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Abstract
A keyword-based search of comprehensive databases such as PubMed may return irrelevant papers, especially if the keywords are used in
multiple fields of study. In such cases, domain experts (curators) need to verify the results and remove the irrelevant articles. Automating
this filtering process will save time, but it has to be done well enough to ensure few relevant papers are rejected and few irrelevant papers
are accepted. A good solution would be fast, work with the limited amount of data freely available (full paper body may be missing), handle
ambiguous keywords and be as domain-neutral as possible. In this paper, we evaluate a number of classification algorithms for identifying a
domain-specific set of papers about echinoderm species and show that the resulting tool satisfies most of the abovementioned requirements.
Echinoderms consist of a number of very different organisms, including brittle stars, sea stars (starfish), sea urchins and sea cucumbers. While
their taxonomic identifiers are specific, the common names are used in many other contexts, creating ambiguity and making a keyword search
prone to error. We try classifiers using Linear, Naïve Bayes, Nearest Neighbor, Tree, SVM, Bagging, AdaBoost and Neural Network learning
models and compare their performance. We show how effective the resulting classifiers are in filtering irrelevant articles returned from PubMed.
The methodology used is more dependent on the good selection of training data and is a practical solution that can be applied to other fields of
study facing similar challenges.

Database URL: The code and date reported in this paper are freely available at http://xenbaseturbofrog.org/pub/Text-Topic-Classifier/

Introduction
Text mining in biological data has been of much interest
(1–3), including in improving biocuration work (4, 5). Given
the amount of textual data available online, and sometimes
the urgent nature of searching through them (6, 7), classify-
ing (8) text based on certain topics is a major task in many
fields. Resources such as NCBI’s PubMed provide keyword-
based searches to help researchers obtain papers of interest.
This is much easier than searching all available articles, but
PubMed’s returns may contain irrelevant papers if the key-
words apply to multiple domains. Traditionally, deciding
whether a paper returned by keyword search is relevant for
a field of study has required an expert to read the paper
and make a decision, known as triage. This can be a time-
consuming curation process, hence the efforts to automate
it (5), including in our context, which is model organism
databases (9, 10). In this paper, we apply a number of gen-
eral text classification methods to the problem of filtering
PubMed returns for articles on echinoderm biology (11) and
develop a set of tools to perform the filtering. The phylum
Echinodermata consists of a very diverse group of species such

as starfish, sea urchins, brittle stars, feather stars and sea
cucumbers.

Echinobase (www.echinobase.org) (12), the online knowl-
edgebase for echinoderms, is tasked with curating genomic
information from relevant papers. As can be guessed from
the common names, a keyword search for such varied species
produces a large number of false-positive returns. We encoun-
tered this problem when retrieving papers from the PubMed
database with keywords search using E-Utilities (13). Our aim
was to download as many relevant papers as possible. The
search parameters used individual terms (‘sea’ and ‘urchin’
vs. ‘sea urchin’) and the search also looked at the body of
the papers. The returns included most of the relevant papers
but also many irrelevant ones. For example, the word ‘sea’
appears in many irrelevant cases. The false-positive matches
in Echinobase include papers on astronomy (stars), botany
(cucumber), surgery (scars the shape of a starfish), environ-
mental sciences (sea star–like plastic floating in the water) and
other unrelated fields of study.

The initial approach was for the Echinobase curation
team to inspect the downloaded papers and reject the
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irrelevant ones. Our keyword search returned over 18 000
papers from PubMed, and the curation team, after verify-
ing a subset of them, estimated that between 30% and 50%
were not relevant or not of interest to Echinobase users.
Other possible solutions to reducing the number of returned
papers include limiting the search to titles and abstracts only
and searching for multi-word keywords when possible, which
reduce the number of irrelevant returns but do not filter all of
them. As a policy, Echinobase has decided to err on the side
of not missing relevant papers, and given the time-consuming
nature of manually identifying false positives, we developed
the automated classification system described in this paper, to
help the curation process.

