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Abstract
Screening for potential cancer therapies using existing large datasets of drug perturbations requires expertise and resources not available
to all. This is often a barrier for lab scientists to tap into these valuable resources. To address these issues, one can take advantage of
prior knowledge especially those coded in standard formats such as causal biological networks (CBN). Large datasets can be converted
into appropriate structures, analyzed once and the results made freely available in easy-to-use formats. We used the Library of Integrated
Cellular Signatures to model the cell-specific effect of hundreds of drug treatments on gene expression. These signatures were then used
to predict the effect of the treatments on several CBN using the network perturbation amplitudes analysis. We packaged the pre-computed
scores in a database with an interactive web interface. The intuitive user-friendly interface can be used to query the database for drug
perturbations and quantify their effect on multiple key biological functions in cancer cell lines. In addition to describing the process of building
the database and the interface, we provide a realistic use case to explain how to use and interpret the results. To sum, we pre-computed cancer-
cell-specific perturbation amplitudes of several biological networks and made the output available in a database with an interactive web interface.

Database URL: https://mahshaaban.shinyapps.io/LINPSAPP/

Background
Biological knowledge accumulates in the form of literature,
ontologies, databases and datasets. Assembling knowledge in
computable and programmable formats increases its utility as
they make it easy to communicate (1, 5). Large-scale studies
generate data that can be used to explore and develop novel
hypotheses. Efforts were also made to curate and homogenize
smaller datasets for the same purpose. Integrative analyses
often produce more reliable insights.

Reverse causal reasoning takes advantage of the known
biological concepts and existing datasets (3). In this approach,
high-throughput experimental data are used to generate gene
expression signatures which are integrated into biological net-
works to infer causality (9). Applying these methods is labo-
rious and resource-intensive. This article describes a database
and web interface of pre-computed cancer-cell-specific pertur-
bations scores of hundreds of drugs. Those can be used to
screen for effective cancer therapies and formulate hypotheses
on their mechanisms of action.

Data and Methods
Perturbation gene expression signatures
The Library of Integrated Cellular Signatures (LINCS) is a
library of gene expression profiles of multiple cells under
different types of perturbations, including compounds, gene

overexpression, knockdown or knockouts (7). Multiple cell
lines were profiled for gene expression using the L1000
technology, which only measures the expression of 1000
genes and imputes the expression of the rest from these
measurements. We only included a subset of perturbations
(n = 19500) of drugs with known mechanisms of action
and used these information to classify the drugs into groups
(n = 550) (Table 1). The data were obtained using the Slinky
R package (8).

Differential expression of drug treatments
To determine the effect of drug treatments on gene expression,
we split the expression profiles by the mechanism of action
and cell lines. In each group, treated samples were compared
to samples from the same cell line treated with dimethylsul-
foxide as control. We used Limma to apply the differential
expression and calculate the fold change and P-values for each
gene (Figure 1) (12). Correlation analysis was conducted using
the fold change to generate similarity profiles of the treatments
based on the gene expression changes they produce in each
cell.

Causal biological networks
Causal biological networks (CBN) are set of networks on
cell fate, stress, proliferation and others compiled from the
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Table 1. Description of the data sources.

Cells Perturbations Networks

Desc. Gene expression profiles of cell lines from
different cancer tissues and metadata about
the cell phenotypes.

Control vs. treatment gene expression profiles
of cancer cell lines and metadata about the
treatments.

Two-layer CBN of cellular processes.

N Example (N) Example (N) Example

Content Tissue 12 Breast/Skin MOA 530 NSAID/Anti-ER Family 5 IPN/CPR
Cell 70 MCF7/A375 Drug 1938 Asprin/Tamoxifen Model 8 Apoptosis

Source LINCS (7) CBN (1)

scientific literature (1). The networks are encoded and com-
piled in the biological expression language (BEL) (5). The cur-
rent version of the database contains eight different networks
belonging to five different families (Table 1). Those were
obtained and preprocessed using the NPAModels package.

Scoring the networks with expression signature
Motivation
Here, we assume that an entity’s function in a biological
pathway (e.g. the activity of a given transcription factor) is
reflected in the expression of the genes downstream. We can
construct a network of two layers to describe this pathway.
First, the functional layer would encode the causal relations
between the entities of interest. This can be coded manually
or extracted from the literature. The second is a transcrip-
tion layer with all the nodes downstream from each node in
the backbone. NPA models the changes of perturbation in the
nodes of a biological network as the changes in expression of
their known downstream nodes (Figure 1) (9). This analysis
was applied using an R package with the same name (10).

