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Abstract
Antimicrobial Peptides (AMPs) have been considered as potential alternatives for infection therapeutics since antibiotic resistance has been
raised as a global problem. The AMPs are a group of natural peptides that play a crucial role in the immune system in various organisms
AMPs have features such as a short length and efficiency against microbes. Importantly, they have represented low toxicity in mammals which
makes them potential candidates for peptide-based drugs. Nevertheless, the discovery of AMPs is accompanied by several issues which are
associated with labour-intensive and time-consuming wet-lab experiments. During the last decades, numerous studies have been conducted on
the investigation of AMPs, either natural or synthetic type, and relevant data are recently available in many databases. Through the advancement
of computational methods, a great number of AMP data are obtained from publicly accessible databanks, which are valuable resources for mining
patterns to design newmodels for AMP prediction. However, due to the current flaws in assessing computational methods, more interrogations
are warranted for accurate evaluation/analysis. Considering the diversity of AMPs and newly reported ones, an improvement inMachine Learning
algorithms are crucial. In this review, we aim to provide valuable information about different types of AMPs, their mechanism of action and a
landscape of current databases and computational tools as resources to collect AMPs and beneficial tools for the prediction and design of a
computational model for new active AMPs.

Introduction
Antimicrobial peptides (AMPS)
In the past few decades, antibiotics have been used to defeat
infectious diseases and most of them were discovered dur-
ing the 1940s to 1960s (1). However, the increased usage
of conventional antibiotics has resulted in significant rates
of resistance in microorganisms, raising concerns about the
spread of infectious diseases. Antimicrobial resistance (AMR)
could be detected using a variety of experimental and tech-
nological methods, such as phenotypic and molecular-based
techniques, as well as the more recently developed sequencing
whole-genome sequencing (WGS) and whole-genome metase-
quencing (WGM), MALDI-TOF MS and Infrared (IR) spec-
troscopy (2). AMR has become an increasingly urgent chal-
lenge in healthcare (3), with antimicrobial-resistant infections
estimated to increase to 10 million cases annually by 2050
(4). It has recently been estimated that at least 700 000
people die from antimicrobial-resistant (AMR) infections
every year (5, 6). In light of the 2020 COVID-19 pan-
demic (4, 7), antibiotic-resistant issues are even more exac-
erbated due to increased different antibiotics prescribed to

COVID-19 patients (8). In addition, the existing repertoire
of antibiotics does not offer solutions for multidrug-resistant
bacteria, so-called superbugs. Therefore, the global health
burden has led to an urgent demand for the expansion of
new classes of antibiotics. A highly promising approach to
overcome this problem is the development of AMP-based
drugs.

AMPs are naturally present in the innate immune system
and have broad-spectrum antimicrobial properties aiding in
the defense against invading microorganisms (9). They are
short cationic peptides of up to 100 amino acids (9), with
an alpha-helical secondary structure and amphiphilic surface
properties, which are considered essential for establishing
antimicrobial activity (10). AMPs’ main mechanism of action
(MOA) is the disruption of the target microorganism’s cell
membrane, through hydrophobic or electrostatic interactions,
causing lysis of the cell (11). AMPs pose several advantages
over conventional antibiotics including the rapid killing of
bacteria owing to their broad-spectrum activity, antimicrobial
immunomodulatory effects and the less likelihood of AMR
(11, 12).
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The initial study on AMPs was performed by Dubos et al.
in 1939 over the soil bacillus strain named gramicidin which
is suitable for the typical treatment of wounds and ulcers
(13). Recently, AMPs have drawn much attention due to their
biological and biomedical applications especially in design-
ing various types of APM-based drugs (14, 15). Over 5000
AMPs have been so far identified or synthesized in a wide vari-
ety of organisms ranging from prokaryotes (e.g. archaea and
bacteria) to eukaryotes [e.g. yeasts, fungi, viruses, parasites,
protozoa, insects, plants and animals (invertebrates and ver-
tebrates)] (13). For example, more than 300 different AMPs
exist in the skin of frogs, which is a crucial part of the innate
immunity against a wide range of microbes including viruses,
bacteria and fungi (13). The gene expression of AMPs is cor-
related with their activity and maintained at an optimal level.
While some AMPs have tissue-specific expression patterns like
human β-defensin 1 (hBD-1) or mouse β-defensin 1 (mBD-1),
their dysregulations are attributed to the pathological state
(16). It has been shown that β- defensins are upregulated in
pneumonia (17) and cystic fibrosis (18),. while the expression
of hBD-2 and hBD-3 is decreased in atopic dermatitis (19).

Besides their antimicrobial activity and immune regula-
tory roles, AMPs have antiparasitic, antiviral, anti-biofilm,
anti-inflammatory, anticancer, insecticidal, wound-healing
and/or chemotactic properties which make them interesting
candidates for novel therapeutic strategies (20–22). There-
fore, AMPs are capable of targeting different types of diseases
such as infectious diseases, diabetes, cancer, cardiovascular
disease and Alzheimer’s disease (23–25). Although the antimi-
crobial mechanisms of AMPs remain poorly understood, it
has been known that AMPs act through the destruction of
cell membranes, interference with DNA, RNA, disruption
of enzymatic/protein activity, interference with cell division
and the inhibition of cell wall synthesis (26). In particular,
buforin II is a histone-derived AMP that is mainly found in
frogs that destroy Escherichia coli (E.coli) by binding their
DNA and RNA, but without bacteria membrane permeabi-
lization. In addition, it has been shown that β defensin 4, α
defensin 1 and PR-39 play key roles by targeting the intracellu-
lar bacterial components in humans (27). Nisin and lysozyme
as encouraging examples of AMPs which are firstly isolated
from Lactococcus lactis subsp, human tissues and body fluids,
respectively (28). Later, a great number of membrane-lytic
peptides were extracted from amphibians, insects and mam-
mals in the 1980s (24). For instance, melittin, mastoparans,
cecropins, defensins andmagainins are isolated from bee wasp
venom, insects, mammalian neutrophils and frog skin, respec-
tively (29). Since then, compelling evidence has demonstrated
that there is an interspecies variation in either the sequence or
the structure of AMPs isolated from different organisms (30).

Despite the capacity of AMPs as promising alternatives to
conventional antibiotics, the number of issues related to the
production of AMPs has limited AMPs’ applications in clin-
ics (13). These difficulties are assigned to the high toxicity,
reduced activity due to the extreme environmental conditions
(susceptibility to proteases and extreme pH), lack of speci-
ficity, folding problems in large AMPs, bacterial resistance
and highly expensive production costs (13). In general, AMPs
are short in length, highly selective, efficacious and generally
well-tolerated (31–33). Nevertheless, large-scale detection of
AMPs is costly and challenging. In current years, computa-
tional methods have attracted considerable attention to AMP

prediction (34). To resolve this issue, many computational
methods have been recently developed to predict and design
putative AMPs in silico; databases and computational meth-
ods as common tools for the prediction of AMPs contain a
great number of AMPs. The Antimicrobial Peptide Database
(APD3), is the commonly used AMP database, which cov-
ers more than 2600 AMPs (35). It is difficult to classify
natural AMPs due to their diversity (36). AMPs are partic-
ularly categorized based on their source, activity, structure,
sequence, biosynthesis or functions (20, 21, 37). In the fol-
lowing section, we provide a scheme for both the structure
and function of AMPs.