As shown in ref. (14), text mining using the full body of
papers generally gives better results. Full text, if available,
can be incorporated into the training sets and used in the
proposed solution. However, because of copyright restric-
tions, many papers only have their title and abstract available,
so we use these two fields to classify them. Having the full
text does provide more information, but in our experience,
most authors provide the important keywords in the title and
abstract. As a result, we do not consider the lack of full text
to be a major limiting factor. At the same time, not depending
on the presence of full body increases the applicability of the
solution.

The method
Relying on only titles and abstracts both limits the amount of
information (undesirable) and focuses on the parts with the
main message of the papers (desirable). As with any super-
vised learning effort, having an appropriate mix of relevant
and irrelevant papers as training data is the key to achieving
good classification accuracy. We tried to solve the ambiguity
problem through careful selection of training papers, mak-
ing sure common species names appear often enough to be
learned by the classifiers. We note that all domain-dependent
parts of this work are encapsulated in the training data, and
the following methodology is domain-neutral.

We used Python to develop the code and used classi-
fiers offered by the Scikit-learn (sklearn) machine learning
library (15). For each paper in the training and testing sets,
we concatenated the title and the abstract, converted them
to a bag of words and computed the relative frequency
of each word’s occurrence using sklearn’s TfidfVectorizer.
The output is sparse matrices representing the relative fre-
quency of words used in the abstracts and titles. The results
were fed into a number of classifiers. The main criteria
when selecting the classifiers to use were their popularity
as well as their ability to process sparse data. Table 1 lists
the evaluated classifiers and notes their underlying classi-
fication model. We note that RandomForest, Bagging and
AdaBoost are ensemble classifiers. With both Bagging and
AdaBoost, we used the default decision tree as the base clas-
sifier, so all three ensemble classifiers were based on decision
trees.

We used accuracy, precision and recall to measure the per-
formance of the classifiers. Scikit-learn provides methods to
calculate and report these metrics, which we employed. We
developed command line tools for training and testing the
classifiers and for running the classifiers on one or more text
files.

Table 1. Sklearn classifiers used in our experiments

Classifiers Model

RidgeClassifier, SGDClassifier, PassiveAggres-
siveClassifier, LogisticRegression

Linear

MultinomialNB, ComplementNB,
BernoulliNB

Naïve Bayes

DecisionTreeClassifier, RandomForestClassi-
fier, BaggingClassifier, AdaBoostClassifier

Tree

KNeighborsClassifier K Nearest Neighbors
SVC SVM
MLPClassifier Neural Network

All code and data needed to run the tool and reproduce the
results are freely available at http://xenbaseturbofrog.org/pub/
Text-Topic-Classifier/. The code was developed and tested
with Python 3.7.4. The package includes code for training
and testing the classifiers, a tool for running the classifiers on
individual articles, as well as a tool for running the classi-
fiers on multiple articles in batch mode. These tools allow the
readers to incorporate this filteringmechanism into their exist-
ing literature loader pipelines: An existing software system to
download papers from a resource such as PubMed can pass
the contents of downloaded papers to the tools and decide to
add or reject the papers based on the classifier’s output.

All computations reported in the next section were per-
formed on a PC with an Intel i7-8700 CPU with 12 log-
ical (hyper-threaded) cores and 32 GB of RAM. The time
it takes to train a classifier varies with the type of clas-
sifier, with ensemble ones being the slowest, as expected.
When possible, we instructed Scikit-learn to use all avail-
able cores. During the training phase, CPU usage was mostly
at 100% for ensemble classifiers, with the PC being very
sluggish, and around 60–80% for other classifiers. The max-
imum RAM usage during the training phase was around 4
GB, with 1 GB being the usual usage. Training, excluding
the optional cross-validation phase, took less than 5 seconds
for all the classifiers except Bagging and MLPClassifier,
which took around a minute each. Please note that even
small differences in training times are amplified when doing
a large number of cross validations (CVs). Classification
times mirror the training times. As an example, the Bagging
classifier, using all available cores, took about 30 seconds
to classify the 284 papers mentioned above, while the
Ridge classifier took less than 2 seconds to process the same
files.

