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Abstract
Protein–nucleic acid complexes play essential roles in regulating transcription, translation, DNA replication, repair and recombination, RNA
processing and translocation. Site-directed mutagenesis has been extremely useful in understanding the principles of protein–DNA and protein–
RNA interactions, and experimentally determinedmutagenesis data are prerequisites for designing effective algorithms for predicting the binding
affinity change upon mutation. However, a vital challenge in this area is the lack of sufficient public experimentally recognized mutation data,
which leads to difficulties in developing computational prediction methods. In this article, we present Nabe, an integrated database of amino
acid mutations and their effects on the binding free energy in protein–DNA and protein–RNA interactions for which binding affinities have
been experimentally determined. Compared with existing databases and data sets, Nabe is the largest protein–nucleic acid mutation database,
containing 2506 mutations in 473 protein–DNA and protein–RNA complexes, and of that 1751 are alanine mutations in 405 protein–nucleic acid
complexes. For researchers to conveniently utilize the data, Nabe assembles protein–DNA and protein–RNA benchmark databases by adopting
the data-processing procedures in the majority of models. To further facilitate users to query data, Nabe provides a searchable and graphical
web page.
Database URL: http://nabe.denglab.org

Introduction
Protein–nucleic acid interactions play vital roles in many
biological cell activities, including transcription, translation,
DNA repair, metabolic regulation and immune recognition
(1, 2). Given the paramount impact that protein–nucleic acid
interactions have on cellular processes, the single amino acid
substitution that happened in the proteins may cause severe
perturbations or complete loss of function, potentially lead-
ing to diseases, like cancers (3) or neurodegenerative diseases.
For example, the L351P mutation is identified in the RNA-
binding motif protein 28, causing alopecia neurologic defects
and endocrinopathy syndrome. Mutation D169G in the trans-
active response (TAR) DNA-binding protein causes the aber-
rant function of the protein, leading to amyotrophic lateral
sclerosis type 10 (4). Therefore, determining functionally
crucial missense mutations may provide a clue to interpret-
ing the pathology at the molecular level and expediting the
development of their treatment and prevention.

With a huge stride made in biological technology, one feasi-
ble approach to quantify the influence of a mutant on protein–
nucleic acid interactions is to experimentally determine the
binding free energy change using site-directed mutagenesis
methods, such as surface plasmon resonance (5), isothermal
titration calorimetry (6) and fluorescence resonance energy

transfer (FRET) (7). However, these biological experiments
are so time-consuming and costly that plenty of researchers
turn to computational methods for novel insights. Peng et al.
developed SAMPDI (8) to predict the protein–DNA bind-
ing affinity change about single amino acid alterations based
on modified Molecular Mechanics/Poisson-Boltzmann Sur-
face Area (MM/PBSA) along with supplementary knowledge-
based terms derived from the physicochemical attributes of
protein–DNA complexes. Pires et al. presented a scalable
method, named mCSM-NA (9), to predict and identify the
effect of a single-point missense mutation on protein–nucleic
acid binding, relying on graph-based signatures. Zhang et al.
proposed PremPDI (10), a model based onmolecular mechan-
ics force fields and fast side-chain optimization algorithms
to evaluate the quantitative change in protein–DNA binding
affinity upon single-sequence variants. Although these three
methods have attained far-reaching impact on the field of ana-
lyzing variations in the protein–nucleic acid complexes, there
are still obstacles that hinder further advancement, and the
dominant handicap is the deficiency of data quality and quan-
tity. For one thing, the data quality in the methods cannot
be guaranteed because the data mainly come from separated
references and the ProNIT database (11, 12), an outdated
thermodynamic database of protein–nucleic acid interactions
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constructed by Prabakaran et al., and could not meet current
research requirement. For another thing, the average data vol-
ume at present is around 200 mutations and too insufficient
to keep up with the trend of artificial intelligence. The inad-
equacy of data makes it arduous to apply machine learning
to this realm and perform its fabulous power. Consequently,
in view of the above two concerns, it is urgent to develop a
comprehensive and up-to-date database for the single amino
acid substitutions in protein–nucleic acid complexes.

