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Abstract
The level of attrition on drug discovery, particularly at advanced stages, is very high due to unexpected adverse drug reactions (ADRs) caused
by drug candidates, and thus, being able to predict undesirable responses when modulating certain protein targets would contribute to the
development of safer drugs and have important economic implications. On the one hand, there are a number of databases that compile infor-
mation of drug–target interactions. On the other hand, there are a number of public resources that compile information on drugs and ADR. It is
therefore possible to link target and ADRs using drug entities as connecting elements. Here, we present T-ARDIS (Target—Adverse Reaction
Database Integrated Search) database, a resource that provides comprehensive information on proteins and associated ADRs. By combining the
information from drug–protein and drug–ADR databases, we statistically identify significant associations between proteins and ADRs. Besides
describing the relationship between proteins and ADRs, T-ARDIS provides detailed description about proteins along with the drug and adverse
reaction information. Currently T-ARDIS contains over 3000 ADR and 248 targets for a total of more 17 000 pairwise interactions. Each entry
can be retrieved through multiple search terms including target Uniprot ID, gene name, adverse effect and drug name. Ultimately, the T-ARDIS
database has been created in response to the increasing interest in identifying early in the drug development pipeline potentially problematic
protein targets whose modulation could result in ADRs.

Database URL: http://www.bioinsilico.org/T-ARDIS

Introduction
One of the main major problems faced in drug development
is the lack of toxicology or safety information for targets (1).
This fact results in a high level of attrition of drugs enter-
ing clinical trials due to the severity of adverse drug reactions
(ADRs) associated with toxicity, significantly increasing the
costs and therefore limiting the development of novel drugs
for emerging targets (2). One of the most conventional meth-
ods in past years relied on the use of animal models. How-
ever, animal models imply high maintenance cost and ethical
drawbacks and not always transferable to human biology
(3), and thus computational approaches can provide useful
predictions.

There are a number of approaches that can be used to
decrease the risk associated with the development of novel
drugs from a drug-centric point of view. In-silico approaches
have demonstrated their utility in estimating the toxicity of
drug candidates, exploiting features such as composition,
structure and binding affinity. These methods include var-
ious examples of machine learning and deep learning (4).
Other studies are based on target-based predictions, analy-

ses of the underlying protein network and interactions and
quantitative structure–activity relationships. The latter have
been used to model numerous drug safety endpoints including
drug lethal dose of 50%, the so-called LD50 values, skin/eye
irritation and tissue-specific toxicity, making it one of the
most used parameters for estimating the toxicity of a drug (5).
The use of curated protein target sets, conforming so-called
safety panels, are also used to assess the potential liability of
novel drugs during pre-clinical stages (6). Finally, information
about potential liability of drugs can be also obtained post-
development in the context of pharmacovigilance including
a number of approaches that mine information for a range
of databases such the Food and Drug Administration (FDA)
spontaneous reporting systems database (5, 7, 8).

All the methods presented above are drug-centric, i.e. the
prediction of potential ADR is based solely on the properties
of the drug but not on the putative or known protein targets.
In fact, while there are well-established methodologies and
resources, as shown above, to associate drugs to ADR, it is
less so to associate ADR to protein targets. Examples of the
latter include the ADReCS-Target database (9) and a recent
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study on ADRs compiled from clinical trials and post mar-
keting reports (10). A different take on the issue would be to
identify the link between ADR and proteins, using drugs as a
connecting element. In principle, the idea is very straightfor-
ward: if drug X causes ADR Y and drug X binds to protein Z,
then protein Z is related to ADR Y. This simple statement is,
however, incorrect. As pointed out by Kuhn and colleagues
(11), most drugs bind to sets of pharmacologically similar
proteins, for example, members of the same protein family.
While it is likely that only one of the targets is responsible
for a given ADR, a direct Target–ADR association, as in this
simple approach, would relate each target to each possible
ADR of the same drug, creating erroneous or non-existent
relationships, i.e. false positives. This association needs to
be validated statistically, and the method described by Kuhn
et al. (11) provides a defined path identify statistically signif-
icant associations between ADR and proteins using drugs as
the connecting elements.

