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Abstract
Human copy number variations (CNVs) and copy number alterations (CNAs) are DNA segments (>1000 base pairs) of duplications or deletions
with respect to the reference genome, potentially causing genomic imbalance leading to diseases such as cancer. CNVs further cause genetic
diversity in healthy populations and are predominant drivers of gene/genome evolution. Initiatives have been taken by the research community to
establish large-scale databases to comprehensively characterize CNVs in humans. Exome Aggregation Consortium (ExAC) is one such endeavor
that catalogs CNVs, of nearly 60 000 healthy individuals across five demographic clusters. Furthermore, large projects such as the Catalogue
of Somatic Mutations in Cancer (COSMIC) and the Cancer Cell Line Encyclopedia (CCLE) combine CNA data from cancer-affected individuals
and large panels of human cancer cell lines, respectively. However, we lack a structured and comprehensive CNV/CNA resource including both
healthy individuals and cancer patients across large populations. CNVIntegrate is the first web-based system that hosts CNV and CNA data
from both healthy populations and cancer patients, respectively, and concomitantly provides statistical comparisons between copy number
frequencies of multiple ethnic populations. It further includes, for the first time, well-cataloged CNV and CNA data from Taiwanese healthy
individuals and Taiwan Breast Cancer data, respectively, along with imported resources from ExAC, COSMIC and CCLE. CNVIntegrate offers
a CNV/CNA-data hub for structured information retrieval for clinicians and scientists towards important drug discoveries and precision treatments.

Database URL: http://cnvintegrate.cgm.ntu.edu.tw/

Introduction
Human copy number variations (CNVs) or copy number
alterations (CNAs) are DNA segments greater than 1000 base
pairs (bp) that are duplicated or deleted with respect to the
reference genome (1). CNVs are variations that are inherited
through germline cells, whereas CNAs are acquired somatic
changes that lead to gain or loss of copies of DNA seg-
ments. These duplications and deletions can potentially alter
gene expression levels (2) and cause diseases such as can-
cer, viral infection disorders, neuropsychiatric diseases and
obesity (3–6) through gene dosage, gene disruption, gene
fusion or positional effects (7). CNVs are a source of genetic
diversity in healthy populations (8–10) and are predominant
drivers of gene and genome evolution. With the advent of

high-throughput techniques, the International HapMap Con-
sortium (11), the 1000 Genomes Project (12) and other
large-scale whole-genome studies have identified a large num-
ber of CNV segments that are the cause of 4.8–9.5% of
the variability in the human genome (13, 14). To distin-
guish CNVs representing benign polymorphic variants from
disease-causing CNVs, one potential strategy is to compare
genomes of healthy and diseased individuals. To this end, a
convincing reference panel of CNVs that contribute to human
genetic diversity, may or may not convey phenotypes, needs
to be constructed.

Early studies demonstrated that CNV landscapes differ
significantly among ethnicities (15–17). In the past, several
CNV reference panels have been built, such as the ones for

Received 23 April 2020; Revised 29 May 2021; Accepted 2 July 2021
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab044/6321046 by guest on 07 M

ay 2024

mailto:tplu@ntu.edu.tw
mailto:chuangey@ntu.edu.tw
http://cnvintegrate.cgm.ntu.edu.tw/
http://creativecommons.org/licenses/by/4.0/


2 Database, Vol. 2021, Article ID baab044

Caucasian and African American control samples (18, 19).
Several large-scale datasets, such as the 1000Genomes Project
(12), the Jackson Heart Study (20) and the NHLBI’s GO
Exome Sequencing Project (21), have been constructed as
efforts to study the CNV landscape of healthy individuals
from different countries, serving as global reference genomes
(6, 22). Whole exome sequencing (WES) data from 17 such
international projects were aggregated into the Exome Aggre-
gation Consortium (ExAC), which catalogs DNA sequence
variants, including CNVs, of nearly 60 000 healthy individ-
uals across five demographic clusters [European, African,
South Asian, East Asian and admixed American (Latino)]
(23). However, one caveat of such studies is the small sam-
ple sizes, representing each sub-population (24, 25). Avail-
ability of a CNV panel with a larger representation of a
healthy population, such as Taiwanese/Chinese, would facili-
tate researchers with a baseline to identify disease-associated
CNVs from benign ones, for the East Asian subpopulation.

CNAs associated with cancer susceptibility have been
broadly characterized over the years and have success-
fully revealed distinct CNA profiles in the genomes of
cancer cohorts (26–31). For instance, Lu et al. reported
frequent copy number (CN) altered regions in at least
30% of non-smoking female lung adenocarcinoma patients
through a genome-wide CNV analysis (29), and Li et al.
utilized 266 CN probes to show that CNA landscapes vary
between lung cancer subtypes, thus highlighting the poten-
tial of CNAs as biomarkers (31). To further explore the
role that CNAs play, in the etiology of human cancers,
large projects were launched. One of the most compre-
hensive resources is the Catalogue of Somatic Mutations
in Cancer (COSMIC) (32), which combines CNA data
from the International Cancer Genome Consortium (33) and
The Cancer Genome Atlas (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga) (34).
Another collaborative project for CNA exploration, the Can-
cer Cell Line Encyclopedia (CCLE) (35), aims to conduct
detailed genetic and pharmacological characterizations using
a large panel of human cancer cell lines. However, we still lack
a structured and comprehensive CNV/CNA resource from
healthy individuals and cancer patients, respectively, across
large populations.

