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Abstract
Body fluid proteome has been intensively studied as a primary source for disease biomarker discovery. Using advanced proteomics technologies,
early research success has resulted in increasingly accumulated proteins detected in different body fluids, among which many are promising
biomarkers. However, despite a handful of small-scale and specific data resources, current research is clearly lacking effort compiling published
body fluid proteins into a centralized and sustainable repository that can provide users with systematic analytic tools. In this study, we developed
a new database of human body fluid proteome (HBFP) that focuses on experimentally validated proteome in 17 types of human body fluids.
The current database archives 11 827 unique proteins reported by 164 scientific publications, with a maximal false discovery rate of 0.01 on
both the peptide and protein levels since 2001, and enables users to query, analyze and download protein entries with respect to each body
fluid. Three unique features of this new system include the following: (i) the protein annotation page includes detailed abundance information
based on relative qualitative measures of peptides reported in the original references, (ii) a new score is calculated on each reported protein
to indicate the discovery confidence and (iii) HBFP catalogs 7354 proteins with at least two non-nested uniquely mapping peptides of nine
amino acids according to the Human Proteome Project Data Interpretation Guidelines, while the remaining 4473 proteins have more than two
unique peptides without given sequence information. As an important resource for human protein secretome, we anticipate that this new HBFP
database can be a powerful tool that facilitates research in clinical proteomics and biomarker discovery.

Database URL: https://bmbl.bmi.osumc.edu/HBFP/

Background
Human body fluids are thought to be rich resources of disease-
associated proteins that are secreted or leaked from patholog-
ical tissues across the body, many of which are commonly
obtainable through non-invasive procedures (1, 2). Driven by
these factors, research interests have soared a few decades
ago toward biomarker discovery by examining body fluid
proteomes. It is highly plausible that empowered by innova-
tive high-throughput technologies, modern proteomic studies
have successfully identified a large number of proteins in var-
ious body fluids such as plasma, serum, saliva and urine
(3).

With great effort by a few large consortiums, several
community-based proteomic databases have been developed
in the past decades. For example, in 2002, the international
Human Proteome Organization initiated the Human Plasma
Proteome Project and reported human plasma and serum
protein constituents in its online databases (4). Another sim-
ilar database, named Plasma Proteome Database, archived

more than 10 000 proteins detected in human blood (5).
Additionally, the Proteomics Identifications database (6) and
Human Plasma PeptideAtlas (7) report a total of 3509 high-
confidence plasma proteins. More recently, the extracellular
vesicles community also reports new proteins identified in
exosomes in multiple different resources including blood and
breast milk, e.g. in ExoCarta (8). Additionally, the global
Human Proteome Project (HPP) announces a set of mass
spectrometry (MS) data interpretation guidelines that are
presented to the broader research community (9).

Our team has recently conducted a systematical assess-
ment of human proteome identified using quantitative pro-
teomics tools such as MS and computational predictive
models, as documented in a recent review article (10). To
expand this effort, we developed a new human body fluid
proteome (HBFP) database to organize 11 827 unique pro-
teins reported in 164 scientific articles since 2001, which
has a maximal false discovery rate (FDR) of 0.01 on both
the peptide and protein levels. Until today, this database
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stores information about proteins from 17 types of body
fluids including plasma/serum, saliva, urine, cerebrospinal
fluid (CSF), seminal fluid (SF), amniotic fluid, tear fluid,

bronchoalveolar lavage fluid (BALF), milk, synovial fluid, nip-
ple aspirate fluid, cervical-vaginal fluid, pleural effusion, spu-
tum, exhaled breath condensate, pancreatic juice and sweat.

Figure 1. Workflow of protein identifier conversion.

Figure 2. Construction workflow and utilities of querying page.
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For each protein entry, description about protein secretion
information, literature source, abundances, confidence and
functional annotation is provided. This database system also
provides users easy access to data visualization and download
and functional analysis based on Gene Ontology (GO) and
pathways.

Database content and design
Protein entries
We have manually collected proteins reported in 17
types of body fluids by carefully reviewing 164 scien-
tific references published since 2001 based on a PubMed
search with FDR≤1% on both the peptide and protein
levels.