Functions, structure and major activities of AMPs
AMPs are diverse and distinct molecules that are distin-
guished by their chemical structures and amino acid com-
position. Most AMPs are less than 50 amino acids, with
net cationic charge ranging from +2 to +9 and amphiphilic
with the molecular weight of <10 kDa containing hydropho-
bic residues (34, 38). On the other hand, most of these
cationic peptides are considered as a heterogeneous group
with a length between 12 and 48 residues of amino acid
and hydrophobic characteristics to form amphipathic-helix
in solvents as fluoro-ethanol that mimics cell membrane (39).
Notably, a direct correlation between the charge of AMPs and
their antimicrobial activities has been indicated; an increase in
the charge of peptides leads to an improvement in the activ-
ity of peptides. As an illustration, an increase in the charge of
magainin 2 from +3 to +5 enhances the antibacterial activ-
ity against both Gram-positive and Gram-negative bacteria.
In vice versa, these AMPs do not adversely affect eukaryotic
membranes. For example, an increase to +6 or +7 leads to
an increase in hemolytic activity and the loss of antimicrobial
activity (37).

All AMPs were considered cationic in the late 90s, but
later with the discovery of negatively charged AMPs in 1997,
this view was changed (13). Some natural peptides are neg-
atively charged, such as maximin H5, dermcidin and enke-
lytin, which are enhanced by their activities by combination
with zinc or highly cationic peptides (13, 40). AMPs are
phospholipid-rich and could act through a lipid bilayer in
a detergent-like manner, solubilizing it into micelles and/or
allowing it to penetrate by forming pores. Both interactions
generate transient membrane permeation and cytoplasmic
leakage depending on the AMP concentration which might
cause cell death (41). In addition, AMPs interfere with the
intracellular activities of the bacteria by the inhibition of intra-
cellular activities, such as cell division and biosynthesis of
proteins, nucleic acids and components of the cell wall (41).

AMPs with the structural and functional variety are
obtained from three sources: natural sources like microbes,
plants, animals and insects, which are synthesized by ribo-
somal or nonribosomal approach, recombinantly expressed
in microorganisms and chemically synthesized sources (42).
While ribosomal AMPs are produced by all the species of
life such as mammals, birds, amphibians, insects, plants or
particular microorganisms, nonribosomal AMPs are mainly
synthesized by bacteria and fungi (43, 44). In terms of chemi-
cally synthesized peptides, firstly Bruce Merrifield introduced
solid-phase peptide synthesis (SPPS) in 1963 (45). Currently,
the chemical synthesis of peptides has been significantly
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developed owing to the reasonable production price com-
pared to recombinant production (46). Chemically synthe-
sized AMPs are advantageous in comparison to other methods
since there is a possibility to produce unnatural amino acids,
D-amino acids and other building blocks with a noticeable
quantity and quality (47).

A broad-spectrum function and the structure of APMs
are excessively attributed to the post-translational modifica-
tions (PTMs) mediated by proteolytic cleavage, phosphoryla-
tion, glycosylation, amidation, halogenation, D-amino acids,
disulfide bridge and cyclization (13, 48). The 3D structures
of AMPs have been determined by circular dichroism spec-
troscopy, X-ray crystallography and nuclear magnetic reso-
nance (NMR) (28, 49). The first structure human α-defensin
and neutrophil peptide 3 was characterized by X-ray crys-
tallography in 1991, and then the structure of the human
neutrophil peptide 1 was determined byNMR (50, 51). AMPs
are classified based on their structure into four broad families:
α-helix, β-sheet, loop and extended. AMPs with α-helix and
β-sheet structures are the most prevalent structures in nature
(Figure 1) (13). Cathelicidin LL-37, human lactoferricin, mag-
ainin and cecropin are the most studied α-helical peptides
(52–55). Studies showed that helical peptides are destabi-
lized in an aqueous solution and undergo an amphipathic
structure upon interaction with the biological membrane (56).
Cathelicidin contains 12–80 amino acids and adopts a diver-
sity of structures and exists in a large group of mammals
such as mice, goats, sheep, horses and bovines. Lactofer-
rin is found in neutrophils and the secretions of the exocrine
glands of mammals. Magainins are a class of helical peptides
that are mainly effective against Gram-positive and Gram-
negative bacteria, fungi, yeast and viruses, and isolated from
the African clawed frog Xenopus laevis (57). Cecropins are
the first discovered AMPs in eukaryotes in the silk moth which
have cationic, amphipathic activities against Gram-positive
and Gram-negative bacteria and fungi. In recent years, these
peptides have been identified in fruit flies (Drosophila) and
marine invertebrates such as shrimp, oysters and horseshoe
crabs (37). Aurein peptides are another example of α- helical
AMPs and consist of more than 30 aurein peptides and five
different families primarily secreted from the granular dorsal
glands of the Australian Green and Golden Bell Frog Lito-
ria aurea and the Southern Bell Frog Litoria raniformis (58).

Figure 1. Structural diversity of AMPs based on their secondary
conformations using Protein Data Bank (PDB). [(a) 2K6O: Antimicrobial
Peptide, the α-helical structure of cathelicidin LL-37 in Homo sapiens. (b)
1RKK: Antimicrobial Peptide, β-sheeted polyphemusin in Limulus
polyphemus. (c) 1G89: Antimicrobial Peptide, extended indolicidin in Bos
taurus. (d) 1FQQ: Antimicrobial Peptide, Antibiotic and mixed structures
like human β- defensin-2 in Homo sapiens].

Most Aurein peptides are active against Gram-positive bac-
teria, such as Staphylococcus aureus and Staphylococcus epi-
dermidis. Furthermore, aurein peptides 1.2, 3.2 and 3.3 show
the greatest activity against more than 30 various types of
cancer (37). Interestingly, Aurein peptides are rich in specific
amino acids. For instance, histatin as an antimicrobial pep-
tide isolated from human saliva is histidine-rich and defeats
Candida albicansmushrooms (59, 60) while bactenecin Bac-5
and Bac-7 peptides are prolin-rich and possess an irregu-
lar structure (61). β-sheet peptides contain cysteine residues
with the rigid structure stabilized with disulfide bonds and an
unaltered conformation in contact with the cell membrane.
Protegrins (a member of the cathelicidin family), defensins
and tachyplesins have the β-sheet structure (37). AMPs can
be found in leaves, flowers, seeds and tubers of plants.
Some are cysteine-rich with multiple disulfide bonds playing
key roles in high chemical, thermal and proteolytic stabil-
ity. Defensins, thionins, hevein-like peptides, knottin-type
peptides (linear and cyclic), α-hairpinins, lipid transfer pro-
teins and the snakins family are the examples of plant-derived
AMPs (62, 63).