In addition, among total variations, residues that mutate
into alanine have been given special attention because of their
contribution to pinpointing hot spots in the protein–nucleic
acid complexes. Hot spots refer to a small portion of residues
that devote most of the binding free energy in the interaction
(13). Through the alanine scanning mutagenic experiments
(14), researchers are able to accurately tag hot spots and
further probe deeper about the priority of them in cellular pro-
gressions. For example, during the formation of tumors, the
p53 protein, a transcription factor, serves a necessary function
as a suppressor (15). Thus, the point mutations in the p53 pro-
tein would not only invalidate tumor suppressor functions in
cell cycle arrest and apoptosis but also confer novel oncogenic
functions (16). More importantly, amidst all the recognized
cancer-related p53 mutations, over 80% are located within
the core domain, where six hot spots (Arg-175, Gly-245, Arg-
248, Arg-249, Arg-273 and Arg-282) account for about 40%
of whole mutations (17), indicating that hot spot mutp53
proteins, such as mutp53GOFs, are more likely to induce
insensitivity to drugs, resistance to apoptosis, enhanced cell
proliferation and/or migration, increased chromosomal insta-
bility and non-homologous recombination. Except for this
example, emerging evidences have shown that hot spots are
essential in the molecular recognition mechanisms and regu-
lation and also form a solid foundation for bioengineering,
such as protein engineering and drug design (18).

Thus, ample researchers are attracted to utilize computa-
tional methods for the prediction of hot spots complementing
for the expensive cost of experimental methods. Xiaolei Zhu
et al. built a knowledge-based model named iPNHOT (19)
to predict the hot spots on protein–nucleic acid interfaces
with a two-step feature selection strategy. For protein–DNA
complexes, Yuliang Pan et al. proposed PreHots (20) for
predicting hot spots, which adopts an ensemble stacking
classifier with 19 features selected by a sequential back-
ward feature selection algorithm. Zhang et al. developed a
feature-based method, termed PrPDH (21), to predict the hot
spots in protein–DNA binding interfaces, employing SVM
based on the 10 optimal features selected by random forests
(VSURF) algorithm. Ke Li et al. presented a computational
model, namely sxPDH (22), based on supervised isometric
feature mapping (S-ISOMAP) and extreme gradient boost-
ing (XGBoost) for more accurate predictions. Moreover, for
the protein–RNA complexes, Zhang et al. introduced a novel
sequence-based method, called SPHot (23), that integrates an
ensemble classifier to predict hot spots. Yuliang Pan et al. cre-
ated the PrabHot (24) model that uses the Boruta algorithm to
select features and the ensemble vote classifier (EVC), includ-
ing GTB, SVM and ERT classifiers, to give the eventual results
of the hot spot prediction. Deng et al. provided the XGBPRH
(25) method based on an XGBoost algorithm and an opti-
mal set of properties extracted by a two-step feature selection
algorithm, containing Max-Relevance and Min-Redundancy

(mRMR) and sequential forward feature selection algorithm.
Although the researchers have achieved some accomplish-
ments in this area, compared with the matured prediction
of hot spots on protein–protein interfaces (26–28), the study
of hot spots in protein–nucleic acid is still at the develop-
ing stage in terms of the amount of related papers and the
application of state-of-art machine learning methods. The pri-
mary reason why the exploring progress of protein–nucleic
acid hot spots falls behind that of protein–protein hot spots
is the paucity of organized alanine mutagenic databases for
protein–nucleic acid complexes. For instance, there are vari-
ous protein–protein thermodynamic hot spot databases, such
as Alanine Scanning Energetics Database (29), Binding Inter-
face Database (30), SKEMPI database (31), Assi et al.‘s
Ab+ data (32) and Petukh et al.’s Alexov_sDB (33). How-
ever, currently, there is only a handful of protein–nucleic
acid hot spot databases, like the database of alanine muta-
genized protein–nucleic acid interactions (dbAMEPNI) (34)
constructed by Ling Liu et al., which contains limited data and
stopped updating in 2017. Moreover, the data of hot spots
face ever severe issues mentioned in the mutants of protein–
nucleic acids. In terms of data quantity, the data collection
range of hot spots is relatively narrow because the scope is
limited to alanine mutation. As for the data quality, apart
from the problem of outdated data, each method has a sep-
arate data set and uses inconsistent data format, as well as
the data-processing procedures. Accordingly, it is imperative
to methodically organize the alanine mutant protein–nucleic
acid data.