T-ARDIS (Target—Adverse Reaction Database Integrated
Search), the database presented here, contains statistically
validated associations between protein targets and potential
ADR derived from the association drug–ADR and drug–
protein. In the first stage, drug–ADR and drug–protein asso-
ciations were mined from different databases. In the case of
drug–protein, the databases included the Drug–Target Com-
mons (12) and STITCH (13) databases. Drug–ADR associa-
tions were mined from FDA Adverse Event Reporting System
(FAERS) (14), MEDEFFECT (15), SIDER (16) andOFFSIDES
(17). Upon mining, by parsing and filtering these databases,
the associations between proteins and ADRs were established
using the method described by Kuhn et al. (11) as described
above. The results are therefore a number of protein–ADR
associations that are statistically significant and that can be of
use as complement to other approaches to identify potential
liabilities associated with protein targets.

Currently, T-ARDIS compiles over 3000 ADRs associated
with over 200 proteins. Users can easily access the data
searching by the drug name (common name), type of ADR
as defined in MedDRA dictionary (18) or the protein
UNIPROT (19) identification code or gene name. The results
are returned in a tabular from listing the principal descrip-
tor for each entry such as the drug name, the target
UniProt ID, gene name, the MedDRA classification for ADR,
together with the results of the statistical validation (P-
value of association and its correction for multiple testing,
q-value, including the contingency table used). Moreover,
it will be possible to access external links to the native
drug target or drug–ADR database, together with related
repositories.

Material and methods
Databases containing drug–ADR information
Four different databases were parsed and mined to iden-
tify drug–ADR associations: OFFSIDES (17), SIDER4.1 (16),
MEDEFFECT (15) and FAERS (14). OFFSIDES is a
manually curated database available at http://tatonettilab.
org/resources/nsides/. SIDER4.1 is a database of drugs, ADR
and indications mined from the FDA drug labels. The ver-
sion used in this study is SIDER4.1 released 21 October
2015 available at http://sideeffects.embl.de/. The FAERS or
AERS is a centralized pharmacovigilance database developed

to integrate the U.S. FDA’s post marketing safety surveil-
lance program. The data stored in this database represent
one of the major repositories regarding drug–ADR relation-
ships, although it requires a curation before that can be
used (see below ‘Curation of FAERS database’). The ver-
sion included in T-ARDIS was last updated in March 2020
and is available at: https://fis.fda.gov/extensions/FPD-QDE-
FAERS/FPD-QDE-FAERS.html. Finally, the MEDEFFECT,
Canada’s sister database of the FAERS. Adverse reaction
reports are submitted by consumers and health profession-
als, who submit reports voluntarily, and manufacturers
and distributors (also known as market authorization hold-
ers), who are required to submit reports according to the
Canadian Food and Drugs Act. The version of MEDEF-
FECT included in T-ARDIS was updated in May 2020
and is accessible at https://www.canada.ca/en/health-canada/
services/drugs-health-products/medeffect-canada/adverse-rea
ction-database/canada-vigilance-online-database-data-extr
act.html.

The adverse event report descriptions are coded as medical
terms as defined in the MedDRA vocabulary and ontology
(18). The entries in MedDRA are reported using five hier-
archical levels of medical terminology, ranging from a very
general System Organ Class (SOC—e.g. gastrointestinal dis-
orders) term to a very specific Lowest Level Term (e.g. feeling
queasy). Each term is linked to only one term on a higher level.
For each drug–ADR database, we manually checked that all
adverse reactions were registered as MedDRA Reaction terms
at Preferred Term (PT) level that describes a single medical
concept. We also used the SOC definition of MedDRA to fil-
ter unspecific ADR (see the ‘Filtering of ADR based on SOCs’
section).