Model (reproduced from [Martin et al., 2019])
Expression data are used to compute scores for the net-
work nodes based on constraint optimization. This problem
is solved analytically using matrix multiplication. When the
transcription data reflect the perturbation of the functional
layer, all differential values should be close to each other
(smooth) and equal to the observed fold change β in the tran-
script layer (V0). Differential values are calculated by solving:

minf∈l2(V)∑x→y
(f(x)−σ(x→ y).f(y))2

where σ(x→ y) denotes the sign of the edge x→ y in the
network such that

f
∣∣∣
V0

= β

The NPA score is computed by summing the results over
the edges of the functional layer

NPA=
1
|E|

∑
e in E

(f(e0)+σ(e)f(e1))
2

where E is the set of its edges and |E| is its size, f is the solution
of the constrained problem, and e0 and e1 denote the start and
the end of the edge e.

Interpretation
The perturbation amplitude of a network (NPA) is a posi-
tive number that describes the degree of treatment-induced

Figure 1. Description of the workflow. The workflow to build the
database consists of three main steps. First, modeling the effect of the
drug treatments on individual genes in every cell line. Differential
expression analysis was applied using Limma to compare the gene
expression between the treatment and control conditions. Second,
scoring the fold change and P -values from the differential expression to
calculate the network perturbation amplitudes (NPA) of the drugs on each
network (NPA) and each node (nodes contributions). The sum of the NPA
for a group of networks is known as the biological impact factor (BIF).
Finally, the BIF, NPA and nodes contributions were packaged in a
database file and metadata of the cell lines, drugs and networks.

perturbation or activity of the network. Confidence inter-
val (CI) is calculated around the score based on the variance
in the differential expression values. CI should not contain
zero for significantly perturbed networks. Leading nodes are
the functional layer nodes with differential values that con-
tribute the most to the NPA scores (>80%). Finally, when
applying the analysis to multiple networks, the BIF is the
weighted sum (0 to 1) of the significantly perturbed network
scores.

Accompanying statistics
Three statistics accompany each score. First, a CI based on the
biological variability propagated from the uncertainty of the
differential gene expression values. A CI that does not con-
tain zero is considered significant. The second and third are
generated by reshuffling the edges in the functional and the
transcriptional layers to create null distributions. NPA val-
ues above the 95% quantile of the null distribution generated
from each layer are considered significant.

Implementation
Database description
The differential expression output and the network perturba-
tion analysis were stored as tables in an SQLite database file.
The database was built using the DBI and dbplyr R packages
(14, 15). These tables are rbif, bif, npa and nodes. Each table
is indexed by the tissue and cell line, perturbation type and
name, and network family and model. The coefficients from
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Figure 2. Description of the database and the interface. The interface includes input panels to query the database, and the output is sent back to the
interface. The query is constructed by selecting the cell lines from one or more tissues, the drug perturbations grouped by mechanism of action, and the
network models of interest. The output of the database query is three main tables: the BIF, NPA and code contributions (NODES). The output is returned
in tabular and graphical formats that can be searched, filtered or exported.

the BIF and the NPA analyses are stored in the corresponding
tables with the related CIs. In addition, two metadata tables
were added to keep track of the data and analysis output. per-
turbations contain information on the cell lines and the drugs
used as treatment. models contain information of the CBN
and the graph object.

Web interface description
The web interface to the database file was designed using
Shiny (4). The application is divided into two parts for the
inputs and the outputs (Figure 2). The input panels are used
to specify the Tissue/Cell Line, Network Family/Model, Drug
type (mechanism of action) and Name of interest. A query
is interactively generated on the back end and sent to the
database. The return is capture in tabular and graphic for-
mats in the output tabs (Box 1). The first two tabs (RBIF and
BIF) show the relative and the absolute cell-specific impact of
a group of drugs in the selective network. NPA and NODES
show the impact of the drugs on a network and individual
nodes in the network, respectively. GRAPH can be used to
explore further the structure of the network and the effect
of individual drug perturbations. SIMILARITY between the
perturbations was based on the fold change in response to
drug treatments in a given cell line.

Functions for searching, filtering and exporting the out-
put are built into the interface. Tables and figures were built
as interactive widgets using DT, Plotly and visNetwork to

refine and export the output in a publication-ready format
(2, 13, 16). In addition, a DOWNLOAD tab was added to
enable downloading the individual tables or the full database
in text format.

The database is designed and optimized for search. Users
can screen for a large numbers of drugs, models or cell lines
and evaluate their significance using the relative biological
impact factor (RBIF) output tabs. Next, the other output tabs
can be used to refine the selection and produce publication-
ready figures and tables for the items of interest. In addition,
the interactive nature of the graphs and the tables allows for
remaking the output and refining them to fit multiple use
cases. Finally, the output, as well as the full database, can
be exported to be explored or analyzed elsewhere.