In this article, we present a systematic database,
the protein–nucleic acid binding energy database (Nabe
Database), to address the aforementioned data plight encoun-
tered in the field of protein and nucleic acid mutation. Nabe
database is an energetic database of amino acid mutations in
protein–nucleic acid binding interfaces and centers on the hot
spot data, offering independent subsets. With respect to data
volume, Nabe is the largest protein–nucleic acid mutation
database until now, containing more than 2500 mutations in
more than 470 protein–DNA and protein–RNA complexes,
supplemented with experimental conditions, literature, struc-
tural and functional information, and links to other databases
for protein sequence, structure, and interaction network. Fur-
thermore, in regard to data quality, Nabe has amassed entire
mutation data since 2020, ensuring that the data within the
database is up to date and unifies the data format with that
used by the majority of methods. In order for researchers to
relatively fairly compare the performance between their meth-
ods and other advanced methods on the identical data set,
Nabe assembles protein–DNA and protein–RNA benchmark
databases through adopting the data-processing procedures
in most models. To further facilitate users to query data,
Nabe provides a searchable and graphical web page, which
is available at http://nabe.denglab.org.

Results and discussion
Data acquisition and analysis
In the current version, 336 protein–DNA and 137 protein–
RNA complexes were collected for the Nabe database by the
integration of the Protein Data Bank (PDB) entries of the
protein–nucleic acid in the PDB database with over 500 cor-
responding papers for a total of 2506 mutants. Due to the
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Figure 1. Statistics of the Nabe database. (A) Alanine mutation percentage chart. (B) The ratio of DNA to RNA in alanine mutation.

disparate experimental environments and multiple binding
affinity measurement methods, the same mutant has several
unequal ∆∆G values and that was also recorded in the Nabe
database. Each such record is differentiated by different tem-
perature value or reference id and the experimental details
could be found through linked references. As illustrated in
Figure 1A, among the 2506 mutants, there are 755 other
mutants and 1751 alanine mutations, accounting for more
than two-thirds of the total. These high proportion of alanine
mutations are aimed to pinpoint hot spots in protein–nucleic
acid binding interfaces and further accelerate the research-
ing progress of protein–nucleic acid interaction. Additionally,
from Figure 1B, the whole alanine variants are from 405
protein–nucleic acid complexes, of which 275 are protein–
DNA complexes (containing 1165 alanine variants in DNA)
and 130 are protein–RNA complexes (including 586 alanine
variants in RNA).

Taking into account the standard definition of hot spots
in the vast majority of the protein–nucleic acid hot spot pre-
diction literature, we define the residues where ∆∆G value is
more than 1.0 kcal/mol as hot spots. Thus, in the total 1751
alanine variants, there are 650 hot spots and 1101 non-hot
spots as demonstrated in Figure 2. In Figure 2, we sort and
number the mutants in descending order according to their
∆∆G value. We divide the whole figure into two parts with
the definition of hot spots.

We also classify these 650 hot spots into two types: 385
hot spots related to DNA and 265 hot spots associated with
RNA, which are derived from a total of 232 protein–nucleic
acid complexes, including 144 protein–DNA complexes and
88 protein–RNA complexes. Moreover, we observe the amino
acid distribution in the hot residues, which is depicted in
Figure 3. In Figure 3, the x-axis represents the abbreviations
of 19 amino acids except alanine, and the y-axis represents
the number of hot residues, and the DNA/RNA hot residues
are counted, respectively. Notably, the top three amino acid
residues most possibly to be hot spots are arginine (R), lysine
(K) and tyrosine (Y). The analysis of the amino acid compo-
sition in hot spots illustrates a clear preference for lysine (K)
and arginine (R) with a sum occurrence of nearly 40% of the
whole.

Figure 2. The ∆∆G range of hot spots (red, ∆∆G>1.0 kcal/mol) and
non-hot spots (yellow, ∆∆G<1.0 kcal/mol) is indicated. The section
where ∆∆G is less than 0 is excluded in the picture.