Mechanism of AMPs action
Antimicrobial peptides are unique molecules and their MOA
has been studied extensively since they were discovered. It
is important to understand the MOA of these AMPs to
facilitate further development as therapeutic agents. It was
originally thought that membrane targeting was the only
MOA, but there is increasing evidence now that AMPs have
other modes of action. The MOA can be divided into two
major classes: direct killing and immune modulation (64).
As described above, AMPs have immune-modulatory and
antimicrobial roles through directly targeting membrane and
non-membrane regions of microbes (27). In most cases, the
positive net charge of AMPs displays a significant role in
antimicrobial activity via the strong interaction with nega-
tively charged bacteria surfaces and thus disruption of the
physical integrity (26). Four different models for the antimi-
crobial activity of AMPs have been suggested which lead to
membrane disruption through permeabilization, including a
barrel-stave, aggregate channel or toroidal pore and carpet
models (Figure 2) (65).

In the barrel-stave model, AMPs are inserted perpendicu-
larly in the membrane bilayer and form a pore. In this pore,
the hydrophobic sides interact with the lipids of themembrane
and form the interior side of the channel. In this way, they act
as pore formers or act as metabolic inhibitors in bacteria (66).
Compelling evidence showed that alamethicin (67), pardaxin
(68) and protegrins (66) form barrel-stave channels. In the
toroidal pore model, the peptides are inserted vertically into
the membrane and form a curve structure and a pore through
the peptides and the head phosphates of phospholipids. Some
peptides are permitted to enter the cytoplasm using this model
and target intracellular components (69) including magainin
2 (70), lacticin Q (70), aurein 2.2 (71) and melittin (70).
In the carpet model, the AMPs cover the surface of the
membrane and cause tension which leads to membrane disin-
tegration andmicelle formation. Some AMPs such as cecropin
(72), indolicidin (73), aurein 1.2 (73) and LL-37 (74) form
carpet models. These three models are suggested that lead
to the breakdown of membrane integrity resulting in mem-
brane dysfunction, and leakage of metabolites and ions (75).
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Figure 2. Schematic representation of the potential mechanism of membrane disruption and/or translocation by antimicrobial peptides. (a) Carpet
model: Another face of the membrane is covered by AMPs to form a ‘carpet’ and the membrane undergoes some perturbation and deformation. (b)
Barrel-Stave model: AMPs interact laterally and form transmembrane pores. (c) Toroidal pore model: AMPs penetrate the bilayer membrane and
form a toroid of high curvature. (d) Aggregate model.

This membrane permeabilization is also contributed to the
subsequent translocation of AMPs into the intracellular
region and blocks critical cellular processes such as pro-
tein/ nucleic acid synthesis, enzymatic/protein activity, protein
folding, intracellular pathways and/or cell wall synthesis (75).

Furthermore, AMPs are mainly produced by some
immune cells such as neutrophils and macrophages and exert
immunomodulatory activities such as the recruitment and
activation of immune cells, initiation of adaptive immu-
nity, reduction of inflammation (27), chemo attraction of
immune cells, induction of chemokine, cytokine, and his-
tamine production and secretion, wound healing stimulation,
angiogenesis and adjuvant city (76).

The rest of the paper is structured as follows. The five
most studied AMPs are described in the section ‘Classification
of AMPs based on biological functions’. In the next section,
major AMP databases will be reviewed. Afterward, computa-
tional methods for the prediction of AMPs will be described
in detail. Finally, available tools for AMP prediction will be
reviewed in the section ‘Tools for AMP prediction’.

Classification of AMPs based on biological
functions
3000 synthetic and natural AMPs have been identified and 7
have received approval from the U.S. Food and Drug Admin-
istration (FDA) (77). In humans, AMPs are mostly present in
lymphocytes and epithelial surfaces of different organs includ-
ing the eye, skin, lung, intestines, etc (22). A great number
of AMPs (e.g. alpha-defensins, lysozyme, etc) are produced
in paneth cells, primary secretory epithelial cells in the small
intestine, thereby, controlling the number of bacteria in the
small intestine. Defensins, lysozyme and cathelicidins in the
tear fluid protect the eyes from infections (22).

According to AMPs’ biological functions, AMPs could
be divided into various groups such as antibacterial pep-
tides (ABPs), antiviral peptides (AVPs), antifungal pep-
tides (AFPs), anticancer peptides (ACPs) and antiparasitic
peptides (APPs). Categories of AMPs discussed based on the

Databank antimicrobial peptides (dbAMP). In the dbAMP
database, ABPs comprised the largest proportion, approx-
imately 35.62%, followed by AFPs, which account for
14.31%, and, ACPs, AVPs, toxic peptides and APPs account
for about 6.01%, 5.07%, 0.59% and 0.49%, respectively. In
addition, the dbAMP database contains 37.91% of various
other peptides, which are known as disease-associated pep-
tides and new mechanism-associated peptides (Figure 3) (78).

Antibacterial peptides (ABPs)
ABPs are cationic AMPs, which have been well documented
for their role in the development of antibacterial drugs.
Despite eukaryotic membranes with zwitterionic lipids, bac-
terial membrane lipids such as phosphatidylglycerol (PG),
cardiolipin (CL) or phosphatidylserine (PS) have negatively
charged residues with lipids bearing phospholipid head
groups which predispose their membrane to the disruption
(34). These AMPs frequently fold into amphiphilic α helices
exposing both hydrophobic and hydrophilic surfaces (79).
Nisin (as an ABP) and vancomycin (as an antibiotic) func-
tion through the blockage of cell wall synthesis (13). They are
accumulated on the negatively charged outer membrane of the
Gram-negative bacteria or the cell wall of the Gram-positive
bacteria leading to the formation of membrane-spanning
pores, inhibition of cell wall biosynthesis, and thereby, dis-
ruption of membrane integrity (80). Once the bacteria are
penetrated, they interact with intracellular components to
destroy them. Some of ABPs with low concentrations and
without interacting with the membrane, lead to the death of
bacteria by inhibiting many significant pathways inside the
cell such as DNA replication and protein syntheses such as
buforin II, drosocin, pyrrhocoricin and apidaecin (13).

The primary link of peptides with the bacterial membrane
happens via electrostatic interactions between the cationic
peptide and anionic lipopolysaccharides (LPS) in the outer
membrane leading to membrane disorder (49). Bacteriocins
are the subset of ABPs which are mainly classified into
two categories: lantibiotics and non-lantibiotics. Lantibiotics
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Figure 3. Graphic representation sources of AMPs in the antimicrobial peptide database (dbAMP 2.0) in 2022 (78).

comprise the nonnatural amino acid lanthionine (37). Nisin
and mersacidin belong to the family of antibiotics which are
produced by Lactococcus lactis and Bacillus sp, respectively.
It has been shown that nisin and mersacidin are active against
antibiotic-resistant Gram-positive bacteria (37).