In this study, we, first, aimed to characterize CNV pro-
files in the general population, living in Taiwan and con-
struct a reliable Taiwanese CNV reference panel (TWCNV)
using ∼15829 DNA samples from the Taiwan Biobank (36).
This reference panel would be a potential resource against
which to conduct comparison analyses of causal CNVs in
disease-related studies of Taiwanese patients. Second, we
included a CNA panel, Taiwanese Breast Cancer (TWBC),
consisting of CNA profiles from 114 breast cancer patients
in Taiwan. This CNA panel would allow users to evalu-
ate whether a cancer-related variant is population dependent
or not. Finally, we present CNVIntegrate, a user-friendly
web-based system with an integrated, sorted and structured
CNV/CNA database built from multiple sources: TWCNV,
ExAC, TWBC, COSMIC and CCLE. The former two datasets
consist of samples from healthy general populations, while the
latter three datasets contain cancer-associated CNAs. CNVIn-
tegrate provides statistically comparable metrics to predict

the functional impact of a CNA by comparing the healthy
person data with the cancer patient data. There are a few
CNV databases, such as the Korean Variant Archive (37), the
Pan-Asian single nucleotide polymorphism (SNP) Genotyping
Database (38) and ThaiCNV (39) that host CNV information
from healthy individuals from different countries and regions,
but CNVIntegrate is the first to offer comprehensive sup-
port for identifying cancer-associated CNAs in a multiethnic
population.

Material and methods
Database overview
An overview of the system is illustrated in Figure 1. Table 1
provides a thorough comparison of features of CNVIntegrate
to those of currently available CNV databases. To the best
of our knowledge, this is the only web-based system that
hosts CNV and CNA data from both healthy populations
and cancer patients, respectively, and concomitantly provides
functional scores by performing statistical comparisons of
CNV frequencies among multiple populations. CNVIntegrate
is an easily accessible data hub that supports the retrieval
of structured CNV information by a single query or a file
upload.

The system presents the users with three major functions
(Figure 2), namely, (i) the gene-query function, (ii) CNV pro-
file function for specified cancer and (iii) the analysis function.
The gene-query function provides users with CNV infor-
mation for the queried gene/chromosome/region of interest.
Using the CNV profile function, the users can further choose
from a list of cancer types to obtain CNA profiles for a spec-
ified cancer. The analysis function offers the users a compar-
ison analysis for CNV frequency among healthy and affected
populations across different ethnicities. It potentially isolates
cancer-associated genes with a CNV prevalence that deviates
from the normal baseline population and also provides an
accurate clinical interpretation of the CNV, through multiple,
between-population comparisons, using CNV/CNA infor-
mation from both healthy individuals and cancer patients.
The web site supports display on mobile devices as well
as mainstream internet browsers, such as Google Chrome,
Apple Safari and Internet Explorer. The database was devel-
oped with Django 2.1 and runs on Python programming
language version 3.4 and MySQL. Users are offered unlim-
ited search options, along with easily retrievable search
results.

Database content
CNVIntegrate creates a comprehensive CNV and CNA land-
scape by compiling data from healthy individuals and can-
cer patients, respectively. CNV data for healthy cohorts are
imported from the TWCNV (created and characterized in
this study, see below) and ExAC databases (23). Cancer-
specific CNA datasets such as TWBC (details, see below),
COSMIC (32) and CCLE (35) are imported into the dataset.
All included datasets in CNVIntegrate are converted to the
human genome assembly version 37(GRCh37) for consis-
tency. Furthermore, genes and their respective annotation
data are imported from the Cancer Gene Census (CGC)
(https://cancer.sanger.ac.uk/census) (40).
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Figure 1. Overview of CNVIntegrate.

Table 1. Comparison of sample sizes, functions, and query results offered by existing databases

Regional databases Global databases

CNVIntegratea KOVA PanSNPdbd ThaiCNVe ExAC COSMICf CCLEg

Population Taiwanese Korean Asian Thai NA NA NA
Multi-ethnic + + + +

Population sample size 15 943b 1055 1719 3017 NA NA NA
Sample size 1 105 891 c 1055 1719 3017 59898 f g

Gene query + + + +
Chromosomal query + + + + +
Batch query +
Downloadable data + + + + +
Global reference + +

