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Abstract
As the terminal clinical phenotype of almost all types of cardiovascular diseases, heart failure (HF) is a complex and heterogeneous syndrome
leading to considerable morbidity and mortality. Existing HF-related omics studies mainly focus on case/control comparisons, small cohorts of
special subtypes, etc., and a large amount of multi-omics data and knowledge have been generated. However, it is difficult for researchers to
obtain biological and clinical insights from these scattered data and knowledge. In this paper, we built the Heart Failure Integrated Platform
(HFIP) for data exploration, fusion analysis and visualization by collecting and curating existing multi-omics data and knowledge from various
public sources and also provided an auto-updatingmechanism for future integration. The developed HFIP contained 253 datasets (7842 samples),
multiple analysis flow, and 14 independent tools. In addition, based on the integration of existing databases and literature, a knowledge base for
HF was constructed with a scoring system for evaluating the relationship between molecular signals and HF. The knowledge base includes 1956
genes and annotation information. The literature mining module was developed to assist the researcher to overview the hotspots and contexts
in basic and clinical research. HFIP can be used as a data-driven and knowledge-guided platform for the basic and clinical research of HF.

Database URL: http://heartfailure.medical-bigdata.com

Introduction
Heart failure (HF), the terminal phenotype of many cardio-
vascular diseases, is a complex and heterogeneous syndrome
(1). It is a growing public health problem, leading to con-
siderable morbidity and mortality (2). Due to the extensive
burden of the disease coupled with the complexity of HF syn-
drome, the signs and symptoms are often deceptive and the
suspected patients cannot be fully diagnosed (3). With the
development of bioinformatics technology, many researchers
have started to assist in the diagnosis of HF by studying
the molecular mechanisms and looking for biomarkers of
HF. Currently, the genetic and epigenetic mechanisms of HF
have been extensively studied using multi-omics data and
genome-wide association analysis to demonstrate the genetic
variations and transcriptional comparisons, reveal the dif-
ferential expression and epigenetic analysis, and show the
potential modification mechanisms.

The high-throughput sequencing technology provides a
new idea for the diagnosis and treatment of HF. There
has been a rapid accumulation of effective omics data and

knowledge. Discovering pathological mechanisms andmining
knowledge from these data is an effective way for basic and
clinical researchers. However, the proliferation and indepen-
dent dissemination of data have brought significant challenges
for researchers in data analysis to obtain meaningful insights.
Organizing and analyzing these data with HF as a unit can
provide a convenient way for researchers to quickly acquire
effective datasets and knowledge. The discovery of data min-
ing will also provide an important basis for revealing disease
pathogenesis and clinical treatment.

Currently, some databases for gene–disease associations
and data collection are relatively comprehensive, but do not
focus on a specific disease. ClinVar is a public database
that collects genetic variants related to diseases. It inte-
grates information on four aspects, i.e. variation, clinical
phenotype, empirical data and functional annotation (4, 5).
DisGeNET provides information on gene–disease associa-
tions, variant–disease associations and disease–disease asso-
ciations by integrating data from expert-curated repositories,
genome-wide association (GWAS) catalogs, animal models
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Figure 1. The construction framework of HFIP.

and scientific literature (6, 7). Online Mendelian Inheritance
in Man (OMIM) focuses on the relationships between human
genetic variation and phenotypic traits (8). However, it is
very time-consuming to query and screen from these databases
to obtain genetic information about HF. Furthermore, the
information on these datasets is scattered in Gene Expression
Omnibus (GEO) (9), Sequence Read Archive (SRA) (10) and
other databases, and the relevant knowledge is also diamond-
shaped in various knowledge bases and literature. For clinical
and scientific workers, it is very difficult to retrieve and
analyze data about HF without separate centralized reflec-
tion. Therefore, a comprehensive data platform that contains
datasets, knowledge and tools for HF is necessary.

To fill this gap, we focused on HF and attempted to con-
struct an integrated platform consisting of multi-omics data,
easy-to-use tools and relevant molecular knowledge, namely
the Heart Failure Integrated Platform (HFIP), by automati-
cally collecting and manually organizing relevant datasets and
knowledge, and performing intelligent matching analysis and
visualization tools on selected datasets. This platform is a
valuable resource for researchers and clinicians to conduct
studies and practice in HF.

Methods and results
In order to build a comprehensive HF omics database, we
acquired HF-related omics datasets and genomic events from
existing databases and textmining and performed datamining
and visualization with corresponding tools (Figure 1). HFIP
mainly includes five basic function modules: ‘Database’, ‘data
automatic update’, ‘Tools’, ‘Knowledgebase’, and ‘Literature-
discovery’.