Antiviral peptides (AVPs)
Viral diseases are the foremost cause of illness and mortal-
ity worldwide and more than 200 viruses are accounted for
a variety of human diseases (81) like influenza (IAV), West
Nile Virus (WNV), Epstein-Barr virus (EBV), cytomegalovirus
(CMV), respiratory syncytial virus (RSV), hepatitis B and C
viruses (HBV and HCV, respectively), herpes simplex virus
(HSV), human immunodeficiency virus (HIV), rabies virus
and Ebola virus (81–83). So far, 1.5 million deaths due to
HIV, 400 million cases due to HBV or HCV, 80% of liver
cancer deaths related to hepatitis viruses, 500 000 cervical
cancer cases, and 250000 deaths associated with HPV have
been reported by the World Health Organization (WHO)
(82). Among over 60 antiviral drugs approved by the FDA,
around half of them have been used to treat HIV-1 and the
rest are used to treat HBV, HSV, varicella-zoster virus (VZV),
CMV, IAV and HCV (83). Therefore, the low access to ther-
apeutic possibilities for many viral infections emphasizes the
efforts to develop new and more effective antiviral drugs. In
recent years, 15 peptide-based drugs which are in different
stages of clinical trials have provided new opportunities to
combat wide-spectrum viruses. However, none of the ACPs
has cationic properties and are widely used (13, 81). AVPs
have cationic features with virucidal activity: They mainly
interfere with the virus replication by targeting DNA or RNA
after binding to their envelopes and causing membrane insta-
bility (13, 81). As a result, antiviral drugs have mostly
two types of mechanisms of action, i.e. virus targeting and
host targeting drugs that can inhibit various transcriptional

and replication-related enzymes and lead to destroy a viral
pathogen or inactivate their infectiveness (13).

Antifungal peptides (AFPs)
Fungi are considered as a unique kingdomwith different char-
acteristics than other eukaryotic kingdoms such as plants,
animals and are more complex than viruses or bacteria. They
are used in the industry to produce peptides, vitamins, antibi-
otics, organic acids, enzymes, etc. (84). The cell wall of fungi
is composed of chitin, 1,3-β- and 1,6-β- glucans, proteins and
other polymers of the complex cellular organizations (85).
Over 400 species are accountable for various infectious dis-
eases in humans (86). In most cases, fungal infections may
lead to serious problems in people who are very sensitive, such
as mainly immunocompromised, elderly, and transplanted
subjects, cancer patients and premature infants, and the
elderly with significant associated morbidity/mortality (85,
87). Recent reports suggest that current antifungal drugs have
caused a significant rise in drug-resistant strains and their
incidence is on the increase. Therefore, is need alternative
antifungal drugs that are capable of overcoming resistance
mechanisms (88, 89).

AFPs have provided a great extent of advantages by being
effective against multiple targets and developing less resis-
tance (88, 89). AFPs have been extracted from many natural
resources such as plants (85), amphibians (90), bacteria (91),
fungi (92), marines (93) and insects (94). Most AFPs have a
length of ∼50 amino acid residues in linear or cyclic struc-
tures with hydrophobic or amphipathic properties, cationic
and cysteine-rich proteins (CRPs) (95, 96). AFPs play key
roles in many action mechanisms of cells such as inhibition of
DNA, RNA and protein synthesis, binding to DNA or RNA,
membrane permeabilization, inhibition of cell wall synthesis
and enzyme activity, induction of apoptosis and repression
of protein folding (95). Lytic peptides of fungi bind to the
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membrane surface and can destroy the cell membrane with
or without crossing the membrane (13). There is no direct
correlation between the structure of AFPs and the type of
target cell. For example, AFPs have members from various
structure classes like α-helical (D-V13K and P18), extended
(indolicidin) and β-sheet (defensins) (13).

Anticancer peptides (ACPs)
Despite a wide variety of cancer treatment methods, this dis-
ease is one of the most common causes of death worldwide
(97). A common method for treating cancer is chemotherapy,
which damages both cancerous and normal cells by inhibit-
ing DNA replication. On the other hand, chemotherapy drugs
cause chemical resistance, which results in a low success rate
and an increased risk of recurrence (98, 99). Besides, there
is a well-known reciprocal relationship between infection and
cancer which is associated with the weak immune system to
provide a proper situation for cancer and infection (100–102).
In recent years, some AMPs have exhibited antitumor activ-
ity called anticancer peptides (ACPs), acting as mitogens
and signaling molecules. ACPs are described as promising
chemotherapeutic drugs in the future, particularly owing to
the low resistance, minimal side effects, high specificity and
proper solubility (103). ACPs are functionally categorized
into two classes: ACPs with dual activity against cancer cells
and bacteria, but not normal cells, and ACPs with cytotoxic
function against microbial infections, cancer cells and also
normal cells (104, 105). These peptides are typically less than
50 amino acids and possess high hydrophobicity and positive
net charge (106).

The physicochemical properties of cancer cells provide
the basis for the function of ACPs. Generally, eukaryotic
cells are bilayered membranes containing asymmetric zwit-
terionic phospholipid composition (107). The double-layer
membrane has phosphatidylcholine (PC) and sphingomyelin
(SM), phosphatidylethanolamine (PE) and phosphatidylserine
(PS) (107). Despite the healthy cells, PS, a phospholipid with
a negative net charge, is translocated from the inner to the
outer membrane in cancer cells (108). Owing to the highly
cationic and amphipathic features, AMPs target cancer cells
exist. Thus, ACPs are attached according to their cationic
and amphipathic characteristics by electrostatic interactions
with a negative net charge in the outer membrane of can-
cer cells. These anionic molecules can affect with the utmost
selectivity and toxicity through the destabilization of the
membrane integrity (108). In addition to the membranolytic
mechanism, ACPs promote necrosis or apoptosis in cancer
cells by inducing mitochondria-derived pathways (105, 108–
110). Hence, the negative charge of the cancer cell membrane
is an important factor to promote the ACPs’ electrostatic
interaction (111).

Antiparasitic peptides (APPs)
Parasitic diseases like malaria, leishmaniasis, trypanosomia-
sis, schistosomiasis and chagas have imposed a great burden
on humans, by mostly affecting the poor population. The
lack of suitable vaccines and drugs without causing resistance
necessitates the development of new drugs (13). APPs are
short in length (∼ 5–30 amino acids) which target Protozoa
through plasma membrane disruption and consist of a smaller
group of AMPs compared to the other four AMP classes (13).

Magainins and cecropins are the first APPs, reported 20 years
ago, which are active against Paramecium caudatum (13).
APPs can be isolated from the host including mosquitoes and
other invertebrates (112–115). It has been reported that APPs
have great potential for treating diseases including protozoan
parasites (114). Despite the multicellularity of some para-
sitic microorganisms, antiparasitic peptides act in the same
way as other AMPs, directly targeting and killing cells by
destabilizing cell membranes (13).

Major AMPs databases
A multitude of evidence has shown that AMPs have remark-
able antimicrobial effects, particularly against the increasing
number of resistant microbes. However, many of them are not
approved by FDA and fail before or during clinical trials (37).
To meet this need, several databases have provided more clas-
sified information for the effective design and construction of
AMPs. Databases enable users to search and mine extensive
information on the peptide structure, chemical modifications,
bioactivities and classification. Tables 1 and 2 present a list of
databases. The AMPs databases are classified into two main
groups: general databases and specific databases. The general
databases contain the whole types of AMPs irrespective of a
given peptide family while specific databases cover informa-
tion related to a certain class of AMPs (e.g. only defensins
or cyclotides) or hold a supergroup of AMPs (e.g. only plant
peptides or only cyclic peptides). Currently, there is not a uni-
versal database with all AMP data, the information is divided
into several databases (Tables 1 and 2), and there exists an
overlap as well between AMP databases; nonetheless, each
database contains some exclusive sequences (63).