In the HBFP database, each protein is assigned with a
unique identifier of UniProtKB/Swiss-Prot accession (UniProt
release 2020_06) (11). Since different identifiers have been
mixed used in the referenced studies, we first used con-
version tools at BioDBnet (https://biodbnet-abcc.ncifcrf.gov/)

(12) and UniProt (https://www.UniProt.org/) to confidently
convert different identifiers to UniProt accession numbers.
The common identifiers involved in this study include Inter-
national Protein Index ID [hosted at European Bioinfor-
matics Institute (EBI) (closed in 2011)], GI number (from
Genbank database), RefSeq protein accession (from RefSeq
database), Gene name/symbol (from NCBI Gene database)
and UniProt protein/entry name (from UniProt database).
The ID conversion process is shown in Figure 1. Dur-
ing the conversion, poorly curated proteins with ambigu-
ous identifiers were eliminated. For examples, many Inter-
national Protein Index ID links to unclearly described
instances that cannot be mapped to a UniProt entry are
excluded.

Database utilities
The interface of the HBFP database is constructed by PHP,
while the database system is based onMySQL. The main con-
tents of the current database include query and browse pages
described as follows.

Table 1. Overall statistics

Statistics

Body fluid types Number of protein entries Number of references References

1 Plasma/serum 5790 38 (18–55)
2 Saliva 2758 21 (19, 56–75)
3 Urine 7330 23 (19, 76–97)
4 CSF 4364 12 (19, 90, 98–107)
5 SF 4084 5 (108–112)
6 Amniotic fluid 3025 6 (19, 113–117)
7 Tear fluid (TF) 1882 11 (118–128)
8 BALF 3434 6 (41, 129–133)
9 Milk 2457 14 (134–147)
10 Synovial fluid 1637 7 (148–154)
11 Nipple aspirate fluid 1734 5 (155–159)
12 Cervical–vaginal fluid 949 4 (160–163)
13 Pleural effusion 1519 3 (164–166)
14 Sputum 1809 3 (167–169)
15 Exhaled breath condensate 351 5 (170–174)
16 Pancreatic juice 702 4 (175–178)
17 Sweat 1244 3 (179–181)
Total (non-redundant) 11 827 164

Figure 3. Distribution of protein abundance methods in HBFP database based on a number of original quantitative analysis methods from the original
literature studies. Note that the sum of protein abundance is not 100% since not all of the literature studies provide quantitative analysis information.
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Querying page
As one of the most important functions, the querying page
allows users to search for body fluid proteins based on
different types of input including protein ID, gene name,
and protein or gene sequence. When given a FASTA input,
BLASTp or BLASTn is used to translate sequence input to
the best-match protein entry. The top hit (the highest bit
score) from the BLAST search is considered the best match
of the query. Figure 2 illustrates the workflow and content of
querying page.

The annotation of each protein contains the following
information:

• Protein ID/name/entry name
• Gene name
• Associated body fluid type along with indicated discovery
confidence (explained in the next section)

• References and protein abundance information where the
protein is reported

• External links to public databases including UniProt, Pep-
tideAtlas and NeXtProt (13), MassIVE (14)

• Functional annotation based on the KEGG pathway (15)
and GO (16)

Browsing page
This page provides an overview list of proteins associated
with 17 types of body fluids and links to view and download
selected proteins.

Database highlights
Data statistics
When determining the inclusion of reported proteins, we
applied the following criteria for credibility of the MS

evidence. First, for papers that issued peptide sequence
details, we remapped all those peptide sequences to neXtProt
(release 2021-02-15) using the neXtProt peptide unique-
ness checker to remove unreliable matches (17). Specifi-
cally, we applied guideline #15 of HPP Guidelines 2.1 (9)
to include proteins that contain at least two non-nested
uniquely mapping peptides of nine amino acids into the
HBFP database. According to this criterion, 7354 proteins
were confirmed confidently. Another 4473 proteins were
also included as they were not explicitly provided with pep-
tide sequence information but have more than two unique
peptides.

The overall statistics about the protein entries and refer-
ences in terms of each body fluid are summarized in Table 1.
The current HBFP database contains 11 827 distinct pro-
teins from 17 types of body fluids. Note that urine exceeds
all other body fluids in terms of protein counts while blood
is at the second rank. All data are made publicly available
in the HBFP and via links at https://bmbl.bmi.osumc.edu/
HBFP/.

