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Abstract
To meet the increasing demand for data sharing, data reuse and meta-analysis in the immunology research community, we have devel-
oped the data discovery system ImmuneData. The system provides integrated access to five immunology data repositories funded by the
National Institute of Allergy and Infectious Diseases, Division of Allergy, Immunology and Transplantation, including ImmPort, ImmuneSpace,
ITN TrialShare, ImmGen and IEDB. ImmuneData restructures the data repositories’ metadata into a uniform schema using domain experts’
knowledge and state-of-the-art Natural Language Processing (NLP) technologies. It comes with a user-friendly web interface, accessible at
http://www.immunedata.org/, and a Google-like search engine for biological researchers to find and access data easily. The vast quantity of
synonyms used in biomedical research increase the likelihood of incomplete search results. Thus, our search engine converts queries submit-
ted by users into ontology terms, which are then expended by NLP technologies to ensure that the search results will include all synonyms
for a particular concept. The system also includes an advanced search function to build customized queries to meet higher-level users’ needs.
ImmuneData ensures the FAIR principle (Findability, Accessibility, Interoperability and Reusability) of the five data repositories to benefit data
reuse in the immunology research community. The data pipeline constructing our system can be extended to other data repositories to build a
more comprehensive biological data discovery system.

Database URL: http://www.immunedata.org/

Introduction
In the era of big data, the exponential growth of biologi-
cal data, especially publicly available data, produces ample
opportunities for biological research and some challenges for
the researchers. They can reuse public data to raise and inves-
tigate further biological questions or evaluate current meth-
ods’ repeatability without spending an enormous amount of
time and money in generating data. Thus, data should be
managed in a findable, accessible, interoperable and reusable
manner. These criteria are called FAIR (Findability, Acces-
sibility, Interoperability and Reusability) guiding principles
(1). Several large immunological data repositories are funded
by the National Institutes of Health, National Institute of
Allergy and Infectious Diseases (NIAID), Division of Allergy,
Immunology and Transplantation to promote the reuse of
data. However, there is still room to improve the FAIR-ness
of those data repositories. Specifically, an index-and-search
system that grants access to those data resources can enhance
the findability and accessibility of data.

In this work, we have integrated five data repositories
funded by NIAID, shown in Table 1. ImmPort (2, 3) is
a data repository that contains data from NIAID-funded
immunology studies, including basic research and clinical
trials. ImmuneSpace (4) is a data management and anal-
ysis platform that mainly provides data from the Human

Immunology Project Consortium. ITN TrialShare (5) is a
clinical trial data portal for the Immune Tolerance Network
(ITN). It shares information about the ITN’s clinical studies
and specimens, as well as data and analysis results underly-
ing ITN’s publications. ImmGen (6) hosts microarray data
from the immune system of mice funded by the Immuno-
logical Genome Project. IEDB (7, 8) is a knowledge-based
resource (http://www.iedb.org) allowing users to search anti-
body and T-cell epitopes related to experimental data in
different species, such as humans, non-human primates and
other animal species. Epitopes involved in infectious disease,
allergy, autoimmunity and transplant are included. It also
hosts analysis tools for B-cell and T-cell epitopes. Unlike the
other four data repositories, this repository does not store the
raw data but the ‘conclusions’ of epitopes with the references.
Thus, we define those data as ‘knowledge.’

The data repositories are well designed, but data are stored
in substantially diverse structures. Researchers inevitably need
to search for different types of data crossing multiple data
repositories. Without an integrated index and search system,
this process would be time-consuming and frustrating. Fur-
thermore, a user might only be familiar with a few but not
all of these data repositories, so that some valuable datasets
may be neglected. Thus, an integrated data discovery system
containing these data repositories is desired to improve the
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findability and accessibility of available public immunological
data.

One significant challenge in data integration is the hetero-
geneity of the metadata. To solve this problem, we adopted an
existing unified metadata model, the DatA Tag Suite (DATS)
model (9). DATSmodel is a generic and platform-independent
model designed to store various types of biomedical data.
This model also facilitates effective searching and comparison
across multiple data repositories. In the future, this unified
DATS model will ensure the expandability of our system and
simplify the data sharing process with other databases or
search engines.

The DATS model we used in our system is DataMed
(9, 10). We retrieved 1268 datasets and 1 509 085 ‘knowl-
edge’ records from the five data repositories, as shown in
Table 1. After consultation with domain experts and Nat-
ural Language Processing (NLP) enhancement of the DATS
model adoption and metadata, we produced a database with
a unified metadata format.