Evaluation
We used the results of our PubMed E-Utilities keyword search
for echinoderms, which contained numerous relevant and
irrelevant papers, to create training and testing sets. Pro-
fessional curators manually selected a set of 496 relevant
(positive) papers and a set of 405 irrelevant (negative) papers
to train the classifiers. We tried to keep the selected papers,
both relevant and irrelevant, as varied as possible, so care
was taken for the relevant set to contain most of the echin-
oderm species of interest in Echinobase, though due to their
high number, not all were covered.

To test the classifiers, 229 relevant and 220 irrelevant
papers were selected by the curators. We performed 20-fold
CV on the training dataset to get a measure of their suitability,
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then fitted the data to the training set and finally tried the
resulting classifiers on the test dataset. The results appear in
Table 2, where average CV accuracy and standard deviation
values for the training data and the accuracy values for the
test data are shown.

While most classifiers achieve similar results for training
and test accuracy, Decision Tree, AdaBoost and Bagging per-
form much better on the test data. In general, we expect the
results to be data- and domain-dependent, so we encourage
the readers to try as many of the classifiers as possible on
their own data. We also note that results may change with
fine-tuning classifier parameters. The exact parameters used
by us are in the source code.

Since accuracy does not provide a complete picture, we
also measured precision, recall and F-score values for the
test data, as shown in Table 3. These measures are impor-
tant because they allow us to know, for both relevant and
irrelevant classes, what percentage of the relevant, or irrel-
evant, papers were assigned the correct class (precision) and
what percentage of each class were correctly retrieved (recall).
F-score, which combines the precision and recall scores, can
be used as a single number to select the most suitable method.

Table 2. Accuracy values for the training and test data. Best accuracies are
highlighted in bold

20-fold CV for training data

Classifier

Average
accuracy
(%)

Standard
deviation

Accuracy
for test
data (%)

RidgeClassifier 88.4 4.8 88.4
SGDClassifier 88.2 5.1 88.6
PassiveAggressiveClassifier 88.0 4.7 89.3
LogisticRegression 87.4 5.6 86.6
MultinomialNB 82.4 7.9 79.5
ComplementNB 84.1 7.0 82.0
BernoulliNB 82.1 7.6 83.7
DecisionTreeClassifier 86.4 5.9 92.7
RandomForestClassifier 87.4 6.0 88.0
BaggingClassifier 87.5 5.1 95.3
KNeighborsClassifier 82.1 5.4 81.1
AdaBoostClassifier 84.0 6.1 91.1
SVC 88.0 4.5 89.1
MLPClassifier 87.1 5.7 88.2

In some contexts, it may be important to not miss any rel-
evant papers, at the expense of having some irrelevant ones
added to the accepted list. In other contexts, it may be prefer-
able to filter out more of the irrelevant papers, even if that
leads to misclassifying some relevant ones. This is why we
report precision and recall values (vs. only the F-score) for
both relevant and irrelevant papers. The results allow us to see
the unbalanced filtering of some of the classifiers, which make
them unsuitable for our task. We note that based on precision
and recall values, Bagging provides the best results for our
data.

In another test, we measured the ability of the Bagging
classifier to reject irrelevant papers returned from PubMed.
To do so, we collected 248 papers from PubMed which were
returned when searching for keywords in the titles, abstracts
and bodies but not when excluding the bodies. We expect
these papers to contain ambiguous uses of our keywords
and hence be mostly irrelevant. A domain expert reviewed
the papers and determined 242 of them to be indeed irrele-
vant and 6 to be relevant. The classifier declared 240 papers
as being irrelevant and 8 as relevant. The classifier and the
domain expert agreed on 5 out of the 6 relevant papers
and 239 out of 242 irrelevant papers, resulting in a 98.3%
accuracy (4 mistakes out of 248). We consider the results
to confirm that leaving out the full body in echinoderm
paper search from PubMed will greatly reduce the number
of irrelevant returns, although it is possible to lose relevant
papers.