General AMPs databases
In the subsequent section, the six comprehensive general
databases are defined briefly. In addition, Table 1 reviews the
current main public AMPs general databases.

Data bank antimicrobial peptides (dbAMP) database con-
tains various information about different types of AMPs in
3044 organisms. Newly, the dbAMP database contains 2 262
antimicrobial proteins and more than 26 440 unique entries,
including experimentally verified AMPs and putative AMPs
along with their functional activities, which expanded using
protein databases of UniProt, NCBI, Protein Data Bank, and
eight public AMP databases. In this study, for large-scale
detection of AMPs using transcriptome data, all amino acid
sequences of AMPs were converted into DNA sequences to
create an efficient pipeline using the Docker container for
discovering AMPs from Next-Generation Sequencing (NGS)
data using the Bowtie2 program. Users can submit large-scale
data from NGS reads or peptides identified via MS/MS to
the dbAMP. In addition, the system could identify known
AMPs with their functional types and predict new AMPs by
the constructed model (78).

Database of antimicrobial activity and structure of pep-
tides (DBAASP) contains over 15 700 entries (8000 more
than the previous version), including ~14 500 monomers and
nearly 400 homo- and hetero-multimers. Of the monomeric
AMPs, ~12 000 are synthetic, about 2700 are riboso-
mally synthesized, and about 170 are non-ribosomally
synthesized. DBAASP is freely accessible and contains
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Table 2. A description of existing antimicrobial-specific databases

Specific Statistics

Database Type of AMPs Size
Type of
Database Type of Data Years Web site

BaAMPs Anti-biofilm
peptides

∼237 Exp. Primary Natural BaAMPs 2015 http://baamps.it/

CancerPPD Anticancer
peptides

∼3490 Exp. and Pred.
Secondary

Natural, and
Predicted ACPs

2015 http://crdd.osdd.net/
raghava/cancerppd/

ParaPep Antiparasitic
peptides

∼860 Exp. and Pred.
Secondary

Natural, and
Predicted APPs

2014 http://webs.iiitd.edu.in/
raghava/parapep/peptide.php

YADAMP Antibacterial
peptides

∼2525 Exp. and Pred.
Secondary

Natural, and
Predicted ABPs

2012 http://yadamp.unisa.it/

DADP Amphibian
peptides

∼2570 Exp. Primary Natural 2012 http://split4.pmfst.hr/dadp/

THIOBASE Bacterial
thiopeptides

∼100 Exp. and Pred.
Secondary

Natural, and
Predicted
thiopeptides

2012 http://db-mml.sjtu.edu.cn/
THIOBASE/

BACTIBASE Bacteriocins ∼177 Exp. and Pred.
Secondary

Natural, and
Predicted ABPs

2010 http://bactibase.hammamilab.
org/main.php

Cybase Cyclotides ∼1270 Exp. and Pred.
Secondary

Natural, and
Predicted AMPs

2008 http://www.cybase.org.au/

Defensins
Knowledgebase

Defensins ∼300 Exp. and Pred.
Secondary

Natural AMPs 2007 http://defensins.bii.a-star.
edu.sg/

peptaibol Peptaibols ∼317 Exp. Primary Natural AMPs 2004 http://peptaibol.cryst.bbk.ac.
uk/home.shtml

BaAMPs: Biofilm-active AMPs database; ParaPep: Parasites Peptides; YADAMP: Yet another database of antimicrobial peptides; DADP: Database of anuran
defense peptides; THIOBASE: A Database of Thiopeptides Featured in Genetics and Chemistry; BACTIBASE: A database dedicated to bacteriocins; Cybase:
Cyclic protein database; Defensins: A manual database on the defensins family of antimicrobial peptides; Peptaibol: A database for sequences and structures
of naturally occurring peptaibols.

information about amino acid sequences, chemical struc-
ture, target species, the target object of the cell and peptide
antimicrobial/hemolytic/cytotoxic activities of peptides. The
user can search for peptides based on structural character-
istics, complexity type, source, synthesis type (ribosomal,
nonribosomal and synthetic) and target species. Importantly,
DBAASP provides a prediction tool for the in silico design of
new AMPs (116).

Linking antimicrobial peptide database (LAMP) is an
online resource for studying experimentally observed AMPs.
LAMP contains natural, synthetic and predicted AMPs and
is a useful resource for the discovery and design of AMPs
as new antimicrobial agents. LAMP comprises three cata-
logs of AMPs by data sources: experimental, predicted and
patent. AMPs in LAMP are short in length, less than 100
amino acids. Currently, LAMP2, an updated version of
LAMP has been created which contains more than 23 250
unique AMP sequences and expands to link 16 public AMP
databases. LAMP2 covers∼7, 800 natural AMPs and ∼15,
400 synthetic peptides (117).

Data repository of antimicrobial peptides (DRAMP) is
another AMPs database and contains useful data about the
sequence, structure, antimicrobial activity, physicochemical,
patent, clinical and reference information of AMPs. Now,
the DRAMP comprises∼22250 entries, more than 5890 gen-
eral AMPs (containing natural and synthetic AMPs),∼16110
patent AMPs and 77 peptides in drug development. DRAMP
database contains various information about computational
methods obtained from data mining tools and introduces
the new design for the development and optimization of
AMP-based drugs (5).

A database of invertebrate antimicrobial peptides
(InverPep) is a database of AMPs belonging to invertebrates.

InverPep contains more than 770 experimentally validated
AMPs which were manually collected from other databases
and scientific literature. Notably, this database contains 33
AMPs that are not reported in other databases. Most AMPs
in InverPep are 10 and 50 amino acids in size and positively
charged that have 30–50% hydrophobic amino acids. AMP
peptides in InverPep have information about their source,
physicochemical properties, secondary structure, biological
activity and also links to the external literature (118).

Collection of antimicrobial peptides (CAMP) is a compre-
hensive database of sequences, structures and family-specific
signatures of prokaryotic and eukaryotic AMPs. Currently,
CAMP encompasses more than 8160 sequences, 757 struc-
tures, ∼2080 patent AMPs and 114 family-specific signatures
of prokaryotic and eukaryotic AMPs. Also, it has provided
the tools for sequence alignment, pattern creation and AMP
identification (119).

Specific AMPs databases
Many databases have been created based on certain types,
specific sources or certain characteristics of AMPs to search
AMPs based on specific classes. Table 2 reviews the current
main public AMPs specific databases.

