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Abstract
Differential DNA methylation is a feature of numerous physiological and pathological processes. However, the extent to which single-base cyto-
sine methylation modifies cellular responses to various stimuli has not been well characterized. In this study, we carried out a systematic analysis
of methylome data derived from human blood and immune cells and constructed the ImmuMethy database. ImmuMethy allows interrogation of
DNAmethylation plasticity (MPL) at the single cytosine level. MPL, which refers to the variability of DNAmethylation, is quantitatively measured
in multiple ways, such as quartiles and standard deviations. ImmuMethy comprises over 36 000 samples from the Human Methylation450 and
MethylationEPIC BeadChips platforms and provides multiple applications, such as an overview of methylation status and plasticity, differential
methylation analysis, identification of methylation markers and sample stratification. An analysis of all datasets revealed that DNA methylation
is generally stable, with minimal changes in beta values. This further supports the characteristics of DNA methylation homeostasis. Based on
the beta value distribution, we identified three types of methylation sites: methylation tendency sites, unmethylation tendency sites and dual
tendency or nonbiased methylation sites. These sites represent different methylation tendentiousness of DNAmethylation across samples. The
occurrence of multiple methylation tendencies in a site means split methylation, which generally corresponds to high MPL. Inverted methylation
tendencies frommethylation tendency sites to unmethylation tendency sites, or vice versa, represent strong differential methylation in response
to conditions. All these sites can be identified in ImmuMethy, making it a useful tool for omics-based data-driven knowledge discovery.
Database URL: http://immudb.bjmu.edu.cn/immumethy/

Introduction
DNAmethylation is amajor epigenetic modification involving
the addition of a methyl group to the C5 position of cyto-
sine to form 5-methylcytosine (5mC). In mammals, 5mC is
predominantly seen at cytosine-phosphate-guanosine (CpG)
dinucleotides, although methylation events can also occur in
non-CpG contexts (1). In most somatic tissues, the major-
ity (>80%) of CpG dinucleotides found in the genome are
methylated, with the exception of CpG islands (CGIs) and
other gene regulatory sequences that show reduced 5mC lev-
els (1). DNA methylation is functionally involved in many
processes, such as genomic imprinting, X chromosome inac-
tivation, silencing of repetitive DNA elements and regulation
of tissue-specific gene expression (2).

High-throughput technologies, such as microarrays and
next-generation sequencing (NGS), have been
widely used to identify differentially methylated sites in var-
ious contexts, including normal human development, aging,
tumorigenesis, autoimmune disorders, neurological disorders,
immunodeficiency, species evolution, environmental

adaptation and genetic and epigenetic diseases. As a result,
there is an abundance of epigenome-wide DNA methylome
data available. Therefore, the systematic collection, integra-
tion and utilization of these data will undoubtedly contribute
to the field, enabling an overview of gene methylation lev-
els under various conditions, identification of the underlying
regular methylation patterns and emerging new biological
insights into methylation roles. In addition, re-evaluation of
methylation biomarkers, such as cell type-specific and disease-
associated methylation biomarkers, is also an important task
for omic big data usage. Database construction is an excel-
lent way to share large datasets and promote data usage in
further experimental research. Currently, several methylation
databases have been built, includingMethDB (3, 4), PubMeth
(5), MethyCancer (6), MENT (7) and MethHC (8). However,
most existing methylation databases are specifically related to
cancer.

Blood and immune cells are often used in methylation
studies due to the ease of sample collection, resulting in
abundant methylome data for these cells. Although there
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are some databases, such as epigenome BLUEPRINT (9, 10)
and MethBase (11), which contain immune cell methylome
data, their datasets are from NGS. In addition, there are
still very limited samples and experimental conditions for the
same cell types in these databases. In this study, we present
a new database, ImmuMethy (http://immudb.bjmu.edu.cn/
immumethy/), which aims to collate available methylome data
for human blood and immune cells. Integration of mouse
methylation data will be considered in subsequent versions of
ImmuMethy once sufficient data have been compiled. It cur-
rently comprises over 36 000 samples from both the Human
Methylation450 (or 450k) and MethylationEPIC (or 850k)
BeadChips platforms.

ImmuMethy provides data for DNA methylation at sin-
gle cytosine bases. It can provide information on DNA
methylation levels in human blood and immune cells derived
from different disease states and tissue sources. ImmuMethy
emphasizes a global view of methylation profiles due to the
large sample size. Samples are categorized into different study
datasets based on sample source, cell type and disease state.
Therefore, the database can illustrate methylation profiles and
plasticity and permits examination of the dynamic changes
in DNA methylation that occur under various experimental
conditions. In addition, further analyses, such as differential
methylation profiles, methylation marker evaluation and trac-
ing experimental conditions based on the methylation level,
can also be carried out using the database.

Materials and methods
Datasets and processing
All data related to the Infinium Human Methylation450
(450k) and MethylationEPIC (850k) BeadChips, as well
as the platform annotation files, were downloaded from
the GEO (12) and ArrayExpress (13) databases. Platform
annotations include basic probe information, such as gene
symbols, chromosomes, single nucleotide polymorphisms
(SNPs), gene region features [including untranslated regions
(UTRs), gene bodies, transcription start sites (TSSs) and
the first exons] and position relationships with canoni-
cal CGIs. For example, the shores are denoted as being
0–2 kb from CGIs, whereas shelves are 2–4 kb from CGIs.
SNP information related to array probes was directly down-
loaded from the official websites https://support.illumina.
com/array/array_kits/infinium_humanmethylation450_beadc
hip_kit/downloads.html and https://support.illumina.com/
array/array_kits/infinium-methylationepic-beadchip-kit/dow
nloads.html. Chromosomal coordinates of methylation sites
were converted from the human genome hg19 to hg38 assem-
bly using the liftOver program (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). The 450k array interrogates over 450 000
methylation sites (predominantly CpG dinucleotides) across
the human genome at a single-nucleotide resolution, cover-
ing 99% of reference sequence (RefSeq) genes and comprises
the most abundant sample type across all current methylation
platforms The 850k array covers the majority of the sites from
the 450k array but adds 333 265 CpGs located in enhancer
regions; therefore, it interrogates a total of over 850 000 CpG
sites for methylation status assessment (14).

Sample information was exported to an Excel file for
further manual checks, and datasets from human blood
and primary immune cells were selected. The raw data

in the IDAT file format were downloaded and uniformly
processed using the R (http://www.r-project.org/) package
“minfi” (15) to produce the uniformly processed beta val-
ues used in the study. The beta value is the ratio of the
methylated probe signal intensity to the overall intensity, that
is, beta value=Meth/(Meth+Unmeth), where “Meth” and
“Unmeth” indicate methylated and unmethylated probe sig-
nals, respectively. The beta value ranges between 0 and 1,
with 0 being unmethylated and 1 being fully methylated. A
beta value of 0.5 indicates balanced signal levels between the
methylated and unmethylated probes.

In this study, beta values were directly calculated with the
function “getBeta” with a default offset of 100, which was
chosen to avoid dividing by small values. A detection P-value
was returned for every genomic position using the function
“detectionP.” Positions with nonsignificant P-values larger
than 0.01 indicate that there is no difference between the
DNA signal and the background signal estimated using neg-
ative control positions. To adjust for Infinium I and Infinium
II probe design, the Subset-quantile Within Array Normaliza-
tion (SWAN) algorithm (16) was used for beta value normal-
ization within arrays to reduce the technical variation due to
the probe types while maintaining the important biological
differences.

