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Abstract
Sus scrofa or pig was domesticated thousands of years ago. Through various indigenous
breeds, different phenotypes were produced such as Chinese inbred miniature minipig
or Wuzhishan pig (WZSP), which is broadly used in the life and medical sciences. The
whole genome of WZSP was sequenced in 2012. Through a bioinformatics study of pig
carbonic anhydrase (CA) sequences, we detected some β- and γ-class CAs among the
WZSP CAs annotated in databases, while β- or γ-CAs had not previously been described
in vertebrates. This finding urged us to analyze the quality of whole genome sequence
of WZSP for the possible bacterial contamination. In this study, we used bioinformatics
methods andweb tools such asUniProt, European Bioinformatics Institute, National Cen-
ter for Biotechnology Information, Ensembl Genome Browser, Ensembl Bacteria, RSCB
PDB and Pseudomonas Genome Database. Our analysis defined that pig has 12 classi-
cal α-CAs and 3 CA-related proteins. Meanwhile, it was approved that the detected CAs
in WZSP are categorized in the β- and γ-CA families, which belong to Pseudomonas
spp. and Acinetobacter spp. The protein structure study revealed that the identified β-
CA sequence from WZSP belongs to Pseudomonas aeruginosa with PDB ID: 5JJ8, and
the identified γ-CA sequence from WZSP belongs to P. aeruginosa with PDB ID: 3PMO.
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Bioinformatics and computational methods accompanied with bacterial-specific mark-
ers, such as 16S rRNA and β- and γ-class CA sequences, can be used to identify bacterial
contamination in mammalian DNA samples.

Introduction

Pigs (Sus scrofa) were domesticated in multiple geographic
regions of Asia and Europe through artificial and natural
selections about 10 000 years ago. Especially in China as
one of the main centers, the domestication created a num-
ber of indigenous breeds with various phenotypes includ-
ing Plateau, Lower Yangtze River Basin, Southwest and
North China types (1–3). The whole genome sequences
(WGS) of pig models and minipig varieties are important in
biomedical studies, such as generation of porcine-induced
pluripotent stem cells for the treatment of human dis-
eases including diabetes and cancer as well as ophthalmic,
neurodegenerative and cardiovascular diseases (4, 5).

Wuzhishan pig (WZSP) is a Chinese inbred miniature
minipig, which is characterized by its small size, approx-
imately weight of 30 kg, homozygosis, genetic stability
and good predictability in in vivo studies (6). WZSP was
developed in the Institute of Animal Science of the Chi-
nese Academy of Agriculture Science in 1987. Fang et al.
performed the WGS of WZSP in 2012, which defined a
high-level derivation of transposons from transfer RNA
with 2.2 million copies (12.4% of the genome) (7). In addi-
tion, many human gene and effective drug targets have been
identified in the genome of WZSP. The WGS of WZSP,
completed by the researchers from Beijing Genomics Insti-
tute, provided pivotal data for the use of this minipig model
in biological, medical and veterinary medicine studies.

The genome of WZSP contains porcine endogenous
retroviruses (PERVs), which can be transmitted in the germ
lines and infect human cells, leading to severe combined
immunodeficiency (8). Therefore, PERVs are considered a
great potential risk of xenotransplantation of organs from
transgenic pigs like WZSP to human.

Carbonic anhydrases (CAs) are ubiquitous enzymes with
metal cofactors such as zinc, iron, cobalt or cadmium in
the enzyme active sites catalyzing the hydration of CO2 to
HCO3

− and H+ for pH homeostasis and playing the cru-
cial roles in many biochemical pathways and physiological
functions (9, 10). CAs are classified into eight evolution-
arily distinct families, including α, β, γ, δ, ζ, η, θ and
ι (11–14). α-CAs are present in many prokaryotes and
eukaryotes (15, 16). There are 13 α-CA isozymes in mam-
mals, of which 12 are present in humans, including CA I–IV,
CAVA and VB, CAVI, CAVII, CA IX and CAXII–XIV. CA
XV can be found in several vertebrates with the exception
of at least chimpanzee and human (17). In addition, the

presence of three acatalytic CA-related proteins (CARPs),
including CARP VIII, CARP X and CARP XI, has been
reported, and these highly conserved proteins seem to play
critical biological roles (18–22). Although β- and γ-CAs
have been reported in several prokaryotes and eukaryotes,
there is no report showing the presence of a β- or γ-CA in
vertebrates (23, 24).