Comparison analysish +

aCNVIntegrate includes individuals from Taiwan (TWCNV), ExAC, TWBC, COSMIC and CCLE. TWCNV consists of CNV data from healthy individuals
of Taiwanese cohort, ExAC consists of CNV data from healthy individuals from multiple cohorts, TWBC consists of CNV data from breast cancer patients
in Taiwanese cohort and COSMIC and CCLE consists of CNV data of cancer-affected individuals from multiple cohorts.
b15 829 healthy samples and 114 Breast cancer samples from Taiwanese cohort.
cCNVIntegrate includes healthy individuals and breast cancer patients from Taiwan cohort along with samples from ExAC, COSMIC and CCLE.
dPanSNPdb included individuals from China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan and Thailand.
eThaiCNV provides direct visualization of CNV data as tracks embedded on the UCSC Genome Browser. Individual CNA events detected among samples
are shown without additional information such as CNV frequencies, gene annotation, etc.
fCOSMIC hosts 1 179 545 CNVs collected by expert and exhaustive curation of over 26 000 publications.
gCCLE data included CNVs of 3316 genes across 1043 cell lines. CNV data from CCLE are not available online; data need to be downloaded and processed
for further application.
hComparison of CNV frequencies amongst different ethnic populations.

TWCNV reference panel
Datasets used in TWCNV baseline construction and
comparison

To characterize a CNV reference panel specific for the
Taiwanese sub-population, SNP array data from peripheral
blood samples of 15 829 volunteers without cancer living
in Taiwan were included in this study. The SNPs were
assayed using an Axiom Genome-Wide TWB Array Plate

(TWB array), one of the Affymetrix Axiom Genotyping sys-
tems designed for the Taiwan Biobank. The TWB array
contains 653 291 SNP probes for SNPs specific to people of
Taiwan and 525 652 SNP probes from the Axiom Genome-
Wide CHB Array for SNPs related to diseases and drug
metabolism that have been reported in previous studies (41).
TWCNV contains 476 247 CN alterations identified on auto-
somal chromosomes, encompassing more than 20 000 genes.
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Figure 2. Functions offered by CNVIntegrate—gene, cancer and analysis (i) Gene: gene-query function. (ii) Cancer: cancer profile function. (iii) Analysis:
analysis function.

To confirm the credibility of our TWCNV results, three pub-
lic SNP array datasets were used for comparison. The first
one was from the International HapMap Project (42) includ-
ing 267 blood samples that were assayed on the Mapping
500K array platform and contains a similar number of SNP
probes to that of the TWB array. The 267 samples comprise
30 Caucasian trios (two parents and one child), 30 African
trios and 87 unrelated Asian individuals. Two other datasets,
downloaded from the Gene Expression Omnibus, of which
GSE30481 contains blood samples of 155 general Chinese
individuals (87 Han Chinese, 44 Tibetans, 9 Dongs, 8 Yaos,
6 Zhuangs, 8 Lis and 4 Uyghurs) (43) and GSE23291 con-
sists of blood samples from 490 Ashkenazi Jews, were used as
controls in this study (44).

Genotyping, quality control (QC) and quality assessment

Genotype calling was performed using Affymetrix Power Too-
ls version 1.18.0 (https://www.thermofisher.com/tw/zt/home/
life-science/microarray-analysis/microarray-analysis-partners
-programs/affymetrix-developers-network/affymetrix-power-
tools.html). A two-step sample QC was conducted, where,
first, a statistic (Dish-QC) was created to measure the sig-
nal across non-polymorphic loci in the samples. Samples that
achieved a (Affymetrix suggested) default Dish-QC >82%
were then checked for the sample call rate (CR). Samples that
exceeded a CR default cut-off value of 97% were identified
and retained for further downstream analysis. The quality
of the genotyping results was then evaluated by conducting
a comparison of the gender information predicted from the
allosome genotyping results with that of the real gender infor-
mation provided by Taiwan Biobank for all the samples that
passed the QC steps.

CNV calling, CNV analysis and gene annotation

The Partek Genomics Suite 6.6 (https://www.partek.com/
partek-genomics-suite/) was used for CNV detection. The
results from the genotyping step were quantile normalized and
compared to the reference (created by selecting all samples
from our TWB data) using the Partek Genomics Suite. The
Partek algorithm assumes that the median of the intensity val-
ues for each SNP, over all TWB samples, represents an average
CN of 2. CN calls were made by comparing intensity values of
each test sample to the pooled reference sample. CNV regions

were called based upon a few predefined criteria: minimum
count of consecutive genomic markers≥35, P-value≤0.001
and signal-to-noise ratio≥0.3. Theoretically, a genomic seg-
ment was called a CNV when its average CN change was
higher than 0.3 (amplified regions CN>2.3; deleted region
CN<1.7) with a significant P-value using a t-test (29). Since
the resolutions of the 500K arrays and SNP 6.0 arrays are
∼0.75 and four times greater, respectively, than that of
the TWB array, the minimum consecutive genomic markers
required to define a CNV region were adjusted to ≥25 and
≥100 for the two array platforms, with the other parameters
unchanged.