Source code and Availability
The analysis, scoring and packaging was conducted mainly
in R and using Bioconductor packages (11, 6). The soft-
ware environment was packaged into a Docker image and
made available at https://hub.docker.com/r/bcmslab/linps.
The source code to build this image, the database and the
web application is open source (GPL-3) and is available at
https://github.com/BCMSLab/LINPS and https://github.com/
BCMSLab/LINPSAPP. The interface can be accessed locally
through a Shiny Server docker image (https://hub.docker.
com/r/bcmslab/linpsapp) or online (at https://bcmslab.
shinyapps.io/LINPSAPP/).
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Use case
Motivation: tyrosine kinase inhibitors arrest the cell
cycle of skin cancer cells
Tyrosine kinase inhibitors target the Abelson (Abl)-Bcr kinase,
which is a chimeric oncogene of the Abl gene at chromosome
9, and the Bcr gene at chromosome 22 common in the devel-
opment of chronic myelogenous leukemia. The first of those

Box 1. Glossary

Input panels

• Cell
– Tissue: the tissue name of the cell lines (e.g. Skin, Lung,
Kidney, Liver, etc.)

– Cell line: the official name of the cell line (e.g. A375, A54,
HA1E, HEPG2, etc.)

• Network
– Family: networks are grouped into categories such as
Cell Proliferation (CPR), Inflammatory Process (IPN), etc.

– Model: the name of the network (e.g. Cell Cycle, Epithe-
lial Innate Immune Activation, etc.)

• Perturbation
– Type: the type of perturbations or mechanisms of
action (e.g. Abelson kinase inhibitor, 5’ adenosine
monophosphate-activated protein kinase activator, etc.)

– Name: the name of the particular drug (e.g. Imatinin,
bosutinib, polypyrimidine tract-binding protein 1, etc.)

Output tabs

• RBIF: Relative Biological Impact Factor
• BIF: Biological Impact Factor
• NPA: Network Perturbation Amplitudes
• NODES: the nodes that constitutes the network model
• GRAPH: a graph representation of the network model
• SIMILARITY: a similarity measure between perturbations

based on cell-specific gene expression changes
• DOWNLOAD: download the analysis output or the full

database

drugs to be developed was Imatinib. Other drugs followed to
overcome the Imatinib resistance and limitations. Secondary
and complementary mechanisms of action were reported to
benefit patients with other conditions. In this use case, we
focused on the Abl tyrosine kinase inhibitors and their poten-
tial mechanism of action in cancer. We studied the effect of
the treatment on biological pathways and in cellular contexts
other than their previously identified targets. Our interface
was able at once to compare and contrast multiple drugs and
to show in detail the possible pathway and cellular context of
the significant effects.

Choosing cells, networks and drugs inputs
We first used the web interface to filter for the cell lines that
are responsive to Abl inhibitors through the RBIF output (not
shown). RBIF showed the relative effect of every perturbation
on the included networks. We compared and contrasted sev-
eral permutations of the drugs, cell lines and network inputs.
The output suggested a potential effect of these inhibitors on
the CPR networks in five cell lines. The skin cancer cell line
‘A375’ and the CPR ‘cell cycle’ network were further explored
(Figure 3).

Interpreting impact factors, perturbation
amplitudes and node contributions
The BIF shows the impact of the drugs that share a mechanism
of action on a family of biological networks (cell cycle and Jak
stat) in different cell lines. In this case, two drugs in particu-
lar (nilotinib and AT-9283), a second-generation Ab inhibitor
and a drug that targets Abl as well other kinases, respectively
(Figure 4A). The two drugs perturb the cell cycle network
(AT-9283, NPA > 0.15 ± 0.01 and nilotinib, NPA > 0.05
± 0.005) (Figure 4B). This indicates that a sizable fraction
of the nodes in the cell cycle network was perturbed (acti-
vated or inhibited) in response to treatment with these drugs.
The effect was strongest in the A375 skin cancer cell line but
was also observed in other cell lines. To further investigate
the possible pathways for this significant effect, we looked
at the nodes’ contributions. Notably, the retinoblastoma 1
(RB1) and like 2 (RBL2) protein activity were the highest
contributors (Figure 4C).