Focusing on HF, we systematically interpreted a given dis-
ease name into a full set of disease terms (Supplementary
file1). Then, various types of omics datasets were collected
based on this term set to form a specialized disease database.
In addition, an automatics collection tool was used to update
the newly released datasets.

Gene- and dataset-oriented analysis and visualization tools
were also provided separately. The former was designed to
reveal the gene variants, expression and regulatory activities
in different datasets, and the latter was developed to compare
different disease progression states. Both of them provide a
flexible and easy-to-use web approach for public and user-
own data, which is important for basic and clinical researchers

who are not familiar with bioinformatics tools. Based on these
systematically collected datasets, new molecular events could
be identified.

To construct a complete knowledge base of HF-related
genetic events, gene–HF associations were recognized from
all types of public databases and literature. All these
associations were integrated to form a complete disease-
omics knowledge graph which could be used for preci-
sion reasoning and decision for the diagnosis and treatment
of HF.

It is important to find a good research idea. Thus, a
literature discovery module was also designed to represent
the research hotspots related to HF in this platform. The
knowledge about gene–HF associations extracted from this
literature was also put into the ‘Knowledgebase’ to make the
information about HF-related genes more abundant. Finally,
an interaction platform was established to facilitate direct
data mining and knowledge retrieval.

Data collection and curation
Data collection
The first step in data and knowledge collection, sharing,
and exchange is to construct the standardizing disease term
set of HF. Considering lexical heterogeneity of HF, we inte-
grated the possible names from several sources: (i) UMLS,
Unified Medical Language System (11), (ii) ICD-10, Inter-
national classification of diseases-version 10, (iii) HPO,
human-phenotype-ontology (12), (iv) MeSH, Medical Sub-
ject Headings, (v) SNOMED-CT, Systematized Nomenclature
of Medicine-Clinical Terms, (vi) Medscape, (vii) DermIS,
Dermatology Online Atlas, and (viii) DO, Human Disease
Ontology (13). Finally, a complete list of 45 disease terms
was obtained (Supplementary file1).

Using the term set of HF as keywords, we collected
HF-related datasets from the three main repositories for
multi-omics data, i.e. GEO, SRA and ArrayExpress (14).
After manual calibration and curation, 253 datasets and
about 7842 samples, including three omics, i.e. genome, tran-
scriptome and methylation (with the proportions of 5.00%,
92.08% and 2.92%, respectively), and three species, i.e.
Homo sapiens, Rattus norvegicus andMusmusculus (with the
proportions of 33.18%, 19.90% and 46.92%, respectively),
were obtained to summarize the existing omics studies of HF
(Figure 2a).
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Figure 2. Four-function modules of HFIP. (a) Database; (b) Knowledge base; (c) Literature Base and (d) Tool pool.

Data mining and visualization
Through carefully manual calibration, labels of disease pro-
gression, sample status, organism and project descriptions
have been added to each sample. Based on these labels, users
can screen, group and perform secondary data mining in a
single dataset. Gene-oriented and dataset-oriented search and
analysis were provided. Some tools of multi-omics data analy-
sis were designed and integrated for all these datasets, includ-
ing differential expression analysis, variation annotations,
network module detection, etc. Corresponding visualizations
were also provided, which can be used to reveal the inter-
nal biological insight straightforwardly. Different tools can be
intelligently filtered and matched to each dataset of different
omics characteristics. Take the dataset of ‘GSE100532’ as an
example, the data mining process is as follows (Figure 3): (i)
clicking ‘DataMining’ to start data analysis, (ii) clicking ‘Add
to group’ to group samples, (iii) clicking ‘Click New Analysis
for data analysis’ to select data analysis process, (iv) setting
the parameters, including differential expression analysis and
Annotate Variation (ANNOVAR) tool (15), (v) generating
data analysis results, such as differentially expressed genes,
volcano maps, etc., (vi) accessing the gene list function display
and so on, such as enrichment and reactome, and (vii) display-
ing the result of Gene Ontology (GO) pathway enrichment
of differentially expressed genes. These related workflows
were built on the galaxy system (https://galaxyproject.org/) to
implement scheduling management.