We compared our test accuracy results with NCBI’s Lit-
Suggest (16), an online system that works similarly to ours.
It has a web-driven graphical interface that makes it easy to
use. However, that means it cannot be programmatically inte-
grated into any literature download pipelines. LitSuggest can
only work with PubMed papers, while our system can use
any set of text files as input. This is not an obstacle in a com-
parison test because all of our datasets were sourced from
PubMed. We trained a LitSuggest classifier using our training
data and then ran it on our test data. The resulting accu-
racy was at 92.8% (vs. Bagging’s 95.3%). For the set of 248
test papers, LitSuggest made 12 mistakes (it agreed with the
domain expert in four out of six relevant cases), resulting in an
accuracy of 95.1% (vs. Bagging’s 98.3%). We attribute most
of these differences in performance to LitSuggest’s choice of
classifiers.

Table 3. Precision and recall values for the test dataset. Best results are highlighted in bold

Irrelevant papers Relevant papers

Classifier Precision (%) Recall (%) F-score (%) Precision (%) Recall (%) F-score (%)

RidgeClassifier 91.6 84.1 87.7 85.8 92.6 89.1
SGDClassifier 91.6 84.5 87.9 86.2 92.6 89.3
PassiveAggressiveClassifier 91.7 78.6 85.2 82.1 94.3 87.8
LogisticRegression 93.0 78.6 85.2 82.1 94.3 87.8
MultinomialNB 95.7 60.9 74.4 72.2 97.4 82.9
ComplementNB 92.6 68.6 78.9 75.9 94.8 84.3
BernoulliNB 96.2 69.5 80.7 76.9 97.4 85.9
DecisionTreeClassifier 93.9 91.5 92.4 90.9 94.3 92.9
RandomForestClassifier 95.1 79.5 86.5 83.0 96.1 89.1
BaggingClassifier 96.3 94.1 95.2 94.4 96.5 95.5
KNeighborsClassifier 89.0 70.0 78.4 76.1 91.7 83.2
AdaBoostClassifier 94.1 87.3 90.6 88.6 94.8 91.6
SVC 88.8 86.8 87.8 87.6 89.5 88.6
MLPClassifier 94.9 84.1 89.2 86.2 95.6 90.7
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Conclusions and future work
Our problem involves sorting relevant and irrelevant publica-
tions in the presence of ambiguous keywords. One possible
line of action is to remove some of the irrelevant search
returns by excluding the paper body and look for multi-word
keywords as much as possible but that increases the prob-
ability of missing relevant papers. An alternative approach
is to cast a wide search net and retrieve more papers from
resources such as PubMed and then use classifiers to reject
the irrelevant ones. To do so, we evaluated a variety of
classification methods with very different underlying algo-
rithms. In our case, we chose the Bagging method based
on high accuracy, as well as balanced precision and recall
values.

We consider the training data to be the key factor in obtain-
ing our results. A number of different curators, over a course
of few months, were involved in creating the training and
test data. These were professional biologists with varying
degrees of familiarity with echinoderms. During the devel-
opment phase, we noticed that some papers were classified
as both relevant and irrelevant. We also noted that in a few
cases the same paper switched from relevant to irrelevant
or vice versa over time. We attribute these to the fact that
different curators may have different opinions about what
papers should be included in Echinobase. We also expect
the database’s priorities and focus to change over time. This
means that improving the classifiers with different or better
training data is a continuing process. Over time, clearly miss-
classified papers can be added to the relevant and irrelevant
training sets, to hopefully achieve better results with retrained
classifiers.

It is important to note that while we used specific
domain knowledge (echinoderms) to create the classifiers,
the underlying software design is domain-neutral, and the
same methodology can be applied in other fields. Given this
data dependency, we encourage the readers to try all or
most of these classification algorithms when solving simi-
lar problems in other domains and choose the better ones.
If a number of classifiers show clear advantages over oth-
ers, they can be combined in an ensemble classifier, such as
sklearn’s VotingClassifier, to hopefully improve the results
further.