Figure 3. The web interface input panel. The interface contains a main input panel which is divided into three parts. (A) Cell is to choose the tissue and
cellular context where the drug perturbations would be shown. (B) Perturbation allows for searching and selecting the type (mechanism of action) and
name of the drugs of interest. (C) Network lists the available biological networks to be scored classified into multiple families. Multiple choices, resting
and selecting a few entries at random are allowed. In this use case, five ‘Abl kinase inhibitors’ (‘AT-9283, imatinib, nilotinib, tozasertib and ZM-306 416’)
were selected to check whether they perturb the cell proliferation (‘CPR’) through the ‘cell cycle’ and ‘Jak-Stat’ biological networks in five (‘A375, A549,
PC3, HEPG2 and MCF7’) cancer cell lines.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab048/6355632 by guest on 08 M

ay 2024



Database, Vol. 2021, Article ID baab048 5

Figure 4. The web interface graphical output. The output of the ‘Abl kinase inhibitors’ on the CPR networks in five cancer cell lines (as selected in
Figure 3). (A) BIF of every drug on the CPR networks stratified by the cell line. (B) NPA of every drug on the ‘cell cycle’ biological network in A375. (C)
The relative contribution of each node (top five) in the cell cycle network in response to the drug perturbations in A375.

Analyzing the perturbed network
High contributions indicate a significant role for these pro-
teins in perturbing the cell cycle. To get an overview of the
treatment effect of this pathway, we used the graphic repre-
sentation capabilities in the interface to specifically overlay
the perturbations caused by AT-9283 on the cell cycle network
(Figure 5A). It turned out that most of the network nodes were
turned off in response to the drug treatment, possibly through
the action on a handful of key proteins (Figure 5B). The acti-
vation of RB1 resulted in the repression of the activity of
three of the E2F Transcription Factor family proteins, which
themselves were downregulated by AT-9283 (Figure 5C). The
graph interface makes viewing a large number of interac-
tions possible. In addition, overlying the computed scores
in the form of node size and color increases the visibility of
significant trends. A clustering algorithm (fast greedy) was
also implemented to partition the network into connected
modules.

RB1 is a negative regulator of the cell cycle that directly
binds to the E2F transcription factor and represses its tran-
scriptional activity. Phosphorylation/activation of RB1 by
some cyclin-dependent kinases releases E2F from the RB1/E2F
complex and consequently promotes the transcriptional acti-
vation of target genes necessary for cell cycle progression. It is
possible also that RB1 works indirectly through RBL2 and
MYC, which was induced by the same drug treatment, to
produce a similar effect.

Remarks on the interpretation
• The causal biological network encodes the entities in the
network (nodes) and the directed relation between them
(edges). Those were either identifiedmanually or extracted
from the literature and did not change with the treatment
itself, but rather

• The NPA method uses the gene expression of all the
nodes connected to a specific entity to infer its function
(activation or inhibition).

• Considering the two pieces of information, we could
determine that a particular node is activated, inhibited or

unchanged to produce a specific function that is encoded
a priory.

• Taken together, we could conclude that the cancer cell
line’s cell cycle of A375 cells might be arrested in response
to AT-9283 treatment through the negative regulation
of RB1 on the E2F transcription factor. This effect was
present to a lesser extent with other Abl inhibitors and in
other cancer cell lines.

Limitations and future directions
This analysis is only valid insofar as the underlying data
(gene expression and causal links) reflects the true biology
of the conditions and biological functions. The expression
of most genes was only inferred from the measurement of
landmark genes and the causal networks were manually com-
piled from the literature; therefore, it is possible to miss
known or recently identified interactions. In both cases, due
to methodological limitations, the underlying biology is never
completely represented in the form of graphs or expression
profiles.

The database contains pre-computed scores of existing
networks and perturbations. It is not possible to create or cus-
tomize the scores to other networks or datasets through the
web interface. Due to resource limitations, the relative impact
of the drugs was restricted to other drugs in the same group
(mechanism of action) and not to all other drugs. Similarly,
we did not include the dose or period of treatment in the dif-
ferential expression model. Finally, we computed the scores
for cell lines separately due to the large size of the datasets.

In future releases, we plan to expand the database to
include more perturbations and biological network models.
LINCS datasets comprise other drug and ligand treatments
as well as genetic perturbations (knockdowns, knockouts
and overexpression). Biological networks such as those of
autophagy, DNA damage and repair will also be scored and
added to the database. Furthermore, in the current version
of the database, we did not consider the dose and treatment
period. It would be useful to determine the precise dose and
duration of treatment that produce the desired effect. Finally,
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Figure 5. Graph representation of the network perturbations. (A) Input panel to search and select from the main inputs for individual perturbations to
visualize on the network graph. (B) The ‘cell cycle’ network shown as a graph overlaid with the effect of ‘AT-9283’ in the ‘A375’ cell line. (C) The same
with the highlighted cluster. Nodes are colored by the direction of regulation in response to the drug treatment (red, up, and green, down-regulated).
Edges are colored by regulation direction between the nodes (red, increase; and green, decrease).

more network models can be added either from existing CBN
or by converting protein–protein interaction databases into
the BEL.
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