The CNV regions across the samples were analyzed after
the individual CNVs were detected. A Python script was uti-
lized to analyze the CNV segments, by identifying a common
region between any two breakpoints across all the samples.
Consequently, the frequencies of any common region were
calculated in the general Taiwanese population. The Refer-
ence Sequence Database (45) was then utilized to map these
segments onto gene symbols using the ‘nearest features’ func-
tion embedded in the Partek Genomics Suite, for exploring
their potential functions. The genes encompassed by CNVs
were those with at least one overlapping nucleotide from each
CNV segment. To further fine-mapCNVs to the gene level, the
highest duplication/deletion frequencies of all the segments
located in a single gene were utilized. Hence, the baseline
CNV frequency of genes serving as benchmarks was estab-
lished. This study specifically focuses on the autosomes. All
CNV analyses and downstream characterizations were done
using the human genome version 19 (hg19) build.

ExAC dataset
ExAC is a worldwide project that aims to assist in the func-
tional interpretation of variants by aggregating and harmo-
nizing whole exome data generated by 17 sequencing projects
including 1000 Genomes (12), the Jackson Heart Study (20),
NHLBI’s GO Exome Sequencing Project (21) and others.
The ExAC dataset catalogs DNA sequence variants including
126 771 rare CNVs from 59898 healthy individuals spread
across five demographic clusters, European, African, South
Asian, East Asian and admixed American (Latino), thereby
representing a worldwide control cohort for CNV reference
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analysis (23, 35). CNVIntegrate includes CNV data from
ExAC version 0.3.1. In this study, the CNV regions from
ExAC were mapped onto the official HUGO Gene Nomen-
clature Committee gene symbols and thereby global CNV fre-
quency, as well as population-specific CNV frequencies, was
calculated for each gene, to be included in the CNVIntegrate
database.

TWBC dataset
TWBC consists of CNA profiles from 114 Taiwan breast can-
cer patients with primary breast cancer. Subjects recruited for
this dataset include a subset of clinically diagnosed breast can-
cer patients who undergo surgical resection at four different
hospitals in Taiwan (Lotung Poh-Ai Hospital, Cathay General
Hospital, KaohsiungMedical University Hospital, and Cheng
Ching Hospital). Matched tumor and adjacent normal tissues
were collected and sequenced using WES, and CNA analysis
was performed by FACETS (46) and GISTIC2 (47).

COSMIC dataset
COSMIC is one of the most comprehensive resources for
exploring mutations and structural variations in human
cancer, hosting 1 179 545 CNAs curated over 26 000 publica-
tions where CN data (32) have been collected from the Inter-
national Cancer Genome Consortium (33) and The Cancer
Genome Atlas (34). Sample level information from COSMIC,
including CNV gain or loss events, site of sample origin,
sample histology and cancer classification information, was
included in CNVIntegrate. Occurrences of CNA events are
calculated for each gene and divided into groups based on
site and histology of the respective tumor. As the number of
tested samples for each cancer site might potentially differ and
because such information was absent in the downloaded data
from COSMIC, the population frequency of CNAs was man-
ually curated in this study to be included in CNVIntegrate.

CCLE dataset
The CCLE is an ongoing collaboration between the Broad
Institute and the Novartis Institutes, consisting of genomic
and pharmacological data from 1457 human cancer cell lines,
as of 2019 (35). The log2 CN values of 23 316 genes spanning
1043 cell lines were imported into CNVIntegrate. The sam-
ples for each cell line belonged to different cancer types, and
therefore, the cell line annotation information from CCLE
was used to classify the 1043 cell lines. For ease of interpre-
tation, log2 CN values were then transformed into absolute
CN values where a cell line was classified as a CN gain cell
line only if its absolute CN was higher than 2.3. Similarly, it
was considered as a CN loss cell line if its CN value was lower
than 1.7. CNA frequency for each cancer was then calculated
based on a predefined CNV gain/loss condition.

Cancer Gene Census
CGC (40) is an expert-curated guide built by exhaustive inte-
gration of all available literature and is commonly used across
medical reports, pharmaceutical development and basic bio-
logical research as a standard annotation resource. CGC
annotations, with information on classification of the genes,
their role in cancer and molecular information depicting dom-
inant or recessive status, were added to CNVIntegrate. With

the purpose of CNV-gene mapping, a gene set consisting of
711 unique genes, complemented with CGC annotation, was
created in this study, to be incorporated in the database.