Figure 3. Distribution map of amino acid residues in hot spots.
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In addition to the original data, we also perform the
data-processing procedures mentioned in the ‘Materials and
methods’ to gain two benchmark databases for DNA and
RNA, respectively. The DNA benchmark subset encompasses
664 alanine mutants from 160 protein–DNA complexes, con-
taining 254 hot spots and 410 non-hot spots. The RNA
benchmark subset consists of 400 alanine mutations from 90
protein–RNA complexes, including 180 hot spots and 220
non-hot spots with the ratio close to 1:1. The two benchmark
data sets are currently the largest collections under the same
data-processing method. Specialists who focus on the predic-
tion of hot spots in protein–nucleic acids are capable of using
the benchmark databases for trainingmodels directly and then
deliver impartial outcomes under the same standard data sets.

Comparison with existing databases
In order to further verify the comprehensiveness of the Nabe
database, we select present-day databases and data sets
gleaned from multifarious models for comparison. For a clear
visualization of the comparison, we separate the database and
the data sets and further subdivide the data sets into two
sections according to their methods’ focus. Table 1 mani-
fests the comparison between the Nabe database and other
databases in the amount of mutation data and the timeli-
ness of data. The ‘Year’ column in the Table 1 refers to the
time when the database was last updated. As revealed in
Table 1, the mutation data of the Nabe database is more than
four times that of dbAMEPNI and almost twice that of the
ProNIT database. Besides, the complexes stored in the Nabe
database exceed the sum of the complexes in the other two
databases. Overall, the Nabe database is the currently largest

database of amino acid mutagenic effects for protein–nucleic
acid interactions.

For those data sets, because the data sets of several methods
insert novel data collected by themselves that do not appear
in the above two databases, we divide this part of the data
sets into an independent category. For the sake of assuring
the timeliness of the data, we only opt for methods in the
past 3 years. Besides, the SAMPDI, PremPDI and mCSM-NA
methods are aimed to examine the impact of all amino acid
mutations on protein–nucleic acid interactions (as illustrated
in Table 2), while the remaining other methods only fixate
on alanine mutations and hot spots (as shown in Table 3).
Therefore, we further refine the data sets into the following
two tables. For each table, to reach a reasonable standard, we
add an extra column ‘Type’ to distinguish whether the part-
ner that the methods concentrate on is DNA or RNA. Table 2
proves that the data in the Nabe database is more than seven
times that of other data sets, regardless of whether the partner
is DNA or the total of DNA and RNA. That again confirms
the fact that Nabe is the database with the most extensive data
compilation.

In Table 3, on the grounds that distinct models have slight
differences in the way data is processed, we uniformly take
unprocessed raw data for comparison. Whether the type is
DNA or RNA, the data in the Nabe database is nearly double
the data in the listed data sets. Apart from comparing with
the row data, we also select several data sets with the same
data-processing method for comparison. For the protein–
DNA complexes, PrPDH and sxPDH use the same benchmark
data set with 214 mutations and 64 complexes, and PreHots
obtains a benchmark data set with 260 mutations and 89

Table 1. Comparison with other thermodynamic protein–nucleic acid databases

Name Mutations Complexes Year Reference(s)

ProNIT 1411 158 2005 11, 12
dbAMEPNI 577 152 2017 34
Nabe 2506 473 2020 This article

Table 2. The comparison with the data sets extracted from methods of predicting the changes in protein–nucleic acid binding affinity caused by amino
acid mutations

Name Type Mutations Complexes Year Reference

SAMPDI DNA 105 13 2018 (8)
PremPDI DNA 219 49 2018 (10)
Nabe DNA 1721 336 2020 This article
mCSM-NA DNA/RNA 331 38 2017 (9)
Nabe DNA/RNA 2506 473 2020 This article

Table 3. The comparison with the original data sets without data processing extracted from methods of predicting protein–nucleic acid hot spots

Name Type Mutations Complexes Year Reference

PreHots DNA 660 162 2020 (20)
PrPDH DNA 414 108 2020 (21)
sxPDH DNA 414 108 2020 (22)
Nabe DNA 1165 275 2020 This article
SPHot RNA 350 63 2019 (23)
PrabHot RNA 350 63 2017 (24)
XGBPRH RNA 350 63 2019 (25)
Nabe RNA 586 130 2020 This article
iPNHOT DNA/RNA 417 137 2020 (19)
Nabe DNA/RNA 1751 405 2020 This article
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Figure 4. User interface of the Nabe database. (A) The Home page with a quick search box. (B) The Browse web page. (C) The mutants page of a
protein–nucleic acid complex. (D) The detail page of a protein–nucleic acid complex. (E) The 3D model of a protein–nucleic acid complex. (F) The Submit
web page.