In some methylation-related studies, the data submitter did
not provide the IDAT format raw files during data submis-
sion to GEO or ArrayExpress but rather a single, large beta
value matrix of all samples. These preprocessed or submitter
processed beta values from either normalized or nonnormal-
ized data cannot be directly queried because of their complex
data structure. We parsed these matrices and integrated all of
the data for user queries (see section “Discussion”). During
quality control, samples comprising abnormal beta values less
than zero, larger than 1 or without a beta value were removed.

Analysis of beta value distribution and methylation
plasticity
For the normalized beta values in each study dataset, the
“fivenum” function in the R (http://www.r-project.org/) soft-
ware environment was used to calculate the minimum (Min.),
first quartile (25th percentile, first Qu, Q1), median, third
quartile (75th percentile, third Qu, Q3) and maximum
(Max.) values. To systematically estimate the variability in
DNA methylation or methylation plasticity (MPL), we calcu-
lated the standard deviation and quantile range to quantify
the amount of dispersion or spread of beta values. In this
study, we used two types of quantile ranges: “quantile range
(Q75–Q25)” or the interquartile range (IQR), which is the
difference between the 75th and 25th quantiles of the beta val-
ues, and “quantile range (Q95–Q5),” which is the difference
between the 95th and 5th quantiles of the beta values. Quan-
tile ranges are robust to outliers and allow enough samples to
support methylation variability effectively and avoid potential
negative biases due to experimental and probe design. The
relationships among the three measures were compared by
using the Pearson correlation method.

Graph plotting of methylation profile
For graph plotting of the methylation profile, the normalized
beta values of each methylation site in a specific study dataset
were first rounded to two decimal points. This will make the
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beta values ascribed to 101 numerical numbers, and sam-
ple proportions at each number were calculated to produce
a methylation profile matrix. A rounded beta value (r-beta)
curve, which connects all sample ratios on the y-axis at the
101 rounded values on the x-axis, was used to graphically
illustrate methylation profiles. The shape, includingwidth and
height, as well as the peak position on the x-axis, can indicate
the overall methylation intensity and its variability.

Homogeneity test of beta values
Duda–Hart tests were performed using the “dudahart2” func-
tion in the flexible procedures for clustering (fpc) package
(17) to determine whether a set of beta values should be
split into two or more clusters. If the returned result of
“cluster 1” is false, the null hypothesis of homogeneity is
rejected. For the CpG sites with more than 1 cluster of beta
values, the “pamk” function (https://www.rdocumentation.
org/packages/fpc/versions/2.2-9/topics/pamk) with default
parameters was further used to determine the numbers of clus-
ters. The function uses the most common k-medoids cluster-
ing method “pam” algorithm to perform partitioning around
medoids clustering and returns a suggested number of clusters.

Methylation tendency analysis
Methylation tendency refers to the overall tendency of a cyto-
sine site to be methylated or unmethylated in the sample
populations. Because a beta value of ∼0.5 indicates balanced
signal levels between the methylated and unmethylated probes
based on the formula of beta value calculation, beta value
ranges of 0.5–1 (0.5 < beta value≤1) and 0–0.5 (0≤beta
value < 0.5) reflect biased methylated (0.5–1) or unmethy-
lated (0–0.5) probe signals, respectively. We used a chi-square
goodness of fit test with the R function “chisq.test” to deter-
mine if there was a statistically significant difference in beta
value distribution in the two data regions. We considered a
site as a methylation tendency site (MTS) or an unmethyla-
tion tendency site (UTS) when the P-value was less than or
equal to 0.05 if more beta values were located in the range
of 0.5–1 for MTS or in the range of 0–0.5 for UTS. In con-
trast, a site was considered a Dual Tendency methylation Site
(DTS) or nonbiased methylation site (NTS) when the P-value
was larger than 0.05. The methylation tendency of a queried
site can be clearly illustrated via a methylation profile curve
when the peak will be located mainly on the right (MTS), left
(UTS) and middle or both of the left and right (DTS) sides of
the curve with almost equal sample proportions.

Differential methylation analysis
For an online differential methylation analysis among methy-
lation sites, the Mann–Whitney U-test (also called Wilcoxon
rank-sum test) was automatically conducted in response to
the user’s operation with the function “MannWhitneyUTest”
(http://commons.apache.org/proper/commons-math/javadocs
/api-3.0/org/apache/commons/math3/stat/inference/MannW
hitneyUTest.html). For offline analysis, the R function
“wilcox.test” was used for the Wilcoxon rank-sum test.
The null hypothesis of the Wilcoxon test is that the two pop-
ulations have the same distribution with the same median. A
P-value less than or equal to 0.05 is generally statistically sig-
nificant. However, considering the multiple comparison prob-
lem and hundreds of thousands of cytosine sites from both

platforms, individual online tests with a P-value < 1.00E-7
are suggested to be significant enough for differential methyla-
tion levels according to the widely used Bonferroni correction
method. The formula for a Bonferroni correction is as follows:

αnew=αoriginal/n

where αoriginal indicates the original α level and n represents
the total number of comparisons or tests being performed. In
addition to a Bonferroni correction, a less stringent Benjamini
and Hochberg’s false discovery rate controlling method,
which takes both the total number of tests and the individual
P-value’s rank into consideration, was also used for the differ-
ential methylation analysis. The R function “p.adjust” returns
the adjusted P-value s with the “bonferroni” and “BH” (aka
“fdr”) methods for multiple comparisons.

Analysis of transcription factors with methylated
DNA binding
Some transcription factors (TFs) recognize methylated DNA
and play an important role in gene regulation. Therefore, we
integrated TF binding information into ImmuMethy. Data
on the interactions between methylated DNA and TFs were
downloaded from the MeDReaders database (18), which
curates hundreds of TFs that could bind to methylated DNA
sequences. The human data are from six human cell lines,
including GM12878 (human lymphoblastoid cell line by
Epstein-Barr virus (EBV) transformation), H1-hESC (human
embryonic stem cell line H1), HCT116 (colorectal carcinoma
cell line), HepG2 (hepatocellular carcinoma cell line), IMR-90
(human diploid fibroblasts from fetal lung) and K562 (human
myeloid leukemia cell line), based on whole-genome bisul-
fite sequencing (WGBS) and ChIP-Seq experiments (18). The
exact coordinates of the predicted methylated and unmethy-
lated cytosines with TF binding were first extracted, then the
sites that were interrogated by either 450k or 850k arrays
were retained for further analysis.

Database construction
ImmuMethy was implemented based on the Client
Browser/Web Server/Database Server three-tier architecture.
It was built with the model–view–controller development
framework. Servlet was used as a controller, with Java server
page as a view component and Java Bean class as a model.
The data were stored and managed by a MySQL relational
database (version 8.0.17). The current version of ImmuMethy
runs on an Apache Tomcat web server (version 6.0.45). It
accesses the database using Java Database Connectivity.

Results
Data statistics
ImmuMethy uses beta values to quantify methylation levels.
To include asmany experimental conditions as possible for the
downstreamDNAmethylation analysis, two types of beta val-
ues are reported: the uniformly processed values, which were
recalculated in this study from the raw IDAT format files, and
the preprocessed beta values, which were previously deter-
mined by the data submitter for which no IDAT files were
provided. ImmuMethy integrates blood and immune cell data
from 308 studies with different sample tissue sources, cell
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Figure 1. Sample stratification and statistics. (A) Sample or dataset counts are shown beside the platforms: for 450k, ∼37.83% (12 193/32 234) of all
samples are uniformly processed, whereas, for 850k, ∼59.34% (2396/4038) of all samples are uniformly processed. In addition, ∼37.71% (89/236) and
∼84.06% (58/69) of all study datasets had methylation profiles. In total, ∼62.29% (147/236) and ∼15.94% (11/69) of all study datasets for the 450k and
850k platforms, respectively, were not uniformly processed, and for these study datasets, only the preprocessed beta values but not methylation
profiles could be analyzed. For more details, please see Supplementary Tables S1 and S2.

types and disease states (or experimental conditions), involv-
ing 36 272 samples from the two platforms, 450k and 850k
(Figure 1, Supplementary Tables S1 and S2). Each cell group
(or cell class on the query web page) may comprise certain
subclasses based on cell phenotypes and functions, and these
subclasses are further grouped by disease or experimental
condition. In ImmuMethy, sample data reported in different
studies but derived from the same tissue source, cell subclass
and experimental condition are grouped into a single study
dataset, which is assigned a unique study dataset ID. Detailed
sample stratification and metadata information are shown in
Supplementary Tables S1 and S2.