Gene-query function
For the query function (Figure 2), the database supports user
queries by either gene symbols or human genome (GRCh37)
chromosomal location. CNVIntegrate allows three types of
user query formats (Supplementary Figure 1a). For batch
queries, the database accepts a .txt or .csv file as input. For
single gene queries, the autocomplete function allows the user
to choose from options for the gene symbol that is keyed in.
The gene search parameter is not case sensitive (e.g. ERBB2
or erbb2 are both valid entries for gene ErbB2), such that
the system will automatically capitalize user input, to reduce
query error. To obtain the CNV information of an entire chro-
mosome, users are required to specify only the chromosome
number as the query (e.g. chr1), while if the CNV information
of a specified chromosomal region is of interest, the user can
key in the chromosome number along with the start and end-
ing position of the respective region (e.g. 1:10 123–50 123).
Gene-based queries will allow the user to choose from a list
of healthy populations to obtain a CNV frequency compari-
son analysis for the queried gene. Other available information
includes the gene’s CGC annotation, its CNV distribution
across different tissues, and the absolute CN in breast can-
cer cell lines in TWBC and different CCLE and COSMIC cell
lines. A total of 35 055 gene transcripts are integrated into the
database, among which 22 155 unique genes contain overlap-
ping CNVs from healthy, cancer-free individuals. The gain
and loss frequencies of 14 975 genes are available in TWCNV
and ExAC, providing CNV information on∼75727 individu-
als without apparent illness. The TWCNV dataset alone hosts
26 129 unique genes, while 15 673 autosomal protein coding
genes are available in the ExAC dataset.

CNV profile function
To access the CNV profile of a specific cancer, users can select
the cancer type (Supplementary Figure 1b) from the Cancer
tab in the home page (Figure 2). It is designed as a four-level
hierarchy of options from organs, organ sub-sites, primary
histology and sub-histology. The primary site corresponds to
the original site of the tumor. The user is allowed a further
specification of the secondary site. CNVIntegrate consists of
CNV profiles for 70 cancer types spanning 30 different tis-
sues in humans, considering only primary sites and primary
histology, while expanding to 419 cancer subtypes with the
inclusion of secondary sites and secondary histology. Down-
loadable tables embedded with default sorting and filtering
functions are also displayed on the home page so that users
can easily retrieve and download required information in .csv
format.

Analysis function
The web site’s analysis function (Figure 2) allows systematic
comparisons of CNV frequencies from different ethnic popu-
lations using statistical procedures. The analysis function aims
to aid the user in identifying frequent CNV regions in a spe-
cific population through the implementation of a streamlined
workflow. To utilize this function, users are first required to
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choose from a list of reference datasets (at most three datasets;
two from healthy populations and one from cancer patients)
to conduct the comparisons (Supplementary Figure 1c). Sub-
sequently, the function also requires a user-prepared dataset
with CNV information conforming to the CNVIntegrate for-
mat. Analysis results identify genes from the user’s list that
have significant differences in CNV amplification/deletion fre-
quencies between the dataset provided and the user-specified
TWCNV and/or ExAC and/or specified cancer database. The
P-values are generated by Fisher’s test (Supplementary Mate-
rials). Also, a Bonferroni-corrected P-value is reported.

Results
Database interface
CNVIntegrate offers a comprehensive database with com-
piled CNV/CNA data from both healthy people (TWCNV
and ExAC) and cancer patients (TWBC, CCLE and COSMIC)
from multiple populations. The database houses CNA pro-
files for 419 cancer types. It helps users, through two main
functions, the query function and the analysis function, to
identify key genes with significant roles in initiation, pro-
gression and prognosis of cancer, with respect to the part
that CNV plays as a clinical biomarker. The web site com-
municates with the database via object-relational mapping
provided by Django and utilizes SQL language for structured
manipulation of genomic data.

TWCNV: detection of CNVs in the Taiwanese
population and comparison to other populations
The healthy cohort from Taiwan (TWCNV) consists of
476 247 CN alterations identified on autosomal
chromosomes mapped to more than 20 000 genes from

Table 2. Demographic characteristics of the healthy samples from the
Taiwanese cohort

Variables Number Percentage (%)

Gender
Female 8001 50.55
Male 7828 49.45
Total 15 829 100

Age
30 386 2.44
31–40 4124 26.05
41–50 4285 27.07
51–60 4199 26.53
61–70 2835 17.91
Total 15 829 100

Residence
North 4751 30.01
Central 5022 31.73
South 5891 37.22
East 159 1.00
Outlying Islands 6 0.04
Total 15 829 100

Ancestry
Southern Fujian 11 091 70.07
Hakka 1538 9.72
Mixture of Southern Fujian and Hakka 831 5.25
Other regions of China 2312 14.61
Missing 57 0.36
Total 15 829 100

∼16000 volunteers with a mean age of 48.6 years (range 30–
70). Table 2 lists the demographic statistics of the study pop-
ulation. The average mean and median CN segment counts
per individual were found to be 30 and 22, respectively, with
no detected CNVs in 99 samples (Figure 3a) and a maximum
CNV count of 2709 CNVs detected in just one sample (not
shown in the figure). As shown in Figure 3b, 65% of the total
identified CNVswere deletions, while 34%were duplications.
The sizes of the detected distinct CNVs (CNVs with different
start or end positions) ranged from 1.8 kb to 75Mb (mean
size=460.2 kb and median size=172.1 kb; Figure 3c and d).