complexes. However, Nabe provides a protein–DNA bench-
mark database with 664mutations and 160 complexes, which
is near twice the largest of the two benchmark data sets. For
the protein–RNA complexes, the three listed data sets all use
the same benchmark database generated by PrabHot with 209
mutations and 47 complexes. Nevertheless, the RNA bench-
mark data set in the Nabe database is approximately twice
the PrabHot’s benchmark data set. In conclusion, the Nabe
database is currently the largest database for the research of
the hot spots in the protein–nucleic acid complexes and the

mutagenic impact on the protein–nucleic acid interactions. It
is worth noting that Nabe will be beneficial in improving the
functionality and accuracy of existing prediction methods.

Website interface
The Nabe database provides a variety of web-based inter-
faces and graphical visualizations to conveniently search and
analyze protein–nucleic acid interaction data in databases
(Figure 4). At the ‘Home’ page (Figure 4A), users are able to
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Figure 5. Flowchart describing data collection, workflow and applications of Nabe database.

type keywords (e.g. aspartyl-tRNA synthetase), PDB/Uniprot
codes (e.g. 1ASY / P04802) or gene names (e.g. DPS1), etc.
in the search box to query the results. The server will return
the result of the matched fuzzy query information, including
the PDB ID, protein name, Uniprot ID, gene name and organ-
ism, and the user can select one of the complexes to view the
mutagenized data.

On the ‘Browse’ page (Figure 4B), users could straight-
forwardly view all the residue information in the database
or separately classified protein–DNA/protein–RNA data. The
‘Browse’ page displays the mutagenesis experiment informa-
tion of each residue, including temp, Kd, ∆G, ∆∆G and
reference. There is also a quick search window at the upper
right corner for users to retrieve the needed residue items
For each PDB entry, users would scrutinize entire variants
in the mutants page (Figure 4C) and also look through
detailed information about proteins and binding nucleic acids
(Figure 4D), including uniprot id, protein name, organism,
gene name, binding site, gene ontology IDs, pubmed id, inter-
pro domain, interaction (string) and eggnog. In order to
obviously uncover the features of the data, the Nabe database
is equipped with 3D models of the protein–nucleic acid com-
plexes (Figure 4E), listing the ∆∆G score for each residue at
the bottom and providing an interactive operation that allows
the mutated data to be more closely integrated with the visu-
alization. We also provide users with a tree view format to
choose.

The Nabe database also holds a ‘Submit’ page (Figure 4F)
that encourages users to submit novel data to the database and
welcomes more scientists to engage in the protein–nucleic acid
field to form a more prosperous community. At the ‘Submit’
page, users would fill in the form about the new PDB entry
and the corresponding mutants. Once verified, the submit-
ted data will be added to the Nabe database. We will send a
confirmation email to the users’ mailboxes.

Through the ‘Download’ page, users have access to all pro-
vided mutagenized data files. On this page, four data sets
are listed, including the whole mutagenesis data, the alanine
mutagenesis data and the two DNA and RNA benchmark
data sets. Information about the data format and its explana-
tion are also specified under each data set. Besides, with the
supplementary benchmark data sets, scientists will save con-
siderable time dealing with data and throw themselves into
the model building and optimization.

The ‘Tutorial’ page provides a tutorial of the operation
available in the Nabe database and a meticulous description
of each action. Moreover, there are detailed API usage instruc-
tions on the page. TheNabe API could be accessedwith simple
HTTP requests from any tool or programming language and
allows users to retrieve a filtered list of mutants using the
json format. Users may also use advanced functions of adding
parameters to the requested query string to ignore irrelevant
data. The ‘About’ page is also constructed, supplying a con-
cise introduction and contact information. Overall, the Nabe
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website possesses uncomplicated operations and delightful
interfaces for users at any technical level to seek out and utilize
protein–nucleic acid mutated data.