We developed a user-friendly web interface with an
Elasticsearch-powered engine at (https://immunedata.org/) so
that immunologists can utilize our website without difficulty.

Immunedata website provides a one-stop, all-inclusive solu-
tion for data seekers that is time-efficient and easily accessible
in the field of Immunology. It will significantly promote the
efficiency of data searching and the capability to reuse public
data in this scientific community.

Methods and data description
Data source
Five different immunology databases are included in the
data discovery system: ImmPort (2), ImmuneSpace (4), ITN
TrialShare (5), IEDB (7) and ImmGen (6). IEDB’s meta-
data has been directly downloaded from the official website.
ImmGen’s metadata is deposited in GEO (https://www.ncbi.
nlm.nih.gov/geo/). However, ImmPort, ImmuneSpace and
ITN TrialShare provide neither data download function nor
any API. We created web crawlers for these three databases
using Python programming language.

Data representation
Metadata from different databases are in heterogeneous
schemas so that standardization of metadata is required to

Table 1. Summary of five data repositories (27 November 2019)

Type Number of datasets Clinical researches Basic research Species

ImmPort Data 301 Yes Yes Multiple
ImmuneSpace Data 74 Yes Yes Homo sapiens
ITN TrialShare Data 28 Yes Homo sapiens
ImmGen Data 865 Yes Mus musculus
IEDB Knowledge 1 509 085 Yes Yes Multiple

Figure 1. Overview of ImmuneData system architecture.
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improve these databases’ interoperability. We utilized and
customized the extended elements of DATS to accommodate
immunology data while keeping the generic core elements
applicable to any data type. Domain experts inspected exist-
ing metadata defined in each resource to figure out their
overlap, uniqueness and supported use cases. The principal
inclusion criteria of existing ontologies and data standards
are based on the importance of the terms in the immunol-
ogy research (e.g. data sharing, knowledge dissemination,
standard development and integrative analyses).

The schema of DATS model can be obtained from bio-
CADDIE project (9) at https://biocaddie.org/group/working-
group/working-group-3-descriptive-metadata-datasets. In the
record detail pages, more information is listed in the DATS
structure such as title, dataset information (id, descrip-
tion, etc.), accessibility (link, authorizations, etc.), dimension
(species, conditions, study type, etc.), disease, author, study
group, original data repositories and more. Such information
helps users to identify and download the data they need.

Table 2. Searching results of 10 keywords

Precision Retrieved datasets Correct

Lupus 1 11 11
Rheumatoid arthritis 0.86 7 6
Multiple sclerosis 1 9 9
Allergy 0.86 14 12
HBV 1 5 5
AIDS 0 2 0
Asthma 1 15 15
Flu 1 51 51
Tuberculosis 1 5 5
Cancer 1 9 9
Total 0.96 128 123

Microservices
We use microservice architecture to implement our essen-
tial functions. With microservices, the application can be
divided into small components, independent from each other.
Instead of a traditional, monolithic approach, where an
application is built in a single large construction, multiple
components separately perform various tasks and then cou-
pled into one application. Each of these components is a
microservice. We have deployed and optimized NLP and ter-
minology microservices on AWS docker instances. A testing
service was also built to validate the performance of the
application. The system microservice architecture is shown in
Figure 1.

Under the guidance of domain experts, we decided on
our data schema and field mapping strategy. The metadata
was exacted from data resources and mapped into a uni-
form schema according to the mapping strategy. Then, ter-
minology and NLP services were involved in enhancing the
metadata. After that, the enhanced metadata were stored
in a MongoDB server. Finally, the elastic-search powered
interface was used to provide the searching function to the
end users.

Google-like searching
After a user submits a query, biomedical concepts are extra-
cted by the NLP service. Multiple major ontologies or con-
trolled vocabulary thesaurus, including MeSH (https://www.
ncbi.nlm.nih.gov/mesh) (11), SNOMED CT (http://www.
snomed.org/) (12), Gene Ontology (https://www.geneon
tology.org/) (13), Foundational Model of Anatomy (https://si.
washington.edu/projects/fma) (14), NCBI Taxonomy (https://
www.ncbi.nlm.nih.gov/taxonomy) (15) and Hugo Gene
Nomenclature (https://www.genenames.org/) (16), are used

Figure 2. The landing page of ImmuneData.org.
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in our terminology service to expand the user’s query to
a list of synonyms to improve query coverage. The termi-
nology service is based on SciGraph (https://www.springer
nature.com/gp/researchers/scigraph) and Neo4j (http://
neo4j.com/). In our search engine, Elasticsearch (https://
www.elastic.co/) serves as the core to perform the searching
function. Elasticsearch is the most popular enterprise search
engine based on Lucene (https://lucene.apache.org/). It is a
distributed, multitenant-capable full-text search engine with
schema-free JSON documents. All the metadata from the
ingestion pipeline was indexed in the Elasticsearch endpoint
and connected to the user interface.