Curation of FAERS and MEDEFFECT databases
Prior to using the data present on the FAERS database, a
curation of the records was performed. This step is required
due to the heterogeneity in the reports as these are uploaded
directly by health-care professionals (physicians, pharmacists,
nurses and others) and other actors (patients, family mem-
bers, lawyers and others.) Thus, the quality of the reports
varies substantially and there are often typos (e.g. misspelled
drug names), missing information and other errors. To obtain
a curated and standardized version of FAERS and MEDEF-
FECT, we relied on a modified pipeline specially developed
for the standardization of FAERS records (20) and adapted
to MEDEFEECT. In particular, this pipeline uses standard-
ized vocabularies with drug names mapped to RxNorm con-
cepts (21) and exploits the demographic information on the
patients in order to remove duplicates. To identify statisti-
cally significant associations between drugs and ADRs, the
method proposed by Huang et al. (22). was applied to
the resulting databases originating from the standardization
pipeline described above. Finally, only those drug–ADR asso-
ciations that are statistically significant, i.e. the likelihood
ratio value is above the 5th percentile of the multinomial
distribution, and present both in FAERS and MEDEFFECT
were kept.

Filtering of ADR based on SOCs
Some of the ADRs reported are very general or not specific
to body parts, tissues or underlying human biology. For this
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reason and as described in (23), any ADR belonging to the
following SOCs were discarded.

General disorders and administration site conditions
As the name suggests, this SOC contains terms that do not
readily fit into the hierarchy of any one SOC or are non-
specific disorders that impact several body systems or sites. To
be noted that representing PTs in this SOC in each potential
secondary SOC would create an inordinately large number
of redundancies. Therefore, most of the PTs in this SOC
are primarily linked to SOC General disorders and admin-
istration site conditions and have limited representation in
secondary SOCs (e.g. PT Injection site atrophy is primarily
to SOC General disorders and administration site conditions
and secondarily only to SOC injury, poisoning and procedural
complications).

Injury, poisoning and procedural complications
This SOC provides a grouping for those medical concepts
where an injury, poisoning, procedural or device complica-
tion factor is significant in the medical event being reported.
As a general rule, in this SOC all the events appear directly
attributed to trauma, poisoning and procedural complica-
tions, in other words, all the events due to an external
cause.

Investigations
For MedDRA, an ‘investigation’ is a clinical laboratory test
concept (including biopsies), radiologic test concept, physi-
cal examination parameter and physiologic test concept (e.g.
pulmonary function test). Only PTs representing investiga-
tion procedures and qualitative results (e.g. PT blood sodium
decreased, PT blood glucose normal) appeared in this SOC.
Terms representing conditions (e.g. hyperglycemia) or mixed
concepts of conditions with an investigation are excluded
from this SOC and can be found in the respective ‘disorder’
SOCs (e.g. PT hyperosmolar state, PT haemosiderosis, PT
orthostatic proteinuria and PT renal glycosuria).

Neoplasms benign, malignant and unspecified (incl.cysts and
polyps)
This SOC is classified anatomically, with pathologic sub-
classifications for staging of both benign and malignant neo-
plasms.

Product issues
This SOC includes terms relevant for issues with product qual-
ity, devices, manufacturing quality systems, product supply
and distribution and counterfeit products.

Social circumstances
The purpose of this SOC is to provide a grouping for those
factors that may give insight into personal issues that could
have an effect on the event being reported. Essentially, this
SOC contains information about the person, not the adverse
event. As an example, terms such as PT drug abuser and PT
death of relative are found in this SOC.

Surgical and medical procedures
This SOC contains only those terms that are surgical or
medical procedures. The nature of this SOC makes it more

of a ‘support’ SOC for recording case information and for
developing queries.

Infections and infestations
This SOC just provides information on location linked to
infectious disorders but not to specific targets.

Psychiatric disorders
The following high-level general terms and high-level terms
were excluded from this specific SOC due to being too gen-
eral and/or broad. These included the terms: depressed mood
disorders and disturbances; eating disorders and disturbances;
impulse control disorders not elsewhere classified (NEC);
manic and bipolar mood disorders and disturbances; per-
sonality disorders and disturbances in behaviour; psychiatric
disorders NEC; suicidal and self-injurious behaviours NEC;
paraphilias and paraphilic disorders and sexual and gender
identity disorders NEC.

Databases containing drug–protein information
Two different databases were used to extract drug–protein
associations. These include Drug-Target Commons (DTC)
database (https://drugtargetcommons.fimm.fi) (12). The DTC
aims at providing an open-data platform for a community-
driven crown-sourcing effort to annotate drug–target associ-
ations and provides information on drugs’ bioactivity such
IC50, EC50 and potency values. The version included
in T-ARDIS was downloaded in April 2021 from https://
drugtargetcommons.fimm.fi. The second database considered
was STITCH (13). STITCH provides a complementary view
on drug–target associations as it relies on different sources of
information combined into a composite scoring function (24).
The version included in T-ARDIS is 5.0 and is accessible at
http://stitch.embl.de.