A brief history of machine learning techniques
on AMPs
For the identification of AMPs, high-throughput experimental
methods are labor-intensive and time-consuming. Therefore,
machine learning (ML) methods and powerful tools to predict
AMPs are urgently needed. The advent of high-throughput
screening coupled with decades of experimental data allowed
for the duration of large annotated datasets (120). In the
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last 10–15 years, the focus of ML has shifted to an intensely
data-driven approach. Significant advancements in computa-
tional power and easy-to-use statistical learning tools have
made supervised ML a viable strategy for leveraging large
datasets for the high-throughput and high-accuracy classifi-
cation of AMPs. Typical readouts from biophysical assays on
AMPs include calculations of minimum inhibitory concen-
trations, minimum bactericidal concentrations and binding
affinities. These quantities, coupled with sequence informa-
tion about AMPs, allow for the training of various supervised
learning models using peptide sequence information as an
input. Before this era, methods for de novo AMP discov-
ery relied on long-standing bioinformatics methods, including
sequence alignment and homology modeling for the predic-
tion of biological activity. Now, the convergence of innova-
tions in ML models, the presence of modern computational
tools and the availability of high-quality datasets have enabled
the ML-aided design of AMP.

In one of the first applications of ML to AMPs, Lata et al.
(121) developed a Quantitative Structure–Active Relationship
(QSAR) AMP classification tool based on artificial neural net-
work (ANN), support vector machine (SVM) and quantitative
matrix models based on unique motifs found in the C- and N-
terminal residues of known AMPs. In 2009, Chersakov et al.
used high-throughput screening methods to train an ANN
model on the measured antimicrobial efficacies of thousands
of nine-residue peptides to discover potent antimicrobials that
were potent against multi-drug-resistant bacteria (122). Fjell
et al. (2008) published a study using hidden Markov models
(HMMs) to screen for AMPs in the bovine genome, which
led to the discovery of a previously unknown AMP and con-
firmed the absence of α-defensins (123). In a similar vein, this
group later developed an ANN model in 2009 to screen a
larger number of synthetic AMP candidates, characterizing 18
sequences with high antimicrobial efficacy against multi-drug-
resistant bacteria (123). Wang et al. used a combination of
sequence alignment and feature selection methods to design a
computational model to more accurately classify AMPs (124).
Similarly, Torrent et al. (125) trained an eight-descriptor SVM
to classify AMPs with 75–90% accuracy while taking into
account new factors like peptide aggregation. Maccari et al.
used random forest (RF) models to design and validate the
antimicrobial activity of two natural peptides and one pep-
tide with nonnatural amino acids (126). Giguere et al. used a
kernel method based on graph theory to train a 100 peptide
dataset based on multiple measures of bioactivity to pre-
dict novel candidates (127). Most recently, Schneider et al.
reported the first application of unsupervised–supervised two-
step models to classify AMPs. They used self-organizing maps
to apply nonlinear dimensionality reduction to the training
data, which were then used as an input for a supervised neural
network model. Together, these studies highlight a diversity of
methods and approaches that have been used to classify and
design AMPs with great success (128). Xiao et al. designed
a two-level classifier to first classify peptide sequences as an
AMP, and then sub-classify them into 10 functional AMP
categories (129).

Recent application of machine learning
methods for predicting AMPs
Researchers have recently coupled the use of AMP databases
as a unique method for AMP prediction with experimental

validations to obtain more efficient AMP-based drugs (130).
Most of the learning methods discussed in these databases
were based on supervised learning and validated datasets of
AMPs (34). To this end, ML algorithms including SVM, NN,
RF, fuzzy k-nearest neighbor (fuzzy k-NN), HMM, discrimi-
nant analysis (DA) and logistic regression (LR) are proposed
to identify AMPs (131, 132). These methods had played a key
role in the AMP research, nevertheless, they have problems.
Models can only tell whether a new sequence is AMP and
also, short peptides tend to be harder to find in the database
because AMPs are usually only 10–50 amino acids long. Blast
search and gene ontology methods are often ineffective in pre-
dicting AMPs. Several general databases contain imbalanced
datasets of AMPs activities that are not distributed equally
(133). The standardML algorithms often cannot achieve ideal
performance when trained on unbalanced AMPs data sets.
To solve this problem, existing classifier learning algorithms
can be adapted to strengthen learning in the minority class
or used to artificially sample the class distribution. There-
fore, can achieve strong classifiers via a combination of both
approaches. Thus, for classifying AMPs’ functions used amul-
tilabel classification (MLC). During the past 2 decades, the
topic of learning from multilabel datasets (MLDs) has been
intensively discussed. For example, ML-SMOTE is a new
synthetic minority over-sampling technique, designed for pro-
cessing and identifying AMPs’ functional families based on
imbalanced and multilabel datasets (133). A good prediction
method combines good unbiased training data, a discrimina-
tive feature subset and a suitable learning algorithm. Every
computational method for predicting a specific type of AMP
based on the sequence information requires the following
steps.

Data gathering
Select or create a validation benchmark dataset for training
and testing the predictor. To assemble a validation dataset, the
first step of the AMP prediction method is to collect the data
from AMP databases (Figure 4a). It is necessary to include
both sequences of peptides with validated AMP activity as
positive samples and sequences of peptides with no validated
AMP activity as negative samples capable of training a ML
algorithm for predicting AMPs. Positive samples are usually
collected from the aforementioned databases (such as LAMP
or DBAASP). However, the selection of negative samples is
the most challenging part of the data collection process and
exists main strategies for selecting the negative dataset. A ran-
dom set of non-AMPs with an equal number of the positive
set is selected and thus, are considered as negative samples.

Filtering and dataset balancing
After assembling both positive and negative datasets, one
main goal is reducing homology bias, removing dupli-
cate/inconsistent samples and gaining a more reliable sample
set. Depending on the study, this step may be different. Based
on the literature, there are three main policies for removing
inconsistent/redundant AMPs:

1- Removing identical AMPs and sequence less than five
amino acids.

2- Removing similarities within AMPs in the positive and
non-AMPs in the negative datasets.

3- Removing similarities between AMPs in the positive and
non-AMPs in the negative datasets.
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Figure 4. Flowchart of the statistical and machine learning techniques for the detection of AMPs. (a) Collection of data and creation of datasets. (b)
Feature selection. (c) Designing training and testing models. (d) Evaluation of model performance.

The Cluster Database at high identity with tolerance (CD-
HIT) program is used as the major tool to detect similar
samples (sequences) and to reduce homology bias and redun-
dancy. However, different studies use different thresholds
of identity to consider a pair of AMP sequences to be sim-
ilar/redundant. In different AMPs prediction studies, this
threshold varies from 20% to 100% (134). After filtered
datasets there exists an imbalanced dataset and the size of the
negative dataset is greater than the size of the positive dataset.
These imbalanced datasets can create biases in the learning
phase when a learning method is not a sufficient algorithm.
Consequently, to ensure dataset balancing, a subset of the
negative dataset equal to that of the positive dataset will be
chosen (Figure 4a).

Feature extraction
Selecting suitable algorithms to learn patterns and distinguish
AMPs from other sequences, feature generation, extraction,
engineering and selection became essential aspects of find-
ing good representative features or informative features that

could capture AMP patterns and increase prediction accuracy.
To select features that differentiate AMPs from non-AMPs,
a feature selection method was almost used. Thus, the pos-
itive or negative samples (peptide sequences), according to
their biological properties, are coded into numerical feature
vectors that are used for learning the proposed model (135).
Then, each peptide is encoded as a numerical feature vector
based on suitable biological features, such as physicochemi-
cal properties, sequence composition, and structural features
(Figure 4b).