Protein abundance
In order to provide users experimental evidence from the orig-
inal study, this database also displays relatively abundant
information from the corresponding literature studies. Gen-
eral proteomics approaches using MS identify proteins
by matching identified peptides against predefined protein
sequence databases. The qualitative measures of protein
reported in the original reference include the following: (i)
peptide information: most of cited studies provide explicit
information about peptide sequence, the total number of
peptides, MS counts or the percent sequence coverage; (ii) dif-
ferential expression information including fold change (posi-
tive value demonstrates up-regulated expression and negative

Figure 4. Example of query response with input as ‘P58340’ in the protein ID and protein sequence box.
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value indicates down-regulated expression), up- or down-
regulated expression in case vs. control or (normalized)
spectral counts and (iii) other statistical information includ-
ing FDR, relative standard deviation and the number of
times across different samples or experiments, as shown in
Figure 3.

Confidence score
In the HBFP database, to evaluate the confidence level of
each discovered protein in each body fluid, a new statisti-
cal measure is calculated based on Guideline # 9 of HPP
guidelines 2.1 for the combined datasets. It is a well-known
phenomenon that when taking N datasets with a substantial
FDR and piling them all together, the overall FDR increases
with the number of datasets. For example, for plasma, there
are 38 papers with plasma protein lists, eachwith a substantial
FDR (≤1%). It is probably a conservative estimate to suppose

that the FDR of such a combined result is 1%+0.5%×(N
datasets−1) (9). It means that 50% of the correct identifi-
cations overlap and none of the incorrect ones does, so the
resulting FDR is added in a 0.5% increment. Meanwhile,
the confidence level of protein in the combined datasets is
also reduced. Otherwise, considering the overlap of the true
positives, the larger the number of datasets in which a pro-
tein is associated with a specific fluid, the more reliable this
protein is. In the end, a confidence score C is calculated as
follows:

Ci,j = Ai+0.5%×
(
Mj−1

)
(1)

Ai = 1−FDRi (2)

FDRi = 1%+ 0.5%× (Ni−1) (3)

Figure 5. Download illustration where user can choose the body fluid name and download the proteins of interest or all proteins.
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whereNi is the number of relevant literature studies (datasets)
of a specific fluid i; FDRi represents the overall FDR of mul-
tiple datasets in body fluid i; Ai means the confidence level
of proteins in the combined datasets of body fluid i and Mj

refers to the number of literature studies in which a protein j
is identified in body fluid i.

For example, there are 38 literature studies related to blood
in the HBFP, so Ni = 38, FDRi = 0.195 and Ai = 0.805.
The protein O14791 is identified in blood by 19 indepen-
dent studies, i.e.Mj = 19. As a result, the calculated Ci,j score
for O14791 in blood is 0.895. Meanwhile, protein Q9UJV9
only is identified in one paper for blood, soMj = 1 and Ci,j =
Ai = 0.805. It means that protein Q9UJV9 maintains only the
confidence level in the combined datasets of blood. Specifi-
cally, protein P01833 is identified in milk by 14 studies, and
a total of 14 literature studies on milk are included in the
HBFP, so protein P01833 maintains the original confidence
level, i.e. 0.99. The larger the C score, the higher the confi-
dence that a protein reported in that fluid will be. Note that
this score can only be compared within the same type of body
fluid.

Database applications
Data access
The website can be accessed through https://bmbl.bmi.
osumc.edu/HBFP/.

Query
All proteins can be easily accessed by searching protein
ID, gene name, protein sequence (FASTA) or gene sequence
(FASTA) (<50 items per query) (Figure 4A and B as an
example). A BLAST (182) is performed locally to find the
best match when the sequence FASTA format is given. For
each protein, detailed information is displayed (Figure 4C).

Users can connect directly to the PubMed or Google Scholar
to view the original study through the provided links. Four
databases (UniProt, PeptideAtlas, NeXtProt and MassIVE)
are cross-linked for additional protein annotation, while the
KEGG pathway and GO are focused on the functional aspects
(Figure 4D).

Download
HBFP allows users to browse the entire protein list in each
body fluid, where the proteins are ordered based on descend-
ing confidence scores. Users can check and download all
entries of the selected body fluid type in one go, as shown
in Figure 5.

Demo of comparative analysis using the HBFP
database
Body fluid analysis
Many proteins in the HBFP database have a broad dis-
tribution in terms of body fluid types. An internal com-
parative analysis across different fluids can provide further
information regarding the specificity of a proposed marker
protein. Of 11 827 identified proteins, 66.8% are identified
in at least two body fluids (Figure 6). A total of 93 proteins
(0.79%) are shared among all analyzed body fluids, which
may indicate that these proteins are essential for various life
activities (Table 2).