For example, for the 450k platform, the CD4+ T cell class
is separated into several subclasses, including naive CD4+

T cells, memory CD4+ T cells, central memory CD4+ T
cells and effector memory CD4+ T cells. These subclasses
are derived from different human peripheral blood samples
representing different disease states, such as naive CD4+

T cells in peripheral blood derived from healthy individu-
als (PB_naiveCD4T_normal) or systemic lupus erythematosus
(SLE) patients (PB_CD4Tnaive_SLE).

For the 450k platform, there were a total of 32 234
nonredundant samples, including 12 193 (37.83%) samples
with uniformly processed beta values and 20 041 (62.17%)
samples with preprocessed beta values. These samples were
divided into 236 study datasets based on tissue source, cell
type and disease state (Figure 1, Supplementary Tables S1 and
S2). For the 850k platform, there were a total of 4038 nonre-
dundant samples, including 2396 (59.34%) samples with
uniformly processed beta values and 1642 (40.66%) samples
with preprocessed beta values. These samples were divided
into 69 study datasets based on tissue source, cell type and
disease state (Figure 1, Supplementary Tables S1 and S2).

Query
ImmuMethy provides a user-friendly interface to query
DNA methylation at single cytosine sites. It supports
gene symbols/aliases (e.g. CD4), methylation site IDs (e.g.
cg00000029) and chromosome positions (e.g. 16 000 000–
16 010 000 on chromosome 1) as search terms as output,
both beta values and methylation profile queries are provided.
Figure 2 shows the search term “CD4” as an example work-
flow.

Step 1. Select a platform (Human Methylation450 and
MethylationEPIC BeadChips platforms). Look-up tables are
provided for the two platforms provided below the click
buttons (Figure 2A).

Step 2. Enter the query (Figure 2B). As an example, the gene
symbol CD4 is used to search all possible cytosine sites (“All”
in the pull-down menu of the site region) in the first exons,
UTRs, gene bodies, CGIs, shores (0–2 kb from CGIs) and
shelves (2–4 kb from CGIs). When the filter option is checked,
the sites containing SNPs in their array probes will not appear
in the query results.

Step 3. Select study datasets of interest (Figure 2B). Select-
ing the plus sign before each cell group can expand or collapse
each study dataset. Multiple study datasets can be selected.
Next, there are two options for how to proceed.

Option 1. Click on the submit button at the bottom of
the query web page to retrieve beta values. This result page
is shown in Figure 2C. There are basic descriptions of the
retrieved methylation sites available on the page (also see
online FAQs for detailed explanation).

Option 2. Click on the “Show” button to see the methy-
lation profiles (Figure 2D), which are derived only from
uniformly processed data. On the methylation profile result
page, there are four sections. Methylation profiles are shown
as r-beta curves (see section “Materials and methods” for
details). Several different profiles can be visualized at once to
allow comparison of the beta value distributions.

Step 4. For Option 2, click on the “p values” button to
retrieve statistical comparisons between the site in the indi-
cated row and that site in the other rows (Figure 2E). The
P-values are directly from the Mann–Whitney U-test, which
is automatically conducted in response to the user’s operation.
The lower the P-value, the greater the statistical significance of
the observed differential methylation levels. However, statis-
tical comparisons are conducted only for uniformly processed
data.

Step 4. Click on the “Download” button seen in Figure 2C
and D (Section 4) to show detailed results, including all
beta values, in an Excel format file. In the beta value result
page, brief information about retrieved sites is also shown
(Figure 2C). The uniformly processed and/or preprocessed
beta values of all retrieved methylation sites from the query
are included in Excel files with one file corresponding to one
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Figure 2. A workflow to navigate the database, using CD4 as an example. (A) The Methylation450 BeadChip platform is selected. B. The gene symbol
“CD4” was used to search “All” possible methylation sites in the study dataset PB_blood_normal (normal human peripheral blood cells). The “Reset”
button is used to deselect all study datasets. C. On the beta value result page, a basic description of all retrieved methylation sites is given. Beta values
can be downloaded via the “download” button. D. On the methylation profile result page, four sections are included. Section 1 directly shows
methylation profiles by the r-beta curve, which indicates the extent of MPL, the distributions of beta values and the overall methylation intensities.
Section 2 uses box plots to show beta value distributions. Section 3 provides a curve addition function, facilitating the addition of new profiles for
comparison. Section 4 shows the basic descriptions, such as quartiles, mean, standard deviation and quantile ranges of the beta values, for all retrieved
sites. Beta values and results of statistical comparisons can be downloaded via the corresponding links. E. Statistical comparisons between the site in
the indicated row and the sites in the other rows. A lower P -value indicates a greater statistical significance of the observed differential methylation
levels. F. The beta value result. The meaning of the headings is shown as follows. The “p value” reflects statistical significance between the true
hybridization signal and the background signal. The “intact” symbols, but not the numeric values (which represent recalculated values), in the column
“Normalized beta value” indicate the beta values in the column “Beta value” represent preprocessed values that are directly from the data submitter.
Sample IDs and data source study IDs are shown in the columns “Sample ID” and “GSE,” respectively. See the operation steps in the main text for
more details. Web page figures are cropped to fit the page.
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site (Figure 2F). All result files can be downloaded simulta-
neously via the button “Download all” at the bottom of the
result page for further analysis.

Step 4. Click on the “see more” button if there are TFs pre-
dicted to bind the indicated cytosines with either high or low
methylation levels. The TF–DNA interaction information,
such as tissue source, predicted binding sequence, CpG site in
the sequence and its methylation level, is shown. The infor-
mation is directly derived from the MeDReaders database
(see below for more details).

Step 5 (optional). New profiles were added to the current
methylation profiles (Figure 2D, Section 3). The addition of
new profiles can be performed on the profile result page to
facilitate profile comparison.

Application
ImmuMethy has methylation data for a total of 18 161 003
429 sites from over 36 000 samples, including 15 133 393 219
(83.32%) sites from the 450k platform and 3027 610 210
(16.67%) sites from the 850k platform. In addition, there
were 93 455099 methylation profiles, with 43 210 568
(46.24%) profiles from the 450k platform divided into 89
study datasets and 50 244531 (53.76%) profiles divided into
58 study datasets from the 850k platform (Figure 1), all
of which could be searched and compared. This allows the
comparison of 9.34e+14 and 1.26e+15 pairwise profile
combinations for the 450k and 850k platforms, respectively.

The main aim of ImmuMethy is to facilitate a global
study of DNA methylation across samples of immune cells to
identify differential methylation patterns and the underlying
mechanisms. In addition to the storage of a huge number of
methylation datasets, ImmuMethy allows several applications
as follows. In addition, we performed an integrative analysis
to support big data-driven knowledge discoveries.

