that lead to increase
or attenuation of infection requires further exploration. It
should be noted that the drug sets used for this case study
come from the COVID-19 Drug and Gene Set Library (46).
This site provides links to drug set enrichment analysis with
DrugEnrichr (69) (https://maayanlab.cloud/DrugEnrichr/).
DrugEnrichr was developed by us to provide drug set
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enrichment analysis using the same drug set libraries cre-
ated for Drugmonizome. This was achieved by simply
swapping the Enrichr gene set libraries with the Drugmo-
nizome drug set libraries. DrugEnrichr has fewer features
when compared with Drugmonizome, for example, it does
not have entity resolution, drug landing pages and extensive
metadata search. The underlying database and enrichment
analysis calculation in Drugmonizome andDrugEnrichr are
identical. Hence, users may prefer the simpler user interface
provided by DrugEnrichr. However, we recommend using
Drugmonizome over DrugEnrichr.

For our second case study, we utilized the Drug-
monizome-ML Appyter to make predictions and impute
knowledge. Drugmonizome-ML provides researchers with
the ability to construct custom machine learning pipelines
using a simple input form. We used Drugmonizome-
ML to predict peripheral neuropathy as a side effect for
∼20000 preclinical and approved compounds. Among the
top-ranked compounds that were not known to induce
peripheral neuropathy from our input dataset were
PLX-4720, a BRAF kinase inhibitor (70); camptothecin,
a topoisomerase inhibitor (71); vindesine, a vinblastine
derivative antineoplastic (72); and various forms of retinol,
a fat-soluble vitamin (73). Additionally, stereoisomers of
compounds known to induce peripheral neuropathy such
as lapatinib, teniposide and daunorubicin were ranked as
the top predicted compounds when left out as positives
from the target prediction vector. This case study provides
further evidence that Drugmonizome-ML can be used to
prioritize compounds that induce peripheral neuropathy
based on their transcriptomic profiles and chemical finger-
prints. The top predicted compounds were predominantly
chemotherapeutics that are enzyme inhibitors. It is well
established that peripheral neuropathy is a common side
effect among many therapeutics for cancer. Because clin-
ical trials cannot capture all possible adverse effects of a
therapeutic, computationally predicting compounds that
may have severe side effects before they reach the mar-
ket is vital for preventing unwanted consequences of
treatment for patients. Beyond predicting side effects,
Drugmonizome-ML provides the ability to predict other
drug attributes. In fact, any attribute from the Drugmo-
nizome drug set libraries such as indications, targets and
others can be set up for constructing machine learning
predictive models. Drugmonizome-ML targets researchers
with no coding skills, but it is also expected to be use-
ful for computationally savvy users that would utilize the
Drugmonizome-ML framework as a skeleton for rapidly
developing their ML models. It should be noted that
the data within the Drugmonizome database is highly
abstracted. This results in loss of information that may be
critical to obtain optimal predictions. Regardless of such

limitations, Drugmonizome and Drugmonizome-ML pro-
vide rich and well-organized knowledge about drugs and
small molecules to facilitate and accelerate early-stage drug
discovery efforts.

Supplementary data
Supplementary data are available at Database Online.
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