Databases such as Ensembl Genome Browser contain
huge data resources of vertebrate genomes to support the
related studies in various fields, such as evolutionary and
computational biology, associated with the WGS, gene
expression studies and encoded protein analyses in verte-
brates (25). Due to the bacterial contamination of eukary-
otic nucleic acid samples with environmental microbiome
and normal flora of the eukaryotic hosts, some contaminant
gene and protein sequences from prokaryotes have been
erroneously annotated for eukaryotes in databases (26).

In this study, we performed a quality control analy-
sis of the WGS results of WZSP annotated in databases
using β- and γ-CA gene sequences as markers through
bioinformatics and data mining approaches.

Methods

Identification of CAs from S. scrofa

To identify genomics and proteomics information of
the CA isozymes from S. scrofa, the National Center
for Biotechnology Information (NCBI) database (https://
www.ncbi.nlm.nih.gov/) (27) was used to define the chro-
mosome location and exon counts of the corresponding
genes. In addition, data from the UniProt database (https://
www.uniprot.org/) (28) were used to define the subcellular
localization of CA isozymes from S. scrofa.

Analysis of β- and γ-CA sequences

In this analysis, β-CA protein sequence from Acetobac-
ter aceti (UniProt ID: A0A1U9KGA1) and γ-CA protein
sequence from Shigella flexneri (UniProt ID: P0A9X0)
were used as the query sequences. Basic Local Align-
ment Search Tool (BLAST) analysis was performed on
both β- and γ-CA query sequences using BLAST algorithm
of Ensembl Genome Browser (https://asia.ensembl.org/
index.html) (25). To find similar sequences in the BLAST
analysis, Pig-Wuzhishan (assembly: minipig_v1.0; acces-
sion: GCA_002844635.1; genebuild released: Septem-
ber 2019) was selected by species selector section, and
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Table 1. α-CAs from S. scrofa

α-CAs UniProt ID NCBI ID Gene location Exon count Subcellular localization

CA I A0A287AI92 XP_001924218.1 Chromosome 4 7 Cytoplasmic

CA II A0A287B6M0 XP_001927840.1 Chromosome 4 7 Cytoplasmic

CA III A0A4X1UEH4 NP_001008688.1 Chromosome 4 7 Cytoplasmic

CA IV F1S1C3 NP_001230849.1 Chromosome 12 8 Membrane-bound

CA VA A0A5G2QRM5 XP_020949335.1 Chromosome 6 13 Mitochondrial

CA VB F1SQS9 XP_005673507.1 Chromosome X 9 Mitochondrial

CA VI F1RIH8 NP_001137588.1 Chromosome 6 8 Secretory

CA VII A0A286ZZG4 XP_020949678.1 Chromosome 6 8 Cytoplasmic

CA IX A0A5G2QGY0 XP_001925555.2 Chromosome 1 12 Transmembrane

CA XII F1S092 XP_020949824.1 Chromosome 1 11 Transmembrane

CA XIII A0A287ASJ5 XP_001924497.3 Chromosome 4 9 Cytoplasmicc

CA XIV A0A287B0I5 XP_020945576.1 Chromosome 4 9 Transmembrane

CARP VIII A0A287BFY8 XP_020944998.1 Chromosome 4 10 Cytoplasmic

CARP X A0A480LJN7 XP_020922898.1 Chromosome 12 11 Secretory

CARP XI A0A4X1VZX6 XP_005664726.1 Chromosome 6 9 Secretory

Figure 1. Multiple sequence alignment (MSA) of β- and γ-CA sequences. (A) MSA of β-CA sequences shows highly conserved amino acids in cyan
color; (B) MSA of γ-CA sequences shows highly conserved amino acids in yellow color.
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Figure 2. Genomic analysis of β-CA sequences from putative contaminants associated with Pseudomonas spp. The analysis shows the presence of
coding genes for β-CA from (A) Pseudomonas sp. (UniProt ID: A0A0Q8Y2C1), (B) Pseudomonas sp. LP_8_YM (UniProt ID: A0A4R3W4C9) and (C)
Pseudomonas syringae pv. actinidiae ICMP 19096 (UniProt ID: A0A656JXK1).

TBLASTN search tool with normal sensitivity was applied
to search for the translated nucleotide databases using
a protein query. In the next step, the defined β- and
γ-CA protein sequences of WZSP were analyzed by the
BLAST homology search tool of the UniProt database. In
the final step, multiple sequence alignment (MSA) analy-
sis was performed on all β- and γ-CA protein sequences
involved in this evaluation using Clustal Omega algorithm
of the European Bioinformatics Institute database (https://
www.ebi.ac.uk/Tools/msa/clustalo/) (29). To reduce the size
of protein sequences and output figures from MSA analy-
sis, just 69 and 60 amino acid sequences of β- and γ-CA
protein sequences containing the enzyme active sites were
selected, respectively.