A global view of methylation status and intensity
ImmuMethy provides beta values and methylation profiles
to illustrate methylation status and intensity. Although both
uniformly processed and submitter-processed beta values are
stored in ImmuMethy, methylation profiles, which are rep-
resented by r-beta curves, are processed only based on the
uniformly processed data. An integrative analysis of the uni-
formly processed beta values reveals a generally bimodal
distribution of beta values (Figure 3, first panel); however,
regions of differential methylation status across different gene
regions are observed. For example, in normal peripheral
blood CD4+ T cells (PB_CD4T_normal), methylation sites
located in CGIs, first exons and TSS200 (0–200 nt upstream
of the TSS) generally show a hypomethylated status, whereas
sites in gene bodies (the regions between the translational start
codon and stop codon), 3′ UTRs and shelves (2–4 kb from
CGIs) tend to be hypermethylated (Figure 3). Similar results
were also observed in other immune cells (data not shown).
This observation is consistent with current knowledge, as gene
promoters have been reported to have low methylation lev-
els (19, 20). ImmuMethy provides the methylation status and
intensity of all sites in these gene regions and other sites that
are currently without region annotations.

A global view of beta values and methylation pro-
files allows easy identification of methylation intensity. In
ImmuMethy, both the preprocessed and the uniformly
processed beta values are aggregated for downloading.

Although the preprocessed values derived from separate stud-
ies have not been normalized between samples, this only has a
minor influence on methylation status evaluation at the global
level because DNA methylation at each site is generally sta-
ble, with only minor changes seen in beta values in response
to various experimental conditions (Figure 4, see below).
For the methylation profile, the curve shape, such as width,
height and peak position, can indicate the overall methyla-
tion intensity and its variability. Therefore, an overview of
beta values or methylation profiles in ImmuMethy could pro-
vide quick insights into the methylation status and intensity
of the queried sites and thereby enable a pre-evaluation of
methylation levels before the experiment.

MPL analysis to show dynamic changes in DNA methylation
In this study, we used MPL to describe the variability in DNA
methylation, that is, to what extent a cytosine modifies its
methylation level under a series of conditions. MPL reflects
a dynamic change in methylation modification under various
conditions, such as cell/tissue sources and disease states. In
the current study, MPL was evaluated based on the change of
methylation levels at a single cytosine resolution. High plas-
ticity indicates that it is common for DNA methylation to
be highly variable under diverse circumstances, whereas low
plasticity suggests relatively stable or small changes in methy-
lation levels. Multiple methods, including quantile range
(Q75–Q25), quantile range (Q95–Q5) and standard devi-
ation as MPL scores, were used to quantitatively measure
MPL for the uniformly processed data. Therefore, MPL lev-
els of each site can be evaluated and compared according to
these scores. LargerMPL scores indicate larger variability and
higher plasticity. A cytosine site with extreme plasticity means
it is highly or even fully methylated in some samples, whereas
it shows very low or even no methylation in some other
samples.

However, we found that DNAmethylation generally shows
low plasticity when the standard deviation and IQR are
used to quantitatively measure MPL. For example, based
on the distribution of the standard deviation of beta values
in all 450k datasets (Figure 4A), there are ∼76%, ∼93%
and ∼97% of all sites with standard deviations less than
or equal to 0.05, 0.1 and 0.15, respectively. The median
and mean standard deviation of all sites were only 0.02547
and 0.03873, respectively. Moreover, less than 2% of all
sites had standard deviations larger than or equal to 0.2.
The distribution of the “quantile range (Q75–Q25)” was
quite similar to that of the standard deviation in all datasets
(Figure 4A) and in specific datasets, such as normal peripheral
blood cells (PB_blood_normal; Figure 4B), normal periph-
eral CD4+ T cells (PB_CD4T_normal; Figure 4C), normal
peripheral CD8+ T cells (PB_CD8T_normal; Figure 4D) and
normal peripheral B cells (PB_Bcell_normal; Figure 4E). For
the 850k platform, similar results were also observed in all
study datasets (Figure 4F) and in the specific datasets, such
as “PB_blood_normal” (Figure 4G) and peripheral blood
cells from individuals with type-1 diabetes (PB_blood_T1D;
Figure 4H).

However, a quite different distribution pattern of “quan-
tile range (Q95–Q5)” is observed in these datasets (Figure 4),
suggesting much variation in beta value when this measure
is used. For the 450k platform, there are ∼37%, ∼65% and
∼79% of all sites with quantile ranges (Q95–Q5) less than
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Figure 3. Kernel density estimation to show frequency distributions of beta values in different gene regions. The study dataset PB_CD4T_normal
(normal peripheral blood CD4+ T cells) from the 450k platform is shown as an example. Kernel density estimation was analyzed using the R function
“density” with default settings. “N” indicates the total number of methylation sites analyzed in each panel while “Bandwidth” represents a measure of
how closely the kernel density matches the real distribution. Lower bandwidth is generally better. A total of 186 samples in the study dataset were
uniformly processed, with each sample containing 485 512 cytosine sites. Therefore, a total of 90 305 232 sites in all samples were analyzed (A). These
sites can be assigned to different gene regions based on their genomic loci (from panels B to L) in the associated genes, and then, the kernel density
was estimated to show the beta value distribution of the cytosine sites in each gene region, as labeled in each panel. Gene regions explain as follows:
1stExon= the first exon; 3′UTR=Between the stop codon and poly A signal; 5′UTR=Within the 5′ UTR, between the TSS and the translational start
site; Body=Between the translational start and stop codons, irrespective of the presence of introns, exons, TSS or promoters; Island = CGI; N
shelf=2–4 kb upstream (5′) of CGI; N shore=0–2 kb upstream (5′) of CGI; S shelf=2–4 kb downstream (3′) of CGI; S shore=0–2 kb downstream (3′)
of CGI; TSS1500=200–1500 bases upstream of the TSS; TSS200= 0–200 bases upstream of the TSS.

or equal to 0.05, 0.1 and 0.15, respectively. The median
and mean of the “quantile range (Q95–Q5)” of all sites
were 0.06793 and 0.10472, respectively. A similar result was

observed for the 850k platform, and ∼34%, ∼64% and
∼80% of all sites had quantile ranges (Q95–Q5) less than
or equal to 0.05, 0.1 and 0.15, respectively. Moreover, the
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Figure 4. Kernel density estimation to show frequency distributions of standard deviation and quantile ranges. Figures A to E are from the 450k platform
and indicate all study datasets (A), normal peripheral blood samples (B), normal peripheral CD4+ T cells (C), normal peripheral CD8+ T cells (D) and
normal peripheral B cells (E). Figures F, G and H are from the 850k platform and indicate all study datasets (F), normal peripheral blood samples (B) and
peripheral blood samples from individuals with type-1 diabetes.

median and mean of the quantile range (Q95–Q5) in all study
datasets were 0.07293 and 0.09791, respectively.

In ImmuMethy, in addition to the above measures, the
r-beta curve can directly illustrateMPL. High plasticity results
in high quantile ranges and standard deviations of beta val-
ues and is generally indicated by a wide-shaped r-beta curve
or a curve with multiple peaks. In contrast, low plasticity
corresponds to low variability and is indicated by a narrow,
single-peak r-beta curve.

Differential methylation analysis through methylation profile
comparisons
ImmuMethy integrates different but functionally related stud-
ies into one study dataset; therefore, for differential methy-
lation, it aims to illustrate large differences at a greater
scale based on methylation distribution but does not focus
on minor differences with very small beta value changes
under specific conditions, as many of the source studies do.
ImmuMethy comprises numerous blood cells subjected to var-
ious experimental conditions (including hundreds of disease
states) and all main immune cell types, including B cells,
CD4+ T cells, CD8+ T cells, natural killer (NK) cells, nat-
ural killer T (NKT) cells, macrophages, monocytes, dendritic
cells and neutrophils, as well as their subsets (if methylome
data are available). Therefore, differential methylation among
different cell types or diseases can be analyzed by comparing
their methylation profiles. A shift in the peak of the methyla-
tion profile in combination with the statistical tests can help
to effectively identify differentially methylated sites.