The starting databases were subjected to two filter steps to
ensure that biologically/therapeutically relevant associations
are captured and that redundant entries originating from the
same drug been named differently. The Uniprot ID was used
to ensure that the target was the same in both databases. DTC
provide already this information for each pair drug–target but
in the case of STITCH the Uniprot ID was retrieved program-
matically from the Uniprot database (19) using the STRING
(25) identification code. In the case of DTC, only drug–protein
association with a reported IC50 (or EC50) of 100 nM or
better was considered. In the case of the STITCH database,
a cut-off of 0.8 was applied, thus only association with a
better score was considered. To avoid redundancy, the drug
entries were unified using the InChiKey hash descriptors and
the drug’s standard name ensuring that not redundant entries
appear in the consolidated dataset.

Statistical association protein–ADR using
drug–protein and drug–ADR relationships
The statistical significance of ADR–protein associations was
calculated following the method proposed by Kuhn et al. (11).
In a nutshell, the method computes a contingency matrix
for each ADR–protein pair and calculates the P-value using
Fisher’s exact test. The elements of the contingency matrix
are as follows: (i) the number of drugs that present the given
ADR; (ii) the number of drugs that binds to the given protein;
(iii) the number of drugs that both present the given ADR and
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bind to the given protein and (iv) how many drugs neither
present the ADR nor bind to the given target. Given the high
number of relationships, P-values were corrected for multi-
ple testing using the ‘q-value’ module contained in the python

package ‘MultyPy’ (26). An ADR–protein relationship was
accepted if the computed q-value is equal or smaller than 0.05.
Figure 1 shows an outline of this annotation approach, from
the mining of individual databases to statistical association.

Figure 1. Workflow followed to combine and derive statistical associations between proteins and ADR. Drug–ADR and drug–target associations are
retrieved from relevant databases. Subsequently, statistical association between proteins and ADRs is computed as described by Kuhn et al. (10).
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Prior to the calculation of protein–ADR statistical asso-
ciations, the drug–ADR databases were divided in two dif-
ferent sets: curated and self-reporting drug–ADR association.
The curated included drug–ADR associations extracted from
SIDER and OFFSIDES, while the self-reporting set included
drug–ADR association from FAERS and MEDEFFECT. The
logic follows on distinguish between these two groups as the
origin of information is very different as mentioned above.
Therefore, the statistical associations between protein–ADR
present in T-ARDIS originate from any of these two sets as
the drug–target associations are common to both, i.e. DTC
and STITCH databases. The unifying entity between drug–
protein and drug–ADR is of course the drug entity, and the
unification between both groups was done the using the drug’s
standard name. To make sure an unequivocal association, a
Tanimoto 2D chemical similarity score was computed with a
cut-off of 0.7 using the Rdkit Conda package (27). Finally,
drugs presenting less than 10 ADRs were also discarded.

In the case of the drug-target databases, a filtering pro-
cedure was implemented as described in Kuhn et al. (11).
First, proteins related to drug metabolism were discarded.
These were selected using the Gene Ontology annotation
(28), and thus proteins belonging to GO terms: GO:0042737
(drug catabolic process) and GO:0017144 (drug metabolic
processes) were discarded. Second, a sequence similarity fil-
ter was implemented to remove highly redundant proteins
using CD-HIT (29) at 90% sequence identity cut-off. A sub-
sequent clustering step was devised to group proteins into
families using a sequence identity cut-off of 70% and fami-
lies with more than 10 members for same drug were excluded
preserving just the association with the centroid of the clus-
ter. Finally, as discussed in Kuhn et al. (11), for each of
the protein–ADR groups, the main target was identified as
reported (30) and the rest of the members of the group were
kept if sharing at least 50% of the drugs binding to the main
target.