Venn diagram and GO annotation
To take a closer look at this comparison, we focused on
five body fluids that have the most protein counts, including
blood, urine, CSF, SF) and BALF. An interesting discovery
is that urine shares large numbers of common proteins with
other fluids (Figure 7). A total of 4109, 3212, 2990 and
2950 proteins overlapped between the plasma and the other

Figure 6. Comparative analysis across different body fluids. Seven thousand eight hundred and ninety-nine (7899) proteins are presented in at least two
body fluids and 5733 proteins existed in at least three body fluids. Only 93 proteins exist in all 17 body fluids.
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Table 2. List of 93 proteins shared among all 17 body fluids

UniProt accession number Protein name Gene name

1 P11021 Endoplasmic reticulum chaperone BiP HSPA5
2 P55072 Transitional endoplasmic reticulum ATPase VCP
3 P13647 Keratin, type II cytoskeletal 5 KRT5
4 O00299 Chloride intracellular channel protein 1 CLIC1
5 P02787 Serotransferrin TF
6 P22314 Ubiquitin-like modifier-activating enzyme 1 UBA1
7 P13645 Keratin, type I cytoskeletal 10 KRT10
8 P02533 Keratin, type I cytoskeletal 14 KRT14
9 P07237 Protein disulfide-isomerase P4HB
10 P06576 ATP synthase subunit beta, mitochondrial ATP5F1B
11 P30041 Peroxiredoxin-6 PRDX6
12 P63104 14-3-3 protein zeta/delta YWHAZ
13 P62258 14-3-3 protein epsilon YWHAE
14 P14923 Junction plakoglobin JUP
15 P04040 Catalase CAT
16 P01834 Immunoglobulin kappa constant IGKC
17 P06702 Protein S100-A9 S100A9
18 P52209 6-Phosphogluconate dehydrogenase, decarboxylating PGD
19 P18669 Phosphoglycerate mutase 1 PGAM1
20 P14618 Pyruvate kinase PKM PKM
21 P61981 14-3-3 protein gamma YWHAG
22 P07384 Calpain-1 catalytic subunit CAPN1
23 P50395 Rab GDP dissociation inhibitor beta GDI2
24 Q00610 Clathrin heavy chain 1 CLTC
25 P26641 Elongation factor 1-gamma EEF1G
26 P32119 Peroxiredoxin-2 PRDX2
27 P19971 Thymidine phosphorylase TYMP
28 P26038 Moesin MSN
29 P40121 Macrophage-capping protein CAPG
30 P35754 Glutaredoxin-1 GLRX
31 P01009 Alpha-1-antitrypsin SERPINA1
32 P01860 Immunoglobulin heavy constant gamma 3 IGHG3
33 P06753 Tropomyosin alpha-3 chain TPM3
34 P68871 Hemoglobin subunit beta HBB
35 P62805 Histone H4 H4C1
36 P30086 Phosphatidylethanolamine-binding protein 1 PEBP1
37 P35579 Myosin-9 MYH9
38 P01023 Alpha-2-macroglobulin A2M
39 Q06830 Peroxiredoxin-1 PRDX1
40 P02042 Hemoglobin subunit delta HBD
41 P07737 Profilin-1 PFN1
42 P80188 Neutrophil gelatinase-associated lipocalin LCN2
43 P02679 Fibrinogen gamma chain FGG
44 P40925 Malate dehydrogenase, cytoplasmic MDH1
45 P08758 Annexin A5 ANXA5
46 P46940 Ras GTPase-activating-like protein IQGAP1 IQGAP1
47 P01833 Polymeric immunoglobulin receptor PIGR
48 P31949 Protein S100-A11 S100A11
49 P04792 Heat shock protein beta-1 HSPB1
50 P07339 Cathepsin D CTSD
51 P01857 Immunoglobulin heavy constant gamma 1 IGHG1
52 P06733 Alpha-enolase ENO1
53 P23284 Peptidyl-prolyl cis-trans isomerase B PPIB
54 P02647 Apolipoprotein A-I APOA1
55 O43707 Alpha-actinin-4 ACTN4
56 P30740 Leukocyte elastase inhibitor SERPINB1
57 Q16610 Extracellular matrix protein 1 ECM1
58 P60709 Actin, cytoplasmic 1 ACTB
59 P15924 Desmoplakin DSP
60 P62937 Peptidyl-prolyl cis-trans isomerase A PPIA
61 P17931 Galectin-3 LGALS3
62 P00491 Purine nucleoside phosphorylase PNP
63 P04080 Cystatin-B CSTB
64 P02788 Lactotransferrin LTF
65 P13639 Elongation factor 2 EEF2
66 P35527 Keratin, type I cytoskeletal 9 KRT9
67 P06396 Gelsolin GSN
68 P59998 Actin-related protein 2/3 complex subunit 4 ARPC4