ImmuMethy contains data from large numbers of con-
trol samples from normal individuals, such as normal blood,
leukocytes, lymphocytes and peripheral blood mononuclear
cells (PBMCs; Supplementary Tables S1 and S2). These
abundant controls enable researchers to identify reliable dif-
ferential methylation sites and facilitate the identification

of disease-associated methylation markers. Therefore, re-
evaluation of previously reported differentially methylated
sites can be performed based onMPL, and novel differentially
methylated sites can be identified.

The site cg02489202 (located in the mitochondrial gene
LARS2/leucyl-tRNA synthetase 2), for example, was pre-
viously reported as being the most significant Parkinson’s
disease (PD)-related CpG (21). This site was also found
to be hypomethylated in PD cases in ImmuMethy while
cg01152726 (located in the gene LAMA3/laminin subunit
alpha 3), which has been reported to be hypermethylated in
patients (21), showed enriched methylation in ImmuMethy
(Figure 5). However, some differential methylation sites iden-
tified in previous studies, such as cg26681770 (located in
the gene PMEPA1/prostate transmembrane protein, andro-
gen induced 1), do not show differential methylation in
ImmuMethy (Figure 5). However, ImmuMethy revealed that
cg15127563, which is found within the ITM2C gene (inte-
gral membrane protein 2C, also known as BRI3), is a novel
differential methylation site with elevated methylation lev-
els in PD patients (Figure 5). In a recent study, recombinant
BRI3 protein was found to function as a molecular chaperone
to inhibit amyloid formation and nonfibrillar protein aggre-
gation (22). However, whether this CpG site is involved in
the development of neurodegenerative diseases awaits further
investigation.

Similarly, for the sites of cg07597976, cg27565966,
cg05433111, cg01758575, cg06323049 and cg14102807
in the gene locus of CD19 (cluster of differentiation 19
molecules), which represents a specific marker gene in B cells,
they are highly methylated in human CD4+ and CD8+ T cells,
whereas lowly methylated in B cells (Figure 5C). More exam-
ples of significantly differentially methylated sites among nor-
mal human B cells, CD4+ T cells, CD8+ T cells, monocytes
and neutrophils are listed in Supplementary Table S3.
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Figure 5. Examples of differential methylation sites. (A) Differentially methylated sites are illustrated by methylation profiles. In PD, site cg02489202 is
hypomethylated, whereas cg01152726 is hypermethylated. However, there was no apparent differential methylation of cg26681770. Site cg15127563
shows an elevated methylation level in PD patients. The study datasets “PB_blood_normal” and “PB_blood_PD” indicate human peripheral blood
samples from normal individuals (n=5181) or individuals with PD (n=334). The y -axis represents the sample ratio at an indicated beta value. For
example, for cg01152726, there were 73 samples with a rounded beta value of 0.92, and the ratio was 73/334 ∼= 0.21856. Therefore, the accumulated
square or ratio covered by each methylation profile curve is equal to 1. (B) Kernel density estimation to show frequency distributions of beta values of
the sites in Figure A. Similar distributions of the same sites in Figures A and B can be observed, suggesting the feasibility and reliability of the r-beta
curve to show the methylation profile. (C) Box plots showing differentially methylated sites in the CD19 gene in normal peripheral CD8+ T cells
(PB_CD8T_normal, n=161) and B cells (PB_Bcell_normal, n=125). Datasets are from the 450k platform.

ImmuMethy pays much attention to the most reli-
able differential methylation using large datasets based on
beta value distribution. There was no overlap between

any two r-beta curves, and the farther the peak distance
was, the greater the difference in methylation intensity
was.
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Figure 6. Examples showing methylation sites with differential methylation tendencies. (A) Methylation profiles showing differential methylation
tendencies. (B) Box plots showing differential methylation tendencies of the same sites in Figure A. Datasets are from the 450k platform.

However, because ∼62.29% (147/236) and ∼15.94%
(11/69) of all study datasets for the 450k and 850k plat-
forms, respectively, are not uniformly processed (Supplemen-
tary Table S1), only the preprocessed beta values but not
methylation profiles can be analyzed for these study datasets.
These cell types and diseases cannot be compared outside their
own dataset, and ImmuMethy can only provide the prepro-
cessed data. However, as ImmuMethy provides the source
sample and study ID in the downloaded data file, it is possible
to perform a precise comparison, particularly for small dif-
ferential methylation between various conditions within the
same study, i.e. studies with the same GSE ID in the down-
loaded file. It is an alternative option during the differential
methylation analysis, particularly for sites without uniformly
processed beta values (also see section “Discussion”).

Methylation tendency analysis based on beta value
distribution
In the current study, we classified methylation sites into
three categories based on the biased beta value distribution
(see section “Materials and methods”). This classification is
based on the sample population but not individual levels.
The MTS and UTS reflect that the majority of the sites tend
to be methylated and unmethylated, respectively, although
unmethylated status for MTSs and methylated status for
unmethylated tendency sites might also be observed in certain

circumstances across samples. We did not use “hypermethyla-
tion” or “hypomethylation” to describe the tendencies in that
these terms only represent an increase or decrease duringDNA
methylation comparison and do not consider beta value distri-
bution in a sample population. However, for NTSs, it means
that the cytosine sites are partially methylated with methyla-
tion levels adjacent to 0.5, or that similar sample proportions
are observed to be, respectively, methylated and unmethylated
across samples.

For example, as shown in Figure 6, all curves of the indi-
cated sites contain the main peak. Although their overall
methylation/unmethylation strengths are different, each site
maintains a relatively stable methylation status. The sites
including cg27247697, cg00670742 and cg05163496 in the
CGI of the human gene CD8A belong to typical unmethy-
lated tendency sites and tend to be unmethylated, which
means that the methylated probe signals of these sites are
often much lower than the unmethylated probe signals in
the majority of normal peripheral blood samples. The sites
including cg25939861 (S_Shelf), cg13681325 (S_Shelf) and
cg00219921 (N_Shelf) of the same gene (CD8A) are typ-
ical MTSs and tend to be methylated, which means that
the methylated probe signals of the sites are generally much
higher than the unmethylated probe signals in the samples.
A very small portion of sites had an unbiased methylation
tendency across all samples. For example, for cg01836137
(located in the Island of gene INF2/inverted formin 2) and
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cg00454305 (located in the Island of gene UNKL/unk like zinc
finger; Figure 6), the peak centers on a beta value of ∼0.5 in
the situation, which means, although there is a variation to
some extent, similar methylated and unmethylated probe sig-
nals were observed during array detection. The P-values were
∼0.37 and ∼0.08 for cg01836137 and cg00454305, respec-
tively, during the tendency test in normal human peripheral
blood cells (PB_blood_normal, n=5181). Therefore, both of
the sites belong to nonbiased methylation.

These three types of methylation sites can be easily dis-
cerned in ImmuMethy. More examples of MTSs, UTSs and
NTSs are listed in Supplementary Table S4 (450k) and Supple-
mentary Table S5 (850k). Differential methylation tendencies
of a site under different conditions indicate increased MPL,
and the conversion of methylation tendencies, particularly
inversion from the methylation tendency to the unmethyla-
tion tendency, or vice versa, represents strong differential
methylation. For example, the unmethylated tendencies of
sites cg07597976, cg06323049, cg27565966, cg05433111,
cg01758575 and cg14102807 in the gene locus of CD19 in
B cells turn to methylation tendencies in T cells (Figure 5C).
This highly differential methylation corresponds to the high
expression of CD19 in B cells but no expression in T cells.
More CpG sites with differential methylation tendencies are
listed in Supplementary Table S6.