Benchmarking datasets
Four different datasets were used to compare the associa-
tions uncovered by T-ARDIS. The first set was extracted from
the ADReCS-Target database (9) from which 1710 protein–
ADR top scoring associations were compiled. The second set
derives from the recent wok by Smit et al. (10) that albeit con-
taining an older release of SIDER (ver.3) was used to extract
circa 2000 protein–ADR associations. The third set relates
to a set of 225 pairwise interactions validated in the work
of Kuhn et al. (11). Finally, the fourth set is a manually
curated set mined for scientific publications presented in the
work by Kuhn et al. (11), which includes 816 protein–ADR
associations (Table 1).

Results
Combining different databases increases the
coverage of associations
We first consider the databases with drug–ADR associations.
As described in the ‘Materials and methods’ section, the
nature and purpose as well as the level of curation of these
databases vary. There is a core of drug–ADR associations,
which are common to all databases (Figure 2). The over-
lap between OFFSIDES and FAERS databases is relatively
high and expected as drug–ADR associations annotated in

Table 1. Comparison of different datasets and T-ARDIS

SET # Associations Self-reportinga Curatedb

Associations mined
from the literature in
Kuhn et al. (11)

224 27 (4) 17 (6)

Associations validated
in vivo in Kuhn et al.
(11)

2170 115 (69) 113 (85)

Associations described
in Smit et al. (10)

2153 340 (48) 297 (167)

Associations from
ADReCD-Target
database (9)

816 171 (14) 87 (11)

aAssociations present in the self-reporting set of T-ARDIS; significant asso-
ciations shown within parentheses (q-values < 0.05).
bAssociations present in the curated set of T-ARDIS; significant associations
shown within parentheses (q-values < 0.05).

OFFSIDES are subsequently added to FAERS on new releases.
FAERS and MEDEFFECT rely on multiple sources and spon-
taneous reporting systems and contain the largest number of
drugs–ADRs associations as well as the largest percentage
of unique entries. Following the curation approach, over 4
million pairwise interactions originating from over 9000 com-
pounds and around 17 000 unique ADR were obtained from
FAERS. In the case of MEDEFFECT, 1.5M drug–ADR asso-
ciations were uncovered from a total of over 4000 and 12 000
drugs and ADR events annotated in the database, respectively.

Unlike FAERS and MEDEFFECT, SIDER and OFFSIDES
contain manually curated associations of drugs and ADRs.
These databases have a lower number of associations when
compared to spontaneous reporting databases FAERS and
MEDEFFECT (between 1 and 2 orders of magnitude less). In
the case of SIDER, over 108 000 pairwise interactions were
mined for a total of 1344 unique drugs and 2303 ADRs.
OFFSIDES yielded a large number of pairwise drugs–ADR
associations: 1.5M associations from a total of 2708 and
4368 unique drugs and ADRs. In terms of uniqueness of infor-
mation, FAERS and MEDEFFECT show a larger percentage
of shared drugs between the different databases (Figure 2).

The second group of databases considered were those
describing drug–protein target associations including DTC
(12) and STITCH (13). The nature of both databases is
rather different and so it is reflected in the number of associ-
ations extracted from each individual database. In the case of
STICH, over 10 000 drug–target associations were retrieved
after applying the filter described in the ‘Materials and meth-
ods’ section accounting for 5007 and 1075 different drug
and chemical compounds and proteins (as per Uniprot IDs).
respectively. In the case of STITCH, the number of associa-
tions was much larger: over 6M from over 42 000 chemical
compounds (including approved drugs) and 7264 different
proteins. The overlap between both databases in terms of
shared drugs was around 1600.

Proteins–ADR relationship from mined drug–ADR
and drug–protein associations
After curation of drug–target and drug–ADR database and
filtering, the associations between proteins and ADRs were
obtained. The association was based on the drug enti-
ties shared among the databases. It is important to stress
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Figure 2. Upset plot showing the overlap between the different databases compiling drug–ADR associations. FAERS, MEDEFFECT, OFFSIDES and
SIDER represented as dark red, light blue, green and orange, respectively.

that self-reporting (FAERS and MEDEFFECT) and curated
(OFFSIDES and SIDERS) drug–ADR sources of informa-
tion were not combined but treated independently. In the
case of protein–ADR associations uncovered from combin-
ing drug–target and drug–ADR (self-reporting), a total of 998
drugs were mapped unequivocally on both sets (i.e. drug–
target, drug–ADR) yielding over 100k statistically significant
(i.e. q-value≤0.05) protein–ADR associations accounting for
around 3k and 211 different ADRs and proteins, respectively.
In the case of the second group of drug–ADR databases,
the curated set (or not self-reporting), i.e. SIDER and OFF-
SIDES, a total of 1135 common drug entities were identified
between drug–target, yielding circa 40k statistically signifi-
cant associations protein–ADR including 537 and 194 ADRs
and proteins, respectively.