Training the predictors
Several learning algorithms will be used to compare the
effectiveness of the variable features selected. This pro-
cess must take place before the final prediction model is
built. As part of feature selection, a subset of the most
informative/discriminative features is selected and used to
train the classifier. A good classifier can be chosen accord-
ing to the performance of various classification methods. As
a result of parameter optimization, the algorithm is trained
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on a subset of the assembled dataset (training dataset), and
then it can be evaluated and compared against the current
state-of-the-art methods (Figure 4c).

Performance assessment
There are two methods for evaluating models: Indepen-
dent test (Train-Test) and K-fold cross-validation. In the
independent test method, a dataset is divided into two sets,
a Train-Validation dataset and a Test dataset. Afterward, the
Train-validation set also splits into two subsets: the train set
and the validation set. A training set is used to train models,
and a test set is used to evaluate the models and select the best
model according to performance via evaluation of the test set.
On the other hand, the validation set evaluation results differ
from the train set evaluation results, it shows the model has
been overfitted to the train set. Lastly, the test set should be
reported, and there should not be a huge difference between
the validation and test sets.

K-fold cross-validation is a standard procedure for assess-
ing the performance of a given classifier and is used to evaluate
ML models on a limited data sample. In this process, the
available dataset is randomly divided into k subsets with-
out any overlap. One of the subsets is used as a test set
dataset, and the other as training for assessing the predic-
tor. Each subset is used exactly once as the test set, and
the process is repeated k times. Finally, the average perfor-
mance for all k test sets is considered (Figure 4d). Cross-
validation with k-fold is typically used when there is only
a limited amount of Train-Validation data, and the Train-
Validation method is mostly used when massive amounts of
data are accessible. K-fold is used in most classified AMPs
methods.

Model evaluation criteria
Assessing the performance of the AMPs prediction methods
based on the four basic parameters which are explained as
follows:

1-‘True positive’ (TP): the experimentally validated AMPs
that have been correctly predicted by the prediction method.

2-‘True negative’ (TN): the non- AMPs sites that have been
correctly predicted.

3-‘False positive’ (FP): the non- AMPs that have been
incorrectly predicted as AMPs.

4-‘False negative’ (FN): the experimentally validated AMPs
that have been incorrectly predicted non- AMPs.

The classification performance is often evaluated by accu-
racy, sensitivity (Recall), specificity, precision, F-measure and
Matthews correlation coefficient (MCC). All performance cri-
teria for AMPs prediction are shown in Equations (1–6).
Alongwith the abovementioned measures which are known
as threshold-dependent measures, ROC (receiver operative
characteristic) and AUC (area under the ROC-curve) are two
main threshold independent evaluation measures (136, 137).
The most important assessment measures based on the above-
mentioned parameters have been described in the following
section.

Sensitivity: Sensitivity or recall indicates the percentage of
samples that have been predicted correctly.

Sensitivity=
TP

TP+FN
×100 (1)

Specificity: Specificity shows the percentage of negative
samples that have been predicted correctly as negative sam-
ples.

Specificity=
TN

TN+FP
×100 (2)

Accuracy: Accuracy is a ratio between the correctly clas-
sified data points to the total number of samples (138).

Accuracy=
TP+TN

TP+FP+TN+FN
×100 (3)

Precision: Precision or positive prediction value (PPV) is
shown as the ratio of the number of correctly predicted
positive samples to the total number of positive samples (138).

Precision=
TP

TP+FP
×100 (4)

F-measure: This metric represents the harmonic mean of
recall and precision, and is calculated as:

F-measure=
2TP

2TP+FP+FN
×100 (5)

Matthews Correlation Coefficient (MCC):MCC shows the
correlation between true and predicted labels (139).

MCC=
TP×TN−FP×FN√

(TP+TN)(TP+FN)(TN+FP)(TN+FN)

×100 (6)

Tools for AMPs prediction
Considering the high cost and labor-intensive experimental
identification of AMPs, many computational methods have
been proposed for the prediction of AMPs and their func-
tional types which can be useful to design new and more
effective antimicrobial agents. The attention to ML has been
converted to a strongly data-driven approach. As a result,
with development in computational methods and tools, super-
vised learning can be considered as a suitable strategy for
leveraging large datasets for the high-throughput and high-
accuracy classification of AMPs (34). Studies have shown
differences in amino acid composition (AAC), the physico-
chemical property, sequence order and the pattern of terminal
residues in AMPs that can affect AMP prediction. Further-
more, it has been reported that the net charge, isoelectric
point, composition and tendency for the secondary struc-
ture are different in the AMPs, like antibacterial, antifungal
and antiviral activities, and as a result, these features should
be used for learning algorithms for AMPs prediction (140).
Many of these methods have been implemented as publicly
accessible tools. However, there is still a lack of efficient
prediction models to identify potential peptides with specific
activities. An overview of existing predictive tools supporting
AMP studies is presented in Table 3. Indeed an explanation
of the newest comprehensive tool was provided.
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Ensemble-AMPPred
In this work, several well-known single and ensemble (ML)
approaches have been explored and evaluated based on bal-
anced training datasets and two large testing datasets. They
have demonstrated that the developed program with vari-
ous predictive models has high performance in differentiat-
ing between AMPs and non-AMPs. The present work used
a benchmark AMP dataset consisting of 920 AMPs and
920 non-AMPs in testing existing AMP prediction programs
and detected the false predictive answers of each program
are different. The results suggest that, due to the use of
different models and features exist unpredictable answers
that have a different distribution. Because of these limita-
tions, each program should consider improvements, includ-
ing minimizing false positives (FPs) and increasing predic-
tive accuracy. Due to the mentioned points, they considered
using of integrating different learning models using ensemble
learning techniques. In ensemble learning techniques, using
multiple predictors and ensemble methods for incorporat-
ing individual classification models (bagging and boosting)
leads to a decrease in FPs and increasing prediction accu-
racy. In this study, AMP prediction models were devel-
oped using ensemble methods based on five different algo-
rithms, as well as comparing four different single models
(135).

Data from 15 public available bioactive peptide databases
were collected by Ensembl-AMPPred, and peptides with
sequences shorter than 10 amino acids were removed. CD-
HIT program for reducing data redundancy with a threshold
of 0.9 (90% sequence similarity) was used. Finally, 13 434
peptides were considered as positive sequence data. Using
Uniprot, negative data was collected on proteins without
antimicrobial activity and a secretory signal peptide position.
The basic local alignment search tool (BLAST) was used to
remove AMP matches and peptide sequences with lengths
<10 amino acids. Furthermore, peptide sequences that had an
identity greater than 25% were removed using the CD-HIT
program. As a result, 37 595 peptides are considered negative.
Also, the similarity between the positive and negative datasets
was removed, and as a result, the sequence similarity between
the training and testing datasets was calculated as 47.29%.
Lastly, the training data includes 1800 sequences of peptides
from the AMP dataset, and 1800 sequences from the non-
AMP dataset were prepared (135). A dataset consisting of
517 peptide features was then extracted and to filter this fea-
ture vector a logistic regression was applied to create a hybrid
feature vector using four preselected single features based on
an equation for logistic regression. Finally, a performance
comparison of eight single predictive models and five ensem-
ble models was done and prediction accuracy was evaluated
using 10-fold cross-validation. Although ensemble models
have better performance than single models, these four mod-
els (RF, NN, SVM and LDA) showed the highest performance
among single models. Ensemble models have better perfor-
mance than single models. Nevertheless, four models (RF,
NN, SVM and LDA) showed the highest performance among
single models. Thus, Ensemble-AMPPred is an AMP predic-
tor which able to high performance in differentiating between
AMPs and non-AMPs in comparing other available methods
(135).