The overall CNV profile (Figure 4a) displayed less than
5% CNV frequency in most of the CNV segments, with the
highest duplication (20.9%) and deletion (29.0%) frequencies
at the 14q11.2 chromosome location. The genes that encom-
passed the CNVs at this location (OR4Q3, OR4M1, OR4N2,
OR4K3, OR4K2, OR4K5, and OR4K1) belonged to the
olfactory receptor family. Other CNV segments with rela-
tively high frequency (>5%) included the 8p11.22 deletions,
the 15q11.1-q11.2 deletions, the 6p21.32-p21.33 deletions
and the 17q12 duplications. Genes enriched in these regions
mostly belonged to pseudogenes with no known essential
functions. We further compared CNV profiles from TWCNV
with Hapmap. Repeated CNVs were found in the 14q11.2,
15q11.1-q11.2 and 17q12 chromosomal regions, with higher
frequencies in both the TWCNV and the HapMap Asian sam-
ples (Figure 4b). The five regions with higher CNV rates were
also discovered in the genomes of 155 Chinese control indi-
viduals on the SNP 6.0 array platform. In addition to Asian
populations, the genomes of 490 Ashkenazi Jewish control
individuals on the SNP 6.0 array platform were used for com-
parison. The same regions with high CNV frequencies were
still visible.

Example 1: query function applied to ERBB2
The ERBB2 gene is mutated in 14.05% of breast carci-
noma patients, with amplification present in 11.18% (48).
Overwhelming evidence from numerous studies indicates
that amplification or overexpression of ERBB2 disrupts nor-
mal cell control mechanisms and gives rise to aggressive
tumor cells (49). Patients with ERBB2-overexpressing breast
cancer have substantially lower overall survival rates and
shorter disease-free intervals than patients whose cancer does
not overexpress ERBB2 (50). Moreover, overexpression of
ERBB2 leads to increased breast cancer metastasis (51). Here,
we use ERBB2 to demonstrate the query function of CNVIn-
tegrate.

We conducted our query in two steps. First, the CNA pro-
file of breast cancer was selected from the four-level hierarchy
(Supplementary Figure 1b), which listed ERBB2 among the
top five genes (Figure 5a) that exhibits duplication frequency
of 2.06, 2.06 and 16.67% in COSMIC, CCLE and TWBC,
respectively (Figure 5b). The gene symbol was then used as
a query (Supplementary Figure 1a). The CNV frequencies
(amplification and deletion) in TWCNV and ExAC were very
low (Figure 6a), exhibiting neutrality in healthy cohorts. Fur-
thermore, the tissue distribution charts showed that ERBB2
has the most CN duplication events in breast tissue in com-
parison to other tissues (Figure 6c); however, no deletion
events were reported. This was further confirmed by both
COSMIC and CCLE outputs identifying ERBB2 as possessing
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Figure 3. Distribution of the number and length of CNVs across the 15 829 Taiwanese people in TWCNV (a) Distribution of CNV counts in the population.
(b) Distribution of duplication and deletion counts separately in the population. In (a) and (b), the number of individuals (y-axis) were plotted against the
CNV counts (x-axis). (c) Distribution of lengths of the identified distinct CNVs. (d) Partial distribution of lengths of the identified distinct CNVs. In (d), CNV
lengths ranging from 1 to 500 kb were further enlarged from the left figure. In (c) and (d), the unit of CNV lengths was kilobase pairs (kb) on the x-axis,
and the exact CNV counts were shown on the y-axis.

very high CN duplications among patients with breast cancer
(Figure 6b).

These query results of CNVIntegrate conform to the
findings from HER-2 breast cancer research over the
years (52, 53), thereby establishing their reliability. Also,
patients with ERBB2-negative tumors who have received
adjuvant chemotherapy (cyclophosphamide, methotrexate,
5-fluorouracil, and prednisone [CMFP]) have shown a sig-
nificantly greater rate of disease-free survival in response to
therapy than patients withERBB2-positive tumors, indicating
that overexpression of ERBB2 plays a role in chemotherapy
resistance (53). Hence, developing ERBB2-targeting strategies
to improve the therapy of ERBB2-overexpressing breast can-
cer remains a high priority. During the last decade, several
exciting techniques have been developed to target ERBB2.
Although some are still under investigation, many studies
have shown that these ERBB2-targeting techniques not only
inhibit tumor growth, but also lead to chemo-sensitization of
ERBB2-overexpressing cancer cells (53).

Example 2: analysis function applied to lung
adenocarcinoma
Lung adenocarcinoma is the most common form of non-
small cell lung cancer (NSCLC) and accounts for roughly
40% of lung neoplasms (54). Characterizing its genomic pro-
file is crucial as NSCLC is strongly genetically disposed. Lung
adenocarcinomas that are responsive to epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitors possess
EGFRmutations and often increased EGFR CNs (55, 56). By