The number of ADR associated with a given protein
target varies but in most cases the number of associated
ADR to proteins is low both in the case of data extracted
from the self-reporting and curated dataset (Figure 3). As
expected, the number of associated ADRs to a given tar-
get relates to the number of drugs identified to target the
given protein; as the number increases, the number of ADRs

also increases, albeit with a clearer trend in the case of the
curated dataset (Figure 3B). Nonetheless there are a num-
ber of proteins associated with a large number of ADRs. In
the case of the protein–ADR associations uncovered from
the self-reporting dataset proteins, interleukin-8 (Uniprot
ID: P10145), endothelin-1 (Uniprot ID: P05305) and leptin
(Uniprot ID: P41159) were associated with 1532, 933 and
717 ADRs, respectively. In the case of the curated dataset, the
figures are smaller and among the top three proteins are the
5-hydroxytryptamine receptor 2C (Uniprot ID P28335),
the 5-hydroxytryptamine receptor 1A (Uniprot ID: P08908)
and the alpha-2A adrenergic receptor (Uniprot ID: P08913)
with 119, 104 and 98 associated ADRs, respectively. The
explanation to this high number relates to the biological
role played by these proteins. For instance, leptin is asso-
ciated with over 150 biological processes (as per GO clas-
sification) ranging from signal transduction (GO:0007165)
to autophagy regulation (GO:0010507). Moreover, the dis-
tribution of the number of ADR per target is in line with
the work presented by Kuhn et al. (11) where the statistical
association approach was described and that is the basis of
T-ARDIS.
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Figure 3. Bubble plots showing the number of drugs per protein (X axis) vs number of statistically significant ADR per protein (Y axis). (A) Distribution of
the self-reporting set; (B) distribution of the curate set. Refer to the ‘Material and methods’ section for the description of self-reporting and curated sets.

T-ARDIS associations complement those of other
resources
Association between ADRs and proteins uncovered in T-
ARDIS were compared to previous works to assess the level of
agreement and complementarity. The overall representation
of target–ADR associations described in these four datasets,
i.e. regardless of whether significant or non-significant, is low
(Table 1). For instance, in the case of the set A (target–ADR
associations mined from the literature), only 12% and 8% are
presented in the self-reporting and curated sets of T-ARDIS,
respectively. Overall, the values range from 20% to 5% in the
case of self-reporting set and from 8% to 5% in the case of
the curated set. These relatively low values can be due to two
different causes. On the one hand, the lack of target–ADR
associations in T-ARDIS can be due the fact that no safety
issues have been reported either in self-reporting (FAERS,
MEDEFFECT) or curated databases (OFFSIDES, SIDER). It
could also be that association between the given drug and
target is not present in any of the following two databases
used in this study: DTC and STITCH. On the other hand,
and as described in the ‘Methods’ section, a robust and strin-
gent procedure is followed when compiling and integrating
the databases used to derive T-ARDIS. Thus, the given drug–
ADR and/or drug–target association can be present but do not
succeed to pass the filtering steps. In any case, these results
come to illustrate the complementary nature of T-ARDIS to
that of other resources available in the field and thus achiev-
ing a more comprehensive and complete view of target–ADR
associations.

Examples of uncovered associations
Examples of protein–ADR associations uncovered by the
approach presented here have been confirmed in the litera-
ture. For example, the cyclo-oxygenase 2 enzyme found in
the gastric mucosa (COX-2 or PTGS2; Uniprot ID: P35354)
is inhibited by the anti-inflamatory drug aspirin (acetylsal-
icylic acid). The aspirin also acts against the prostagladin
G/H synthase 1 (COX-1 or PTSG1; Uniprot ID: P23219) (31,
32). These secondary interactions may be the concomitant

cause for gastritis and bleeding ulcer as mentioned in vari-
ous publications even since 1955 (33, 34). In our analyses,
both PTGS1 and PTGS2 proteins are linked to Peptic ulcer
and Peptic ulcer haemorrhage ADRs with significant q-values.