In addition, these analysis and visualization tools formed
a tool pool, including 14 tools (Figure 2d) (i)—Basic Plot:
Boxplot, Scatter plot and Histogram (ii); Biological Statistics:

Venn and Heatmap (iii); Map and Translate: Snp2gene,
Orthology and Convert (iv); Ontology Annotation: GO
enrichment analysis and Gost (16); (v) Pathway Analysis:
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Reactome (17); and (vi) Network Analysis: Human Protein
Reference Database (HPRD) (18) and analysis of transcrip-
tion factor regulatory network (TF-TG). It can provide not
only multiple-dimensional analysis and visualization for the
datasets in the ‘Database’ but also a separate application
entry. Users can directly fill in or import the gene list of their
concern into the tool for analysis and achieve visualization
shows, and the results can be downloaded in pdf, png and jpg
formats (Figure 4). These tools all support the applications of
multiple gene types and multiple species.

Automatic data update and curation
In order to achieve continuous accumulation of data, an
automatic updating module was implemented by resolv-
ing the structural omics data records in the main pub-
lic database. According to the determined 45 HF items,
an automatic extraction program was designed for GEO
and SRA databases. We used the R package ‘GEOmetadb’
(19), ‘GEOquery’ (20) and ‘SRAdb’ (21) to periodically
obtain the description of the latest datasets and samples
and download the selected data. As of 31 October 2019,
the system had automatically extracted 1206 datasets and
13 765 samples.

In order to ensure the accuracy of the datasets related to
HF, a review mechanism was established. All automatically
updated data were stored on the MongoDB database in the
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Figure 3. The process of data mining, including data screening, grouping, analysis and visualization in HFIP.

form of metadata. The administrator can review and manage
the data through the data update management page, including
adding labels to each sample. Based on the metadata descrip-
tion information or the literature information, two labels, i.e.
‘Disease Status’ and ‘Group Label’, will be manually added
to each sample, and other labels can be obtained through
text mining. After manual review, the data can be released.
They were downloaded, processed and finally merged into the
database.

Knowledge collection
In order to facilitate clinicians or researchers to quickly
obtain HF-related genes, we systematically integrated gene–
HF associations from OMIM, ClinVar, DisGeNET and other
databases, as well as information from literature mining based
on confirmed HF keywords. At present, the knowledge base
already contains 1956 HF-related genes and their correspond-
ing mutation sites. Each gene–HF association is supported

by evidences, including publications, representative sentences
describing the association, and the HFIP score (Figure 2b).
The HFIP score was computed using a scoring system based
on Phenolyzer’s scoring model and knowledge automatically
from literature (22). The score range is 0 to 1 and concrete
rules are as follows:

(i) Data collection: We first obtained genetic disease
datasets from DisGeNET (6), Gendoo (23), Human
Gene Mutation Database (HGMD) (24), OMIM (25),
Orphanet (26) and GWAS Catalog (27).

(ii) Data screening: The standardizing HF term set was
matched with the gene–disease association data to
obtain the gene–HF associations.

(iii) Extraction of gene–HF associations from literature:
Based on textmining andmachine learningmethods, we
have discovered 4069 unique relationships among dis-
eases and genes, drugs, tests and surgery from approx-
imately 150 000 articles related to HF. The sentences
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Figure 4. The heatmap visualization tool in HFIP. The left side is the data upload and parameter adjustment panel, and the right side is the result display
and export panel.

describing gene–HF associations in the articles were dis-
played in the knowledge base as supporting evidence,
and the impact factors of the corresponding articles
were also saved.

(iv) Construction of weighted model: Due to the differences
in gene–disease data obtained from different databases
and articles published in journals of different qual-
ity, we established a weighted model in order to get
a comprehensive score. The different databases and
the description of the gene–HF associations in a sin-
gle database were given different scores according to
the reliability of its expression. The scores of gene–HF
associations in DisGeNET and Gendoo were extracted.
As for HGMD, it is professional knowledge base infor-
mation that has been manually verified, so its score
is set to 1. Others come from the scores of OMIM,
GWAS Catalog and Orphanet after normalization in
Phenolyzer. The weight ratio between the knowledge
bases was HGMD:DisGeNET:Gendoo:OMIM:GWAS
Catalog:Orphanet=2:1.5:1.5:1:1:1. The impact fac-
tors and the number of publications were also added
to the weighted module as quantitative indicators. The
impact factor ranges correspond to the score of 0–1:
0.1, 1–2: 0.2, 2–3: 0.3, 3–4: 0.4, 4–6: 0.5, 6–8: 0.6,
8–10: 0.7, 10–15: 0.8, 15–20: 0.9 and >20: 1. The
weight of knowledge base and literature mining was set
to 0.6:0.4.