(continued)
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Table 2. (Continued)

UniProt accession number Protein name Gene name

69 P25311 Zinc-alpha-2-glycoprotein AZGP1
70 P02768 Albumin ALB
71 P61160 Actin-related protein 2 ACTR2
72 P04406 Glyceraldehyde-3-phosphate dehydrogenase GAPDH
73 P60174 Triosephosphate isomerase TPI1
74 P18206 Vinculin VCL
75 P08670 Vimentin VIM
76 P10599 Thioredoxin TXN
77 P11142 Heat shock cognate 71 kDa protein HSPA8
78 P01011 Alpha-1-antichymotrypsin SERPINA3
79 P04075 Fructose-bisphosphate aldolase A ALDOA
80 P04264 Keratin, type II cytoskeletal 1 KRT1
81 P37837 Transaldolase TALDO1
82 P35908 Keratin, type II cytoskeletal 2 epidermal KRT2
83 P02545 Prelamin-A/C LMNA
84 P69905 Hemoglobin subunit alpha HBA1
85 P07900 Heat shock protein HSP 90-alpha HSP90AA1
86 P29401 Transketolase TKT
87 P00558 Phosphoglycerate kinase 1 PGK1
88 P00338 L-lactate dehydrogenase A chain LDHA
89 P01861 Immunoglobulin heavy constant gamma 4 IGHG4
90 P05109 Protein S100-A8 S100A8
91 P04083 Annexin A1 ANXA1
92 P01024 Complement C3 C3
93 P09211 Glutathione S-transferase P GSTP1

Figure 7. Venn diagram showing the common proteins among five body
fluids (blood, urine, CSF, SF and BALF) that have the most number of
proteins in the HBFP.

four body fluids (blood, CSF, SF and BALF, respectively).
There are 965 proteins commonly detected in all five body
fluids. The functional analysis using the BiNGO tool (183) in
Cytoscape (184), reflecting information about cellular local-
ization, molecular function and biological process of these
proteins (Figure 8).

Conclusions
The new HBFP database developed in this study represents
the first of its kind as a comprehensive reference resource of
HBFP. All data are available through an open-access user-
friendly Web platform. All protein entries were manually
curated, which can be easily traced back to the original litera-
ture. Users can query and download proteins of interest to ver-
ify discovery in their own study or conduct an in silico analysis
on human secretomes. We currently schedule a regular update
every 6 months. The future plan is to include computation-
ally identified proteins using statistical and machine learning
approaches (185–191). In the past decade, many computa-
tional studies have revealed unique strengths in overcoming
challenges in profiling-based proteomics research in terms of
discovering new protein bioavailability and functions. Those
computationally predicted proteins can serve as a secondary
resource for biomarker discovery. In summary, by providing
a wealth of information and functional analysis, we believe
the HBFP database can be an excellent tool for the research
community to explore human proteome in various body
fluids.
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Figure 8. Example of GO annotation based on the 965 proteins common in five body fluids.
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syndrome and non-Sjögren patients identify novel biomarker
candidates. J. Proteomics, 225, 103877.

70. Xiao,X., Liu,Y., Guo,Z. et al. (2017) Comparative proteomic
analysis of the influence of gender and acid stimulation on nor-
mal human saliva using LC/MS/MS. Proteomics Clin. Appl., 11,
1600142.

71. Sun,Y., Huo,C., Qiao,Z. et al. (2018) Comparative proteomic
analysis of exosomes and microvesicles in human saliva for lung
cancer. J. Proteome Res., 17, 1101–1107.

72. Wu,C.C., Chu,H.W., Hsu,C.W. et al. (2015) Saliva pro-
teome profiling reveals potential salivary biomarkers for detec-
tion of oral cavity squamous cell carcinoma. Proteomics, 15,
3394–3404.

73. Suresh,A. (2015) Human salivary proteome — a resource
of potential biomarkers for oral cancer. J. Proteomics, 127,
89–95.

74. Cecchettini,A., Finamore,F., Ucciferri,N. et al. (2019) Pheno-
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