comparison of the mutant and normal EGFR alleles, a pref-
erential amplification of the mutant allele has been observed
and EGFR overexpression was found to be strongly associated
with this amplification (57). In conjunction with clinical traits
and manifestations, CNVs have recently evolved as promising
biomarkers that could assist in selecting clinical interventions
(58). Supplementary Figure 1c shows a screen shot of the
‘Analysis function’ page with an input dataset (EGFR.csv)
conforming to the required format. The input dataset con-
sisted of a list of genes (∼28000 genes) along with their
gain and loss counts from 542 lung adenocarcinoma patients
that was extracted from this study per se and has originated
from the COSMIC dataset. The analysis function reports
the list of genes with significant differences in CNV ampli-
fication/deletion frequencies between the dataset provided
and the selected control population. By setting a Bonfer-
roni correction threshold of 0.05 (P-value), 3215 and 612
genes were reported with CN gain (Figure 7a) and CN loss
(Figure 7b), respectively, when compared with the TWCNV
dataset. Likewise, for the ExAC dataset, 5955 and 1694
genes were reported with significant differences in CN gain
and loss, respectively (Figure 7). The genetic abnormalities
linked to risk of lung cancer would be better analyzed and
understood if studied in the context of signaling pathways,
rather than focusing on individual factors. Several pathways
with major components have their functions altered in lung
cancer, and these pathways are emerging as having consider-
able importance with regard to targeted therapy. Therefore,
to characterize the biological functions implicated by the
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Figure 4. Frequency plots of CNVs in the TWCNV and HapMap datasets
Red color represents duplication while blue color represents deletion.
The x-axis contains the 22 autosomes, and the y-axis shows the
proportion of samples showing CNVs in the two datasets. (a) Frequency
plot of CNVs in 15 829 Taiwanese individuals. (b) Frequency plot of CNVs
in 87 Asians in the HapMap dataset.

CNV-driven genes, Ingenuity Pathway Analysis (IPA) (59)
was carried out to describe gene–gene interaction networks
and canonical pathways. The genes with significant CN dif-
ferences from both TWCNV and ExAC populations were
isolated (2703 CN gains and 495 CN losses) and fed in IPA
(https://www.qiagenbioinformatics.com/products/ingenuitypa
thway-analysis) to obtain a total of 53 canonical path-
ways that were deemed to be significantly enriched with
CN genes (P < 0.001). A comprehensive overview of the
distribution of CNV genes, from the significant signaling
pathways using 542 lung adenocarcinoma patients, reported
genes that have already been verified as key biomarkers in
lung adenocarcinoma progression such as EGFR, Kras and
MET, which had CN gain frequencies between 22 and 25%
(results not shown). The five pathways with the most sig-
nificant P-values included small cell lung cancer signaling,
molecular mechanisms of cancer, synaptogenesis signaling
pathway, axonal guidance signaling pathway and G-protein
coupled receptor signaling pathway (Table 3). As reported
by IPA, functions such as cell death and survival, cellular
development and cellular growth and proliferation are asso-
ciated with both small cell lung cancer signaling pathway and
molecular mechanisms of cancer pathways. Synaptogenesis
signaling pathway has been reported to be s activated by
synaptic growth factors that are promoted by Protein kinase
Cϵ (PKCϵ) (60), where PKCϵ has been observed to play a role
in the JNK activation in human lung cancer cells (61). Several
semaphorin genes in the axonal guidance signaling pathway

Figure 5. Breast carcinoma profile from the four-level hierarchy query
system (a) Top five genes with the highest population frequency of CNV
duplication or deletion. (b) Population frequency of CNV
duplication/deletion in the CCLE, COSMIC and TWBC datasets.

(e.g. SEMA5A, SEMA6A) has also been identified in previous
studies as potential therapeutic targets for NSCLC patients
(62). Finally, signaling pathways controlled by G-protein cou-
pled receptors promote proliferation, survival, cell migration,
angiogenesis, inflammation and subversion of the immune
system and their overexpression potentially contribute to
the malignant transformation of cells (63). Furthermore,
one major common function implicated by the top signifi-
cant networks is cell survival regulation via AKT signaling,
which has been extensively studied and targeted in lung cancer
therapy (29).
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Figure 6. Query results for ERBB2 gene showing CNV frequencies in both healthy populations and cancer populations (a) CNV frequency/counts of the
ERBB2 gene in the TWCNV (healthy) dataset and CNV frequency of ERBB2 among different populations (healthy) in the ExAC dataset. (b)
Count/frequency of breast cancer samples with CNV in the COSMIC dataset; CN of the ERBB2 gene in CCLE breast cell lines. (c) Duplication and
deletion counts of the ERBB2 gene in different tissues.

Figure 7. Venn diagrams of significant gene counts from the analysis function (a) Significant CN gains (Red) were observed in 2703 genes among lung
adenocarcinoma patients from both TWCNV and ExAC populations. (b) Significant CN losses (Blue) were observed in 495 genes among lung
adenocarcinoma patients from both TWCNV and ExAC populations.