Conclusion
The AMPs constitute an important component of innate
immunity and are effective against disease-causing pathogens.
Multidrug-resistant bacteria (superbugs) are on the rise, mak-
ing AMPs an important alternative to traditional antibiotics.
However, the identification of AMPs through lab experiments
is still expensive and time-consuming, and, most importantly,
ineffective due to the staggering number of genomes being
sequenced today. Therefore, the development of an efficient
computational tool is essential to identify the best candidate
AMPs with high accuracy before the in vitro experiments.
Thus, the bioinformatics resources and the usage of com-
putational tools to analyze AMPs data and their functional
outcomes across species are crucial. There would be a signif-
icant interest in the development of computational methods
for the reliable prediction of AMPs. Recently, many advanced
computational methods and tools have been developed to
predict AMPs, and many of them are publicly available.
Therefore, in the near future, research in databases could be
a key step in developing a typical new antimicrobial agent .
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118. Gómez,E.A., Giraldo,P. and Orduz,S. (2017) InverPep: a
database of invertebrate antimicrobial peptides. J. Glob. Antimi-
crob. Resist., 8, 13–17.

119. Waghu,F.H., Barai,R.S., Gurung,P. et al. (2015) CAMPR3: a
database on sequences, structures and signatures of antimicrobial
peptides. Nucleic Acids Res., 44, gkv1051.

120. Wang,G., Li,X. and Wang,Z. (2016) APD3: the antimicrobial
peptide database as a tool for research and education. Nucleic
Acids Res., 44, D1087–D1093.

121. Lata,S., Sharma,B. and Raghava,G.P. (2007) Analysis and pre-
diction of antibacterial peptides. BMC Bioinform., 8, 1–10.

122. Cherkasov,A., Hilpert,K., Jenssen,H. et al. (2009) Use of artifi-
cial intelligence in the design of small peptide antibiotics effective
against a broad spectrum of highly antibiotic-resistant superbugs.
ACS Chem. Biol., 4, 65–74.

123. Fjell,C.D., Jenssen,H., Fries,P. et al. (2008) Identification of novel
host defense peptides and the absence ofα-defensins in the bovine
genome. Proteins, 73, 420–430.

124. Wang,P., Hu,L., Liu,G. et al. (2011) Prediction of antimicro-
bial peptides based on sequence alignment and feature selection
methods. PLoS One, 6, e18476.

125. Torrent,M., Andreu,D., Nogués,V.M. et al. (2011) Connect-
ing peptide physicochemical and antimicrobial properties by a
rational prediction model. PLoS One, 6, e16968.

126. Maccari,G., Di Luca,M., Nifosí,R. et al. (2013) Antimicro-
bial peptides design by evolutionary multiobjective optimization.
PLoS Comput. Biol., 9, e1003212.

127. Giguere,S., Laviolette,F., Marchand,M. et al. (2015) Machine
learning assisted design of highly active peptides for drug discov-
ery. PLoS Comput. Biol., 11, e1004074.

128. Schneider,P., Müller,A.T., Gabernet,G. et al. (2017) Hybrid net-
work model for “deep learning” of chemical data: application to
antimicrobial peptides. Mol. Inform., 36, 1600011.

129. Xiao,X., Shao,Y.-T., Cheng,X. et al. (2021) iAMP-CA2L: a new
CNN-BiLSTM-SVM classifier based on cellular automata image
for identifying antimicrobial peptides and their functional types.
Brief. Bioinf., 22, bbab209.

130. Torrent,M., Victoria Nogues,M. and Boix,E. (2012) Discover-
ing new in silico tools for antimicrobial peptide prediction. Curr.
Drug Targets, 13, 1148–1157.

131. Lin,Y., Cai,Y., Liu,J. et al. (2019) An advanced approach to iden-
tify antimicrobial peptides and their function types for penaeus
through machine learning strategies. BMC Bioinform., 20, 291.

132. Veltri,D., Kamath,U. and Shehu,A. (2018) Deep learning
improves antimicrobial peptide recognition. Bioinformatics, 34,
2740–2747.

133. Lin,W. and Xu,D. (2016) Imbalanced multi-label learning for
identifying antimicrobial peptides and their functional types.
Bioinformatics, 32, 3745–3752.

134. Li,W. and Godzik,A. (2006) Cd-hit: a fast program for cluster-
ing and comparing large sets of protein or nucleotide sequences.
Bioinformatics, 22, 1658–1659.

135. Lertampaiporn,S., Vorapreeda,T., Hongsthong,A. et al. (2021)
Ensemble-AMPPred: robust AMP prediction and recognition

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac011/6550847 by guest on 09 April 2024



Database, Vol. 2022, Article ID baac011 17

using the ensemble learning method with a new hybrid feature
for differentiating AMPs. Genes, 12, 137.

136. Khalili,E., Kouchaki,S., Ramazi,S. et al. (2020) Machine learn-
ing techniques for soybean charcoal rot disease prediction. Front.
Plant Sci., 11.

137. Ramazi,S. and Zahiri,J. (2021) Posttranslational modifications
in proteins: resources, tools and prediction methods. Database,
2021, 1–20.

138. Sokolova,M., Japkowicz,N. and Szpakowicz,S. (eds). (2006)
Beyond accuracy, F-score and ROC: a family of discriminant

measures for performance evaluation. In: Australasian Joint Con-
ference on Artificial Intelligence. Springer, Berlin, Heidelberg,
1–2.

139. Boughorbel,S., Jarray,F. and El-Anbari,M. (2017) Optimal classi-
fier for imbalanced data using Matthews Correlation Coefficient
metric. PLoS One, 12, e0177678.

140. Chung,C.-R., Jhong,J.-H., Wang,Z. et al. (2020) Char-
acterization and identification of natural antimicrobial
peptides on different organisms. Int. J. Mol. Sci., 21,
986.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac011/6550847 by guest on 09 April 2024


	 Introduction
	 Antimicrobial peptides (AMPS)
	 Functions, structure and major activities of AMPs
	 Mechanism of AMPs action

	 Classification of AMPs based on biological functions
	 Antibacterial peptides (ABPs)
	 Antiviral peptides (AVPs)
	 Antifungal peptides (AFPs)
	 Anticancer peptides (ACPs)
	 Antiparasitic peptides (APPs)

	 Major AMPs databases
	 General AMPs databases
	 Specific AMPs databases

	 A brief history of machine learning techniques on AMPs
	 Recent application of machine learning methods for predicting AMPs
	 Data gathering
	 Filtering and dataset balancing
	 Feature extraction
	 Training the predictors
	 Performance assessment

	 Model evaluation criteria
	 Tools for AMPs prediction
	 Ensemble-AMPPred

	 Conclusion