Web interface
We have established a user-friendly PHP-based web appli-
cation by following the Model-View-Controller pattern.

Our interface provides search results and faceted navigation,
which help end-users filter and refine results. Details of the
interface will be described in the ‘Results and Discussions’
section.

Results and discussions
ImmuneData: an overview
Currently, our database contains datasets from five data
repositories. Those datasets can be grouped into two cate-
gories based on the data type they store. One category is
‘experimental data’, which contains raw data from immunol-
ogy assays or tests. We were able to catalog 1268 datasets of
this type. The other category is ‘knowledge’ data. Each knowl-
edge entry is either a conclusion from biological experiments
or information about how this conclusion is reached, i.e.
reference and metadata of bioassays. Raw data is not included

Figure 3. The result page of basic search using ‘influenza’ as the keyword.
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Figure 4. Advanced search builder page.

in these entries. For this category, we recorded 1 509 085
knowledge entries.

Searching function
In the biology domain, a term may have many different syn-
onyms. For example, flu was also known as influenza and was
called ‘grippe’ in the old days. Thus, in addition to the user’s
keywords, we also use their synonyms to perform the query.
For example, when searching for influenza, we build the
query (data) ‘flu’ OR [(‘Influenzas’ OR ‘Influenza Human’ OR
‘Human Influenzas’ OR ‘Influenza (disorder)’ OR ‘Influenzas,
Human’ OR ‘Human Influenza’ OR ‘Flu’ OR ‘Human Flu’
OR ‘Influenza Humans’ OR ‘Influenza, Human’ OR ‘Grippe’
OR ‘Flu, Human’)]. This search strategy improves the cov-
erage of the results. This synonym search function can be
disabled by quoting the keywords, i.e. when using ‘flu’ as the
keyword between quotation marks, influenza and grippe will
not be included in the query. Searching with ‘flu’ only returned
460 results, and 58 of them are datasets, while searching
with influenza (without quoting) returned 6520 results, and
98 of them are datasets. For example, in the dataset ‘Vaccina-
tion with drifted variants of H5 hemagglutinin protein elicits
a broadened antibody response’, the author used influenza
but not flu in the description, which can only be found by
the synonym search. To make sure it does not compromise
search results’ precision, we tested the search function with
10 important disease names (Table 2) as keywords. There is
no evidence showing that the search’s precision was compro-
mised, and the overall precision is 96.1% (123/128) in those
10 search results. The only termwith a low precision is related
to ‘AIDS’, which returns studies such as ‘memory aids’. This
kind of false-positive is hard to eliminate.

We offer two search modes: standard Google-like search
and advanced search to accommodate different levels of users.
In our system, rich information is provided for each returned

result. For example, when we conduct a basic search using the
keyword ‘influenza’, 31 642 results were returned, as seen in
Figure 2. Using the advanced search function, one can build a
customized search with various fields, such as Title, Author,
Description, Disease, Affiliation, Publication, Dimension and
Study, as you can see in Figure 4. For example, we can search
for influenza in the disease field and NIAID in the affilia-
tion field and get two datasets about influenza generated by
NIAID.

When a user is interested in information on a specific epi-
tope, they can directly search for its amino acid sequence. For
example, if we search for SIINFEKL, a CD8 epitope in the
influenza virus, 688 knowledge records describing this epitope
were returned.

In the search result page in Figure 3, the title, ID, descrip-
tion and related reference’s PubMed ID are listed for each
result. In the left panel of the search results page, a user can
select the data type and the data source of those results. On
the right panel of the page, the recent search history is listed
at the top. Additionally, synonyms used in the search and the
queries command are also listed in the right panel.

Conclusion and future directions
In summary, we established a comprehensive database sys-
tem containing several major immunology data repositories.
It features a unified DAT format of metadata and an optimized
search function, making the database user-friendly, espe-
cially to experimental biologists who may not have advanced
computer skills. It will encourage the reuse of data in the
immunology research community. The data integration stan-
dards, technologies and tools in this system can also be used in
other data repositories. In the future, we will integrate more
immunology data repositories into the ImmuneData system,
as well as extend our pipeline to other data repositories
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in different biomedical sub-domains and form a univer-
sal data discovery system for the whole biological research
community.
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