The sodium-dependent serotonin transporter (SLC6A4;
Uniprot ID P31645) is inhibited by the serotonin nore-
pinephrine reuptake inhibitor Venlafaxine, which in turn has
been associated with sexual-dysfunction (35). In our analyses,
SLC6A4 appears highly significantly associated (i.e. q-value
<< 0.05) with a range of different sexual dysfunctions (e.g.
ejaculation failure and female sexual dysfunction).

Another example is illustrated by Budesonide and the
glucocorticoid receptor (Uniprot ID: P04150). Identified
ADRs to budesonide treatment include respiratory infections,
coughs and headaches in the case of the inhaled form and
tiredness, vomiting and joint pains in the oral form. A much
rarer condition, adrenal insufficiency, has been identified in
the case of the long-term use of the oral form of budesonide
(36), which in T-ARDIS appears as a potential ARDs associ-
ated with the glucocorticoid receptor with a highly significant
q-value. Furthermore, the association between glucocorti-
coids and adrenal insufficiency is an active topic of discussion
in the current literature (37).

The activation of the 5-hydroxytryptamine receptor fam-
ily (HTR1A, HTR1B and HTR1E; Uniprot IDs: P08909,
P28222, and P28566, respectively) by zolmitriptan is reported
to cause hyperaesthesia. In our analysis, the association
between these proteins and hyperaesthesis were all significant,
with q-values of 0.0001, 0.006 and 0.02 for HTR1A, HTR1B
and HTR1E, respectively. It is worth mentioning that this
association was identified and validated in vitro by Kuhn et
al. (11). Overall, these examples, by no means a representa-
tive sample, show the usefulness of the data presented here
that can be of use to identify potential liabilities associated
with the targeting of proteins.

Accessing and querying T-ARDIS
All the association between drugs–proteins including the
original sources, i.e. drug–protein and drug–ADR, has
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Figure 4. Snapshot of the result page example upon querying by drug ‘Aspirin’.

been deposited and compiled in a biological database:
T-ARDIS. T-ARDIS is available at: http://bioinsilico.org/T-
ARDIS. T-ARDIS provides a convenient and easy access to
the information including the option of searching and filter-
ing associations based on tailored queries. The database is
searchable by protein (Uniprot ID or gene name), drug or
ADR name. The resulting tables provide information on the
association between protein–ADR as well as the q-value of
the association and parent databases, both drug–protein and
drug–ADR (Figure 4). External links to native drug–target or
drug–ADR databases, together with protein-related reposito-
ries, are also provided. Users also have the option to further
filter the resulting table by querying by specific drug, ADR
or parent databases (e.g. filtering those associations resulting
from FAERS). The table can be also sorted by q-values, so
most significant associations could be shown first. The tables
can be downloaded in the different formats (simple copy, CSV
or PDF). Finally, bulk downloads of the database and asso-
ciated scripts to recreate the database are also available from
the home page links.

Discussion
Predicting associations between protein targets and ADR
is desirable particularly in pre-clinical drug development in
order to identify early in the process potential liabilities and
toxicity-related aspects linked to proteins. Here, we present a
fully automatic, large-scale, analysis to identify potential links
between proteins and ADRs. By integrating public databases
on drug–protein and drug–ADR associations, we have statis-
tically identified significant relationships between protein and
ADR using drugs as connecting elements. Highly significant
associations, i.e. low q-values, are supported in the current
literature and thus proving that uncovered associations could

be useful as guiding evidence. The data compiled in this work
have been deposited in a freely accessible database, T-ARDIS,
which allows a convenient and easy access to the informa-
tion. The mining of the databases, statistical inference and
database updating is fully automatic and thus ensuring that
data will be integrated as become available further facilitat-
ing our understanding of the mechanisms behind ADRs. We
envisage that T-ARDIS represents a resource that will be use-
ful to both academic and industry researchers working on
drug development.
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