For the 450k platform based on our analysis, ∼54.67%
(21763 967/39 811984), ∼42.92% (17088 023/39 811 984)
and only ∼2.41% (959 994/39 811 984) of all sites in the 82
study datasets with sample sizes larger than 3 were identi-
fied to be MTSs, UTSs and NTSs, respectively. This result
means that ∼97.59% of the total cytosine sites present a
significant tendency toward methylation or unmethylation.
Furthermore, when we set a strict filter condition that all
(100%) of the beta values of a site across samples were
required to be larger than 0.5 for MTS or less than 0.5 for
UTS, the result revealed that there were still ∼83.71% of all
cytosine sites that showed strict tendentious distribution with
∼45.61% (18159 128/39 811 984) of MTSs and ∼38.10%
(15170 118/39 811984) of UTSs, respectively.

Similar results were also observed for the 850k platform.
There were ∼62.30% (25 904 134/41 576 916), ∼33.51%
(13930 735/41 576916) and ∼4.19% (1 742 047/41 576
916) of all sites that were identified to be MTSs, UTSs
and NTSs, respectively. Under the above strict condi-
tions, ∼56.80% (28540 379/50 244 531) and ∼31.59%
(15874 047/50 244531) of all sites presented methylation
tendencies and unmethylation tendencies, respectively.

We also systematically examined the beta value distribu-
tion of the three types of tendency sites. As expected, MTS
and UTS dominated to be methylated and unmethylated,
respectively, whereas NTSs dominated to be partially methy-
lated based on the traditional methylation site categories
(see section “Discussion”). For example, among the MTSs
(∼ 55.71% of the total sites) in the normal peripheral B cells
of the 450k platform (Figure 7A), there were ∼70.85% of the
sites with a mean larger than or equal to 0.8, whereas among
the UTSs (∼43.19%of the total sites), there were∼77.62%of
the sites with a mean less than or equal to 0.2. Similar results
were observed in normal peripheral CD4+ T cells (Figure 7B)
and CD8+ T cells (Figure 7C) from the 450k platform and
normal peripheral B cells (Figure 7D) from the 850k plat-
form. Therefore, although most of the results are consistent,

the current categories are not exactly the same as those of the
traditional classification in that they consider MPL and data
distribution.

An interesting finding was that similar results were also
observed when the preprocessed beta values were used to cal-
culate the methylation tendency. For example, among the 23
study datasets that had both preprocessed and uniformly pro-
cessed data values, ∼97.33% (10606 101/10 897 038) of all
shared sites were identified to have the same methylation ten-
dency. This result suggested that although the preprocessed
beta values could not be used for precise differential methy-
lation among different datasets, they could still be used for a
general quick determination of methylation tendency.

Through ImmuMethy, methylation tendencies can be iden-
tified through a quick view of methylation profiles, which
can be further checked based on the online downloaded
beta values. A large sample size will make the methyla-
tion profile curves smoother and make it easier to discern
distributional tendencies. The above results suggest highly
biased tendencies of methylation distributions and further
support a general limited variation in DNA methylation level
in response to various experimental conditions. This means
the absolute difference of methylation levels for differen-
tially methylated sites is generally small; therefore, differential
methylation should often occur in the sites with the same
tendencies.

Sample subdivision or stratification based on highly plastic
methylation sites
Highly plastic methylation indicates highly differential methy-
lation levels under different conditions. Although DNA
methylation generally shows low plasticity, methylation sites
with extremely high plasticity have been observed. For exam-
ple, when considering “quantile range (Q75–Q25)” as a
measure of MPL (see section “Discussion”), that is, MPL
score, ∼0.06035% of sites (293/485 512) have an MPL
score≥0.5 and ∼0.8401% of sites (4079/485 512) have an
MPL score≥0.3 in normal peripheral blood CD4+ T cells.
Interestingly, methylation profiles from highly plastic sites
generally have multiple peaks; however, relatively stable
methylation status can still be observed for each peak of
the same site (Figure 8). For example, the sites cg11404906
(MPL score=0.59; from the gene HLA-DRB1/major histo-
compatibility complex, class II, DR beta 1), cg26590106
(MPL score=0.61; from the gene HLA-DRB1/major histo-
compatibility complex, class II, DR beta 1), cg06293782
(MPL score=0.67; from the gene HLA-DQA2/major histo-
compatibility complex, class II, DQ alpha 2) and cg08401365
(MPL score=0.28; from the gene IRAK1/interleukin 1
receptor-associated kinase 1) have two peaks in their pro-
files (Figure 8A), whereas the sites cg22984586 (MPL
score=0.47; from the gene CCR5/C-C motif chemokine
receptor 5), cg10482512 (MPL score=0.30; from the gene
CCR6/C-C motif chemokine receptor 6) and cg00211215
(MPL score=0.49; from the gene HLA-DRB1/major histo-
compatibility complex, class II, DR beta 1) have three peaks
in their profiles (Figure 8B). This suggests that for such methy-
lation sites, biased methylation tendencies occur in some
samples while unmethylation tendencies are seen in other sam-
ples, and in some cases, nonbiased methylation tendencies can
also be observed. Therefore, the aggregated distributions of
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Figure 7. Kernel density estimation of beta values of the sites derived from the indicated categories. The figures show beta value distributions of the
sites from MTSs, UTSs and nonbiased tendency sites in normal peripheral blood B cells (A, D), normal peripheral CD4+ T cells (B) and normal peripheral
CD8+ T cells (C). Figures A, B and C are from the 450k platform, whereas D is from the 850k platform.

beta values indicate that samples can be divided into different
populations with differential methylation levels.

To systematically analyze the data distribution of beta val-
ues across samples for each site, we used the R package
“fpc” with k-medoids algorithms to detect data homogene-
ity and further split beta values into the optimal clusters. As
a result, ∼97% (450k) and ∼99% (850k) of all sites in all
datasets are homogeneous, which means that only one clus-
ter for these sites was identified. This suggests that there are
only a few cytosine sites that have obvious multiple peaks in
their methylation profiles. For example, only 23 740 cyto-
sine sites in human normal blood cells (PB_blood_normal)
have multiple clusters (or groups) based on the beta value
distribution. For the sites in Figure 8, the cluster number
for cg11404906, cg26590106, cg06293782 and cg08401365
was correctly identified to be 2, which was the same as
the peak number (Figure 8A), and the cluster number for
cg22984586, cg10482512 and cg00211215was 3, which was
equal to the differential peak numbers in their methylation
profiles (Figure 8B).