Genomic analysis of β- and γ-CA sequences from
putative bacterial contaminants

The coding genes for β- and γ-CAs from Pseudomonas
spp. as one of the putative contaminants in WGS of
WZSP were evaluated using the BLASTP search tool in
the Pseudomonas Genome Database, version 20.2 (https://
www.pseudomonas.com/) (30) by using 1e-4 as the default
value cutoff. In addition, the coding genes for β- and γ-CAs
from Acinetobacter spp. as another potential contaminant
were analyzed by the Ensembl Bacteria database (http://
bacteria.ensembl.org/index.html) (31).

Protein structure analysis

Four β-CA protein sequences from bacterial contaminates
including UniProt IDs: A0A0Q8Y2C1, A0A4R3W4C9,
A0A656JXK1 and A0A062C2I7 and six γ-CA protein
sequences from bacterial contaminants including UniProt
IDs: A0A4R3W1J2, A0A125QD08, A0A4R3W9L6,
A0A2N1E8I6, A0A062BNN8 and A0A419V156 were
analyzed by RCSB Protein Data Bank (PDB) (https://
www.rcsb.org/) (32) to identify the most similar crystallized
and 3D model proteins to the query β- and γ-CA protein
sequences of bacterial contaminants.

Results

Identification of α-CAs from S. scrofa

This analysis defined 12 α-CA isozymes including CA I–IV,
CA VA and VB, CA VI, CA VII, CA IX and CA XII–XIV
and three CARPs including CARP VIII, CARPX and CARP
XI in S. scrofa. The results revealed that chromosome 1
contains the coding genes for CA IX and CA XII; chromo-
some 4 contains the coding genes for CA I–III, CA XIII,
CAXIV and CARP VIII; chromosome 6 contains the coding
genes for CA VA, CA VI, CA VII and CARP XI; chromo-
some 12 contains the coding genes for CA IV and CARP X
and chromosome X contains the coding gene for CA VB.
Our study on the subcellular localization of α-CAs from S.
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Figure 3. Genomic analysis of γ-CA sequences from putative contaminants associated with Pseudomonas spp. The analysis shows the presence of
coding genes forγ-CA from (A) Pseudomonas sp. LP_8_YM (UniProt ID: A0A4R3W1J2), (B) Pseudomonas fluorescens (UniProt ID: A0A125QD08), (C)
Pseudomonas sp. LP_8_YM (UniProt ID: A0A4R3W9L6), (D) Pseudomonas fluorescens (UniProt ID: A0A2N1E8I6) and (E) Pseudomonas synxantha
(UniProt ID: A0A419V156).

scrofa predicted that CA I–III, CA VII, CA XIII and CARP
VIII are cytoplasmic; CA VA and CA VB are mitochon-
drial; CA VI, CARP X and CARP XI are secretory; CA
IX, CA XII, and CA XIV are transmembrane and CA IV
is membrane-bound (Table 1).

Analysis of β- and γ-CA sequences

The BLAST homology analysis of the predicted WZSP CA
sequences first identified a β-CA sequence from A. aceti
and a γ-CA sequence from S. flexneri. A more detailed
BLAST homology analysis of β-CA and γ-CA sequences
from WZSP showed 100% similarity with bacterial β- and
γ-CA sequences from Pseudomonas spp. and Acinetobac-
ter spp. To confirm the identity of the defined sequences,
MSA of the β-CA sequences showed the five highly con-
served amino acids, including cysteine, aspartic acid, argi-
nine (CXDXR) and histidine and cysteine (HXXC), which
are known to be characteristic features of β-CA enzymes.
Similarly, the predicted γ-CA sequences showed the four
highly conserved amino acids characteristic of γ-CAs,

including glutamine and histidine (QXXXXXH) as well as
two histidines (HXXXXH) (Table 2; Figure 1).

Genomic analysis of β- and γ-CA sequences from
putative bacterial contaminants

The analysis revealed that the β- and γ-CA genes from puta-
tive bacterial contaminants are located in the genomes of
Pseudomonas spp. and Acinetobacter spp. Further evalua-
tion revealed that all the encoded β- and γ-CAs from the
putative bacterial contaminants are probably cytoplasmic
proteins (Figures 2–4).