Conclusion
The current Nabe database version contains 336 protein–
DNA and 137 protein–RNA complexes with a total of 2506
mutations, of which 1751 mutations are favorable for hot
spot prediction in the protein–nucleic acid interfaces. The
Nabe database is presently the largest and newest protein–
nucleic acid mutations and hot spot database. The two bench-
mark data sets are also provided in the Nabe for handy usage.
Besides, Nabe divides data in accordance with the category of
the research focus and the type of protein–nucleic acid com-
plexes to facilitate users to quickly locate the information they
need. The thorough data accumulated in the Nabe database
would definitely pave the way to promoting the prosperity of
the field of protein–nucleic acid interaction.

In the future, we will continuously expand the database
every 6 months. Our next step will be toward attaching
the results of feature calculation to each mutation, such as
network features, exposure features, sequence features and
structure features. Then, wewill further integrate cutting-edge
models and our original methods for users to obtain a set of
prediction outcomes in one stop.

Materials and methods
Data collection and compilation
To gather and compile data as comprehensively as possible,
we collect mutagenized data for the Nabe database in the fol-
lowing four steps: (i) Initially, we cluster all the PDB entries
of protein–nucleic acid complexes from the PDB database.
(ii) For each PDB entry, we extract from the PDB database
the corresponding literature that is the first one to depict the
information about the complex in detail. (iii) Then we use the
corresponding literature as the beginning points to search for
ample references concerning mutation experiments because
the subsequent measurements of binding free energy gener-
ally would cite the initial articles with sequence and structural
information of the corresponding complexes. Specifically, we
use Google Scholars to locate all the literature that cite the
original ones and filter the results with some keywords (such
as mutations, mutation Kd and mutation ∆G) to limit the
scope of the query. (iv) Finally, we review each paper to
manually extract experimental mutagenesis data and calcu-
late the binding free energy change. Our focus is mainly on
the method section, result section, tables and charts of every
article and supplementary material. In addition, as we observe
that most protein–nucleic acid hot spot prediction methods
construct their data sets by merging different databases or
downloading data from former models, we incorporate simi-
lar databases and data sets, such as dbAMEPNI and ProNIT,
into the Nabe database to further expand the data volume
and, more significantly, help researchers save time in gather-
ing data. We first filter out duplicate data when comparedwith
our database, and then manually check the validity of each
record when adding it into the database. Overall, every record
in the Nabe database is supported by a published reference
in the PubMed or Google scholar, and each contains these

10 types of information: mutant, PDB entry, patterner, Kd
value, ∆G, ∆∆G, experimental conditions, literature, struc-
tural and functional information of the complex and links to
other databases, like PDB and Uniprot. The above collecting
data procedures are plainly described in Figure 5.

Because we lay more eyes on hot spots, we separate the
data of alanine mutations from other mutations, setting a
new subset. We also add hot spot benchmark databases into
the Nabe. For the benchmark data sets, we mainly con-
centrate on data preprocessing methods and removing the
duplicate and non-interface residues of the mutation. The two
non-redundant energetic benchmark data sets for protein–
DNA and protein–RNA binding hot spots are established
by two procedures that are commonly used in hot spot pre-
diction models. To remove the redundancy, proteins with
sequence similarity >40% were excluded by using Cluster
Database at High Identity with Tolerance (CD-HIT). The
interface residues were calculated based on the buried solvent-
accessible surface area upon complex formation (∆ASA>1 A )
and the relative solvent-accessible surface area (>5%) by using
Naccess.

Database architecture and web interface
We then integrate the collected data into MySQL, a relational
database management system. Besides, for convenient access
to the mutation data, we also design a user-friendly web inter-
face, which is realized by Perl and Javascript. For a direct
expression, we apply JSmol to visualize the mutants, which
vividly displays the structure of the mutants instead of an
obscure string. In summary, through the website, researchers
will no longer be restricted by digital devices or the technology
to browse and analyze data.

Update prospect
The Nabe database welcomes all the biochemists and bioin-
formaticians to submit new published protein–nucleic acid
mutagenized data through the ‘Submit’ page (Figure 4F) by
filling in the form available on the website. Each data would
be examined by our team and be included into the database
after the verification. In addition, we will always pay close
attention to the novel published experimental mutation data
and update the database every 6 months in the future. For
every update, we will not only enlarge the amount of data but
also add diverse functions, like providing computational bind-
ing free energy prediction data, to form exhaustive integrity.
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