We use the term “split methylation” to describe the phe-
nomenon whereby multiple methylation tendencies, or multi-
ple aggregated tendentiousness of beta values, occur at a site
within a study dataset. Therefore, split methylation represents

a highly differentiatedmethylation status across samples. Split
methylation sites can be identified from sites with high plas-
ticity or with multiple clusters. It is typically indicated by
two or three peaks in the methylation profile curve, mean-
ing that samples can be subdivided into discrete groups based
on the methylation status (Figure 8). For example, each site of
cg11404906, cg26590106, cg06293782 and cg08401365 can
separate human normal blood samples (PB_blood_normal)
into two major groups with different methylation statuses
(Figures 8A), whereas the sites cg22984586, cg10482512 and
cg00211215 can divide the samples into three major groups
with differential methylation levels (Figure 8B). Combinations
of cytosine sites with split methylation can effectively make
samples continuously stratified. For example, for the sites in
Figure 8A, the combination of cg11404906 and cg26590106
makes human normal blood samples into two major groups,
and the additional cg06293782 further makes the total sam-
ples into four major groups (Figure 8C). However, each group
from the three-site combination could be further divided into
two subgroups based on the methylation level of cg08401365
(Figure 8C). Similar results of sample grouping based on these
sites have also been observed in human normal CD4+ T cells
(Figure 8D), CD8+ T cells (Figure 8E), B cells and mono-
cytes (data not shown). Therefore, the combination of split
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Figure 8. Examples to show split methylation sites. (A) Examples of split methylation sites with two main peaks in the methylation profiles. B. Examples
of split methylation sites with three main peaks in the methylation profiles. Methylation profiles in A and B are from normal human peripheral blood
samples (PB_blood_normal from 450k, n=5181). C, D and E represent heatmaps to show sample subdivisions of normal human peripheral blood
samples (C), normal human peripheral CD4+ T cell samples (D) and normal human peripheral CD8+ T cell samples (E) based on the split methylation
sites in A, respectively. Color bars in C, D and E indicate DNA methylation from low (blue) to high (red) beta values.
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methylation sites can effectively stratify samples, and more
sample subdivisions will be obtained when additional highly
plastic cytosine sites are introduced.

Moreover, for highly plastic sites, it is possible to trace the
corresponding experimental conditions based on the relevant
source sample IDs so that the specific conditions associated
with a specific cytosine site with a high or low methylation
state can be determined. We identified all methylation sites
with high plasticity, and in Supplementary Table S7, there are
examples of methylation sites with MPL scores≥0.5 based
on quantile range (Q75–Q25) to obtain sufficient evidence or
sample support.

The observation of split methylation prompted an inves-
tigation of the underlying mechanism. We found that
genetic polymorphisms and alleles of CpG and single-base
extension sites correlated with the majority of methylation
sites with extremely high plasticity (Supplementary Table S7).
For example, the sites cg11404906 (rs140028130/MAF=
0.028400; rs35497945/MAF=0.011900; rs9269932/
MAF=0.297483; rs141975225/MAF=0.086100; rs92699
31/MAF=0.400600; rs144660248/MAF=0.039400), cg26
590106 (rs9269762/MAF=0.171882; rs12110879/MAF=
0.250000; rs112216378/MAF=0.500000; rs9269761/
MAF=0.315789; rs9269760/MAF=0.500000) and cg06
293782 (rs2213565/MAF=0.186397; rs148573253/
MAF=0.000661; rs1475411/MAF=0.000567; rs1461151/
MAF=0.0002297) in Figure 8A contain multiple SNPs spe-
cific to their probes (Supplementary Table S7). Although these
SNPs do not directly overlap the target CpG sites, the minor
allele frequencies (MAFs) of some of them are very high
(Supplementary Table S7). However, for site cg08401365 in
Figure 8A, although no SNPs are observed in its probes, it is
from the human X chromosome and represents sex-associated
differential methylation sites. For example, the medians of
beta values of cg08401365 were ∼0.54 and ∼0.82 in nor-
mal female (n=2388) and male (n=2306) blood samples,
respectively. Therefore, two typical aggregated distributions
of beta values at the site represent the underlying differential
methylation in female and male populations (Figure 8A).

Similarly, the sites cg22984586 (rs2227010/MAF=
0.291018; rs186785168/MAF=0.000500), cg10482512
(rs2021033/MAF=0.466482) and cg00211215 (rs9269968/
MAF=0.457914; rs143441545/MAF=0.055400; rs9269
969/MAF=0.218725; rs9269971/MAF=0.461327) in
Figure 8B also contain multiple SNPs, although these SNPs
do not overlap the target cytosine site. Therefore, split methy-
lation is closely related to genetic polymorphisms of array
probes, and genetic variants in dataset samples could be eval-
uated to some extent based on the MPL seen in the profile
curves.

Split methylation represents high plasticity and highly dif-
ferentiated methylation. For different split methylation sites,
the underlying mechanisms need further investigation because
they represent real biological effects, whether it comes from
genetic polymorphisms, gender differences or something else.

Analysis of TFs with predicted binding of methylated DNA
DNA methylation status can influence methylation-mediated
protein–DNA interactions. In addition to the classical methyl-
CpG binding domain (MBD) proteins, many TFs lacking an
MBD, such as Kaiso and CCAAT/enhancer-binding protein-
α (CEBPα), can interact with methylated DNA to mediate

methylation-mediated biological processes (23). Therefore,
we integrated information on methylated DNA–TF interac-
tions based on the results from a recent study (18). Through
the comparison of genomic coordinates, it was finally deter-
mined that the methylated DNA binding sites from 172 TFs
completely overlapped with the cytosine sites in this study,
involving a total of 46 519 and 65 116 CpGs for the 450k
and 850k platforms, respectively (Supplementary Table S8).
In addition, both high and low methylation binding sites of
these TFs are included; therefore, it also facilitates a compar-
ison between the observed methylation levels of the queried
sites and the methylation levels of the binding sites in the
original source of cell types.

The binding information of TFs also provides functional
clues for the regulation of gene expression by genotypes.
For example, the cytosine in the CpG site of cg00439656
(the 850k platform) from the gene ARHGAP30 (Rho
GTPase activating protein 30) is a site of split methylation
owing to SNPs with high MAFs in different populations
(https://www.ncbi.nlm.nih.gov/snp/?term=rs12728349). As
expected, the methylation profiles of cg00439656 in many
study datasets in ImmuMethy, such as whole blood cells and
PBMCs, comprise three typical peaks centered on approx-
imately 0.89, 0.45 and 0.04 on the x-axis, representing
methylated (genotype CC), partially methylated (genotype
CT) and unmethylated (genotype TT) status, respectively.
The high methylation status of the site is predicted to bind
CTCF (CCCTC-binding factor) and RAD21 (RAD21 cohesin
complex component) in H1-hESCs, although low methyla-
tion may also bind CTCF in HCT116 cells (Supplementary
Table S8).

Nearly all 172 TFs can be expressed in the immune system
based on RNA sequencing results in the DICE and ImmGen
databases (24, 25). However, because methylation-dependent
TF–DNA interactions may be cell type-specific (23) and the
main sources of cell types for the TF–DNA interaction exam-
ination are not derived from immune cells, the application
of ImmuMethy for predicted methylated DNA–TF interac-
tions only implies functional clues for further experimental
validation.

Discussion
Although DNA methylation has been widely studied, a sys-
tematic analysis of the variability in DNA methylation using
large sample datasets has not been reported. The abundant
methylome data used in this study make it possible to quan-
titatively measure DNA MPL at a single cytosine resolution.
ImmuMethy emphasizes exploiting the large sample size to
reveal global DNA methylation patterns. With an increasing
sample size, the methylation profile curve will become increas-
ingly accurate and representative of broader populations.
Moreover, in contrast to the majority of studies of differential
methylation, this study addresses the limitations associated
with identifying changes in differential DNA methylation.
DNA methylation generally shows the minimal change in the
absolute difference of methylation levels, even at differentially
methylated sites. Although the inverted methylation tendency
from methylation to unmethylation tendencies, or vice versa,
represents strong differential methylation, the unique site is
low in number. The inverted methylation tendencies generally
occur among different datasets and still show limited ability
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to change methylation levels within the same dataset. Genetic
changes in alleles are an effective way to change methylation
tendencies, thus providing a way to understand the functional
associations between genetic variation and genomic loci at
the population level, such as gene regulation by TFs with
differentiated methylation binding.