(v) The score of each gene was finally normalized to the
range of 0–1. The weightedmodel satisfies the following
relationship (22):

S(Gene,Term)

=

∑
Diseasei in Disease Score(Gene,Diseasei)×Reliability(Diseasei)

Count(Disease)
(1)

where S(Gene,Term) is the weighted score of the gene–
term association. Term represents one of the terms extended
by HF (Supplementary file2), such as cardiac failure and
congestive heart failure. Diseasei includes the diseases or
phenotypes related to the term. i is the serial number of
the disease or phenotypes. Score(Gene,Diseasei) comprises
the corresponding scores between the i-th disease or phe-
notype related to the term and a gene. Reliability(Diseasei)
is the reliability of the i-th disease. Count(Disease) is
the number of diseases or phenotypes related to the
term.

The normalized model is as follows (22):

s̃(Gene,Term) =
S(Gene,Term)

max{S(Gene,Term)} (2)

Where max{S(Gene,Term)} represents the maximum
value of the correlation score between the gene and the term.
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Figure 5. Research hotspots and future research trends of an angiotensin-converting enzyme (ACE) gene in HF. The upper network diagram is the
medical knowledge map. The middle part is recommendations for high-impact-factor research topics related to HF+ACE. These numbers indicate the
average impact factor of related literature. The lower part is the research topic analysis, and the area of the circle represents the heat of the relation.
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A higher score indicates a stronger degree of association.
Researchers can use this as a reference to quickly check the
contribution of the candidate genes to HF, thereby narrowing
the range of candidate genes. In order to facilitate users to
query and judge the reliability of the gene–HF association,
we set up a gene search window. The basic information, HF-
related mutation sites of the gene and a network diagram of
gene–HF associations can be obtained from the window.

Literature discovery and recommendation
Researchers rely on knowledge to generate new assumptions,
especially in the domain of medicine. In order to automati-
cally develop new hypotheses and predict the prevalence of
existing topics, literature-based discovery algorithms were
applied to a large number of published articles. Based on
the key HF items, we systematically collected related knowl-
edge items from existing databases including OMIM, Clin-
Var, DisGeNET, Gendoo, HGMD, Orphanet, Genome-Wide
Association Studies database (GWASdb), Leiden Open Vari-
ation Database (LOVD), Pharmacogenomics Knowledgebase
(PharmGKB), The Genotype-Tissue Expression (GTEx) and
genome database (genomeDB) in the form of a triple of <SUB,
REL, OBJ>, where SUB was HF-related items, OBJ was the
types of related entities such as gene, drug, lab tests, etc.,
and REL was the relationship between HF and the object
entity. In this article, we have collected all HF-related arti-
cles from PubMed (around 150 000 papers). Two types of
analysis were conducted to predict the future hot topics: (i)
Singular value decomposition method was leveraged to rec-
ommend brand new topics in the future. (ii) Time-series-based
algorithm was applied to predict the trend of known topics
(Supplementary file2). The former was designed to develop
new topics in the future, the latter was to predict the preva-
lence of a given research topic. All these results constituted
the ‘LiteratureBase’.

The ‘LiteratureBase’ shows the field of HF-related analysis,
journals, organizations and countries with more reports on
HF (Figure 2c). Users can enter the types of HF and genes in
the search window to view the hot development trend of the
gene in different fields of HF and the hottest genes currently
studied in this field (Figure 5).

Discussion
With the explosive growth of omics data, we have shifted
from data accumulation to data analysis. These data appli-
cations greatly rely on data mining and knowledge collection.
However, they are widely distributed in different locations in
different forms. Thus, integrating and managing these data
and knowledge is the first step. In order to build an integrated
platform with HF as a theme, we collected a lot of HF-related
datasets and gene–HF associations, embedded many analysis
and visualization tools, and finally constructed a user-friendly
web interface. This is crucial for the systematic investigation
of HF pathologies or molecular mechanisms.

As a comprehensive platform for HF research, the HFIP
provides enriched HF-related datasets, 1956 HF-related
genes, HF-related research hotspots and 14 visualization
tools. Each dataset in HFIP includes data description informa-
tion such as GEO ID, omics type, species, organism, disease
status, and gene expression level and mutations. These data

labels and tools used in HFIP allow greater flexibility in
performing data analysis and visualization. The developed
platform is very convenient and effective for scientific research
and clinical workers working on HF.

Future work
To provide new HF-related datasets, we will continuously
update the datasets through the modules of automatic updat-
ing and manual verification in HFIP. The gene–HF associa-
tions from text mining will also be continuously added to the
knowledge base, and the specific role of genes on HF will
be more clarified. This platform will help medical research
to gain more knowledge and assist clinical decision-making
through the increased data and knowledge accumulated in
HFIP. The HFIP should also greatly contribute to a better
understanding of underlying mechanisms for complex HF
disease.

Supplementary data
Supplementary data are available at Database Online.
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