Established model organism databases such as Xenbase
(17) focus on a smaller number of species, so filtering irrel-
evant papers is not a big problem. However, they may
curate papers with a wider variety of contents, including
gene expression, diseases, phenotypes and a variety of ontolo-
gies such as Gene Ontology (GO) (http://geneontology.org/).
Considering the encouraging results of this paper, we
intend to extend the work and use it to perform multi-
class tagging, where papers downloaded from PubMed are
classified as containing different topics of interest. Such
a classification system will speed up the paper curation
process.

Funding
National Institute of Health under grant number P41
HD095831 (Echinobase); National Institute of Health under
grant number P41 HD064556 (Xenbase).

Conflict of interest
None declared.

References
1. Simon,C., Davidsen,K., Hansen,C. et al. (2019) BioReader: a text

mining tool for performing classification of biomedical literature.
BMC Bioinform., 19, 57.

2. Gong,L. (2018) Application of biomedical text mining, artificial
intelligence - emerging trends and applications. IntechOpen.

3. Fleuren,W.W.M. and Alkema,W. (2015) Application of text mining
in the biomedical domain.Methods, 74, 97–106. ISSN 1046-2023.

4. Hirschman,L., Burns,G.A.P.C., Krallinger,M. et al. (2012) Text
mining for the biocuration workflow. Database, 2012, bas020.

5. Lu,Z. and Hirschman,L. (2012) Biocuration workflows and text
mining: overview of the BioCreative 2012 Workshop Track II.
Database, 2012, bas043.

6. Brainard,J. (2020) Scientists are drowning in COVID-19 papers.
Can new tools keep them afloat? Science. https://www.science
mag.org/news/2020/05/scientists-are-drowning-covid-19-papers-
can-new-tools-keep-them-afloat.

7. Wang,L.L. and Lo,K. (2021) Text mining approaches for dealing
with the rapidly expanding literature on COVID-19. Brief. Bioinf.,
22, 781–799.

8. Aggarwal,C.C. (ed). (2014) Data Classification: Algorithms and
Applications. Chapman and Hall/CRC Press, New York.

9. Jiang,X., Ringwald,M., Blake,J. et al. (2017) Effective biomed-
ical document classification for identifying publications relevant
to the mouse Gene Expression Database (GXD). Database, 2017,
bax017.

10. Van Auken,K., Fey,P., Berardini,T.Z. et al. (2012) Text mining in
the biocuration workflow: applications for literature curation at
WormBase, dictyBase and TAIR. Database, 2012, bas040.

11. Gilpin,D. (2006) Starfish, Urchins, and Other Echinoderms. Com-
pass Point Books, Minneapolis.

12. Cary,G.A., Cameron,R.A. and Hinman,V.F. (2018) EchinoBase:
tools for echinoderm genome analyses.Methods Mol. Biol., 1757,
349–369.

13. Sayers,E.A. (2010) General Introduction to the E-utilities.
In: Entrez Programming Utilities Help [Internet]. National
Center for Biotechnology Information (US), Bethesda, MD.
https://www.ncbi.nlm.nih.gov/books/NBK25497/A.

14. Westergaard,D., Stærfeldt,H.H., Tønsberg,C. et al. (2018) A com-
prehensive and quantitative comparison of text-mining in 15 mil-
lion full-text articles versus their corresponding abstracts. PLoS
Comput. Biol., 14.

15. Pedregosa,F., Varoquaux,G., Gramfort,A. et al. (2011) Scikit-
learn: machine learning in Python. JMLR, 12, 2825–2830.

16. Allot,A., Lee,K., Chen,Q. et al. (2021) LitSuggest: a web-based
system for literature recommendation and curation using machine
learning. Nucleic Acids Res., gkab326.

17. Karimi,K., Fortriede,J.D., Lotay,V.S. et al. (2018) Xenbase:
a genomic, epigenomic and transcriptomic model organism
database. Nucleic Acids Res., 46, D861–D868.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab062/6377760 by guest on 29 April 2024

http://geneontology.org/
https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-tools-keep-them-afloat
https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-tools-keep-them-afloat
https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-tools-keep-them-afloat
https://www.ncbi.nlm.nih.gov/books/NBK25497/A

	 Introduction
	 The method
	 Evaluation
	 Conclusions and future work