Although several database applications have been men-
tioned above, other potential functions of ImmuMethy are
also implicated, such as the ability to evaluate probe qual-
ity based on methylation profiles, which will facilitate probe
design and improve the efficiency of differential methylation
detection. Moreover, because the sample information related
to sex and age was also annotated in Supplementary Table S2,
this makes it possible to identify gender- and age-associated
differential methylation, such as aging clock sites. In addition,
the methylation levels in the gene body and transcriptional
regulatory regions, as well as the predicted TFs, are helpful to
explain the underlying regulatory mechanism for differential
gene expression.

Although the term “plasticity” commonly occurs in the lit-
erature, there is still a lack of research on how to quantify
plasticity. In this study, we used MPL to describe the variabil-
ity in DNA methylation. In statistics, there are many classical
ways to describe the spread of data values, such as quar-
tiles and standard deviations. Quartiles are much less affected
by outliers and commonly expressed by an IQR, such as the
“quantile range (Q75–Q25)” in this study. In contrast to the
IQR, the standard deviation takes each value in a dataset into
account and represents the average amount of variability. A
high standard deviation indicates that values are generally far
from the mean, whereas a low standard deviation represents
that values are close to the mean. In this study, we found that
beta values are frequently skewed with outliers, particularly
for sites with split methylation or sites with high plasticity.
In addition, we find that the distribution of “quantile range
(Q75–Q25)” is more similar to standard deviation than that
of “quantile range (Q95–Q5),” although both quantile ranges
are closely correlated to standard deviation in all of the study
datasets. Therefore, the “quantile range (Q75–Q25)” could
represent a good choice as a quantitative measure of MPL, i.e.
MPL score, particularly when enough samples are required to
support MPL.

However, neither the “quantile range (Q75–Q25)” nor the
“quantile range (Q95–Q5)” represent absolute plasticity, as
the extreme difference or the range (the difference between
the highest and lowest beta values of a site) does. For exam-
ple, for the 450k platform, there are ∼75%, ∼50%, ∼37%,
∼28%, ∼17%, ∼11% and ∼7% of all sites with extreme dif-
ferences larger than or equal to 0.05, 0.1, 0.15, 0.2, 0.3, 0.4
and 0.5, respectively, whereas for the 850k platform, there
are ∼70%, ∼46%, ∼30%, ∼20%, ∼9%, ∼4% and ∼2%
of all sites with extreme differences larger than or equal to
0.05, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5, respectively. These
ratios are much higher than those obtained by other measures,
such as “quantile range (Q75–Q25)” and “quantile range
(Q95–Q5).” However, the extreme difference method is not
able to distinguish an outlier from true values that are too
large or too small and offers insufficient sample support. For
example, for highly plastic sites with the same MPL score, the
use of “quantile range (Q75–Q25)” will obtain more sample
(50% of the data outside the range) support variability than
the use of “quantile range (Q95–Q5)” (only 10% of the data

outside the range); however, there are none of the data out-
side the range to support the plasticity when the range is used.
Therefore, there are multiple ways to measure methylation
variability, depending on how large the expected variability
and the amounts of data samples to support the variability.
Therefore, the values from the extreme difference are not cur-
rently integrated into ImmuMethy; however, users can still
perform the analysis based on the downloaded data.

Methylation homeostasis is used to describe the finely
tuned balance between de novo methylation, maintenance
methylation, active demethylation and passive dilution of
DNA methylation during cell replication (26). Cells need
to actively methylate newly synthesized DNA over several
cell divisions. In the current study, during quantitative mea-
surement of MPL, DNA methylation was found to generally
have the limitations of MPL and maintenance of a rela-
tively stable DNA methylation tendency. Therefore, the cur-
rent study further provides novel insight into methylation
homeostasis.

In fact, several studies of differential DNA methylation
have shown that the absolute difference in beta values of dif-
ferential methylation sites is very small. For example, minor
differences in beta values have been observed during fetal
development (27), during aging of CD8+ T cells (28), and
in race-associated methylation sites (29), along with many
more examples from either array (30–34) or high-throughput
sequencing (HTS) (35, 36). Moreover, studies have revealed
that DNA methylation states in different tissues are highly
positively correlated (37–39). This further supports the con-
cept that under physiological conditions, DNA maintains
epigenetic stability. The existence of highly plastic methyla-
tion sites not currently explained by genetic variation may
suggest potential dysregulation of methylation homeostasis
under some disease states. However, cell type-specific methy-
lation should also be taken into account for highly plastic
methylation profiles when multiple cell types are contained in
a cell group, such as PBMCs, which comprise mainly T cells,
B cells, NK cells and monocytes. This is because the hetero-
geneity of cell type-specific CpGmethylation could potentially
increase MPL or even lead to changes in methylation ten-
dency at differential methylation sites. Therefore, it can also
be inferred that even for the same cell type, purity during cell
isolation may also lead to a change in MPL.

In high-throughput experiments, batch effects, which rep-
resent nonbiological variations related to experimental fac-
tors, such as laboratory conditions, reagent lots and personnel
differences, will lead to increased variability and decreased
power to detect true biological signals (40). Improved exper-
imental design (such as proper randomization) and the use
of statistical solutions for batch correction effectively reduce
the batch effect; however, the effectiveness of statistical tech-
niques such as ComBat truly depends on a proper experimen-
tal design, and even so, batch effects may not be completely
removed (40–42). This suggests that not all potential sources
of batch effects could be successfully identified and corrected.

However, the batch effect is not the main concern for
current research motivation. In the current integrative anal-
ysis, a large number of samples were collected from various
studies; therefore, randomized samples may minimize posi-
tional effects, which are from unbalanced sample placement in
different physical positions within the same chips (41). More-
over, the raw data in the IDAT file format were uniformly

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac020/6562126 by guest on 10 April 2024



16 Database, Vol. 2022, Article ID baac020

processed to try to reduce the impact of study batches. Batch
correction generally aims to resolve the unwanted increased
variations, particularly during the differential analysis. How-
ever, the differential methylation analysis is only one of the
database applications. The current findings have shown gen-
eral DNA methylation with limited but not increased vari-
ability. Batch effects only affect a subset of probes, and the
absolute difference in methylation level was found to be small
between various batches (42). Although batch effects may still
exist in the uniformly processed data, we paid less attention
to small differences in a methylation level, which could be
observed due to technical variations than to true biological
differences. Therefore, in addition to statistical significance,
an absolute difference in beta value and differentiated region
methylation are helpful to identify true biological differences.

During the differential methylation analysis, probes asso-
ciated with frequent SNPs, which may result in unwanted
variation, are generally excluded during the data analysis
(41, 42). However, these probes related to SNPs are not
removed in the database, because in the current situation the
sites with SNPs can be used to evaluate the methylation status
affected by genotypes and may have real biological conse-
quences. In addition, based on methylation profiles of large
data samples, sample stratification and outlier samples can
be also evaluated irrespective of SNPs. This helps to acquire
prior knowledge about methylation status, intensity and ten-
dency, which facilitates further experiments to identify true
biological differences.

The current single sample normalization has great bene-
fit for analyzing large datasets because data can be processed
separately so that new analysis can be updated with data accu-
mulation independently of the previous analysis. This study
focuses on an overview of data, discovery of molecular rules
and providing biological insights. Therefore, the preprocessed
beta values were also integrated into ImmuMethy for a quick
global view of data to obtain a preliminary understanding of
methylation status, intensity and tendency. In addition, these
preprocessed data can help users trace their datasets of inter-
est in the GEO and ArrayExpress databases to make a more
accurate analysis.

During the analysis, the SWAN algorithm was used to
adjust the design for Infinium I and Infinium II probes. We
also investigated the differences in beta values before and
after SWAN and found that the difference was generally less
than 0.1, suggesting a minor change in absolute methyla-
tion levels after correction. In this study, submitter processed
data include both normalized and nonnormalized data, but
most