Discussion
CNVIntegrate is a comprehensive CNV and CNA resource
for both healthy and cancer-affected individuals, respectively,
with data gathered from public databases from different eth-
nic populations. While a majority of CNVs/CNAs are benign,
prior studies have verified that they can sometimes drive the
progression of heritable and somatic human diseases such as
cancer, neuropsychiatric disorders and viral infection. One of
the barriers to using the massive amount of accumulated can-
cer genomic information is how to prioritize and interpret the
data on CNVs/CNAs. The effort of linking genetic observa-
tions with relevant clinical information is further complicated

by the heterogeneous and unstructured forms of the available
data. For instance, the CNA data provided by CCLE are either
in CEL format (probe intensity calculations) from Affymetrix
DNA microarray analyses or in unformatted text format
comprising roughly 23 000 pieces of unstructured informa-
tion. For users without bioinformatics proficiency or lacking
experience with sophisticated computational methodologies,
additional technical support is required for data process-
ing before it can be applied in genetic studies. Moreover,
obtaining computational assistance is often not financially
feasible in small to moderate-sized research groups, creat-
ing a methodological barrier in CNV studies (64). These
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Table 3. Top 10 significant pathways of 2703 CN gain genes and 495 CN
loss genes of lung adenocarcinoma patients

Pathway -log P-value Genes count Percentage (%)

Small cell lung
cancer signaling

8.63 31 40

Molecular mech-
anisms of
cancer

7.94 92 23

Synaptogenesis
signaling pathway

7.24 76 23

Axonal guidance
signaling

6.59 103 23

G-protein coupled
receptor signaling

6.25 66 23

Senescence pathway 5.6 64 22
Colorectal can-
cer metastasis
signaling

4.91 58 22

Regulation of
the epithelial-
mesenchymal
transition
pathway

4.42 45 23

G beta gamma
signaling

4.35 34 25

IL-8 signaling 4.06 46 22

are a few of the many reasons why valuable CNV resources
fail to be utilized to their full potential. CNVIntegrate was
developed in an attempt to resolve such issues. It allows the
storage, retrieval and analysis of genomic data in a meaning-
ful and structured manner that assists biomedical researchers
in performing efficient data interpretation. Moreover, it pro-
vides statistically comparable metrics to predict the functional
impact of a CNV/CNA, thereby assisting users in prioritizing
significant causal CNVs for simplified data mining and data
retrieval for future CNV research.

The two healthy population CNV datasets that were
integrated into CNVIntegrate utilize classic, yet different
approaches toward CNV identification. TWCNV was con-
structed from SNP arrays, whereas ExAC utilized harmonized
WES data. Array-based approaches are cost-effective and
reliable methods of large-scale analysis, while WES offers
the ability to detect smaller variations with more accurate
break-point identification due to higher coverage and reso-
lution (65). Despite the rapid advancements pertaining to
various CNV calling algorithms, previous studies raised cross-
platform consistency as a concern, debating the necessity of
platform-specific normalization. Ruderfer et al. conducted
a comparison using a subset of 10 091 individuals from
ExAC that had both WES data and high-quality CNV calls
from genotyping arrays (66) and reported that although
more CNVs were discovered by WES, 78% of longer CNV
regions (defined as regions intersecting with more than 20
target genes) that were detected by arrays overlapped with
exome sequenced CNVs. On average, 83% of the exons
were included in calls from both technologies (67), indicating
reproducible results by both platforms when fortified by
appropriate QC measures. Such inferences about the consis-
tency of cross-platform results were supported by other stud-
ies as well (68). In this study we have utilized more efficient
filtering and more comprehensive assessments of CNVs in
comparison to these prior studies, and therefore, CNVs called

by TWCNV and ExAC do not require further normalization
to avoid the possible introduction of false negatives.

The importance of TWCNV stems from the fact that the
occurrence of CNV frequencies, or lack thereof, among gen-
erally healthy people constitutes an important evidence base
when the clinical impact of such variations is considered (69).
The classification of a variant often relies on its prevalence in
presumably healthy unaffected individuals (70), so as a large
database, with gene-level frequencies from nearly 75 000 indi-
viduals, the data-driven information from TWCNV is critical
for excluding common variants that are less likely to be dele-
terious or pathogenic. Also, when CNV calling results from
TWB arrays were compared to that of three external datasets
(HapMap Asian samples, Chinese control samples on the SNP
6.0 array platform and 490 Ashkenazi Jewish control samples
(Non-Asian) on the SNP 6.0 array platform), the common
CNVs of the 14q11.2, 8p11.22, 15q11.1-q11.2, 6p21.32-
p21.33 and 17q12 chromosomal regions were observed in all
the datasets.

Conclusion
The CNVIntegrate database is the only web-based system that
hosts CNV and CNA data from both healthy populations
and cancer patients and permits input of user data when per-
forming statistical comparisons between CNV frequencies of
multiple populations. The major target audience and expected
users of this database are mainly cancer biology researchers
that rely on an interactive graphical user interface. Through
this effort we have eliminated the need for bioinformatics
proficiency and the technical support that would typically be
required for accessing integrated CNV information. In sum-
mary, CNVIntegrate provides a ready-made dataset that is
structured and interpretable and has an easy query function,
an equally easy download system and an online submission
analysis function.

Supplementary data
Supplementary data are available at Database Online.
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