Protein structure analysis

The 3D models of crystallized β- and γ-CA protein
structures, most similar to the bacterial contaminant pro-
teins described in this study, were visualized in NGL
(WebGL) viewer of the RSCB PDB database (accession
codes 5JJ8 and 3PMO) (Figure 5). The visualized images
of the bacterial β- and γ-CA proteins show homodimeric
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Figure 4. Genomic analysis of β- and γ-CA sequences from putative contaminants associated with Acinetobacter spp. The analysis shows the
presence of coding genes for (A) β-CA from Acinetobacter sp. 263903-1 (UniProt ID: A0A062C2I7) and (B) γ-CA from Acinetobacter sp. 263903-1
(UniProt ID: A0A062BNN8).

Figure 5. Protein structure analysis of β- and γ-CA protein sequences from bacterial contaminants. (A) Accession ID: 5JJ8 crystal structure belongs
to β-CA from P. aeruginosa, and (B) Accession ID: 3PMO crystal structure belongs to γ-CA from P. aeruginosa. A and B were obtained from the PDB
database, which are the most similar crystalized structures to β- and γ-CAs from bacterial contaminants, respectively.

and homotrimeric structures typical for the β- and γ-CA
proteins, respectively (33).

Discussion

α-CAs have been classically considered the only CA family
that is present in vertebrates. In line with those obser-
vations, our study revealed that S. scrofa has 12 α-CA
isozymes and 3 CARPs similar to human (26). These α-
CAs have subcellular localizations that are concordant
with human enzymes, including cytoplasmic CA I–III, CA
VII, CARP VIII and CA XIII; membrane-bound CA IV;
mitochondrial CA VA and CA VB; secretory CA VI, CARP

X and CARP XI; and transmembrane CA IX, CA XII and
CA XIV (15).

Surprisingly, the first analyses of our study using the
query bacterial β- and γ-CA sequences detected counter-
part CA sequences in WZSP, and indeed, the MSA analysis
approved that these sequences belong to the β- and γ-CA
families. The BLAST search homology analyses of the iden-
tified β- and γ-CAs from WZSP displayed 100% identity
to β- and γ-CA sequences from Pseudomonas spp. and
Acinetobacter spp. In addition, genomic characterization
of the detected β- and γ-CA sequences by the Pseudomonas
Genome Database and Ensembl Bacteria database showed
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the presence of corresponding β- and γ-CA genes in the
genomes of Pseudomonas spp. and Acinetobacter spp.,
with cytoplasmic subcellular localization of the encoded
CAs.

Previous studies have revealed that both host gut-
associated flora and environmental microbiome, such as
airborne microbes as well as bacterial contamination of
equipment and solutions used for DNA isolation, can rep-
resent potentially interfering substances and contamination
sources of the shotgun metagenomic sequencing samples,
leading to false-positive results (34–36). For similar rea-
sons, it would be highly possible that the isolated DNA
samples from WZSP for WGS project had been contam-
inated with bacterial members of the Pseudomonadales
order including Pseudomonas spp. and Acinetobacter spp.,
resulting in the detection of β- and γ-CAs from these bac-
terial species in the Ensembl assembly (minipig_v1.0) of S.
scrofa. In addition, further analysis with protein structure
modeling of β- and γ-CA sequences from bacterial contam-
inants revealed that β-CA sequences from contaminants
were similar to 5JJ8 crystal structure from P. aeruginosa,
and γ-CA sequences from contaminants were similar to
3PMO crystal structure from P. aeruginosa, which both
approve the membership of β- and γ-CA sequences of
bacterial contaminants to Pseudomonadales order.

There are different pipelines for decontamination of
genomic reads in DNA-Seq and RNA-Seq projects, such
as hierarchical clustering algorithm (37), RapMap (38),
DecontaMiner (39), Sequencing Quality Assessment Tool
or SQUAT (40), map-guided scaffolding or MaGuS (41),
and Kraken 2 (42), which can improve the quality of
genomic samples. DNA-free reagents and kits are used
to reduce the bacterial contamination in the sequencing
projects (43). Internal controls of every step in the sequenc-
ing protocols can detect the trace fragments of foreign
DNA or RNA to reduce the risk of bacterial contamina-
tion (44). Nevertheless, our results demonstrate that the
sequences present in genomic databases do contain incor-
rect sequences due to microbial contamination, underlining
the need for high-quality internal controls and biocuration.

Conclusions

In addition to aforementioned methods for detection of
bacterial contamination in theWGS projects of animals, the
bioinformatics and computational approaches accompa-
nied with bacterial-specific markers, such as CA sequences,
can be employed to detect and reduce the risk of microbial
contamination in the WGS projects through implementa-
tion of biocuration in databases. It is important to control
the quality of short-size libraries, contigs and scaffolds as
well as to perform internal checks of solutions, reagents and

equipment during the shotgun genomic projects. This can
be led to reducing the risk of annotation of false DNA and
protein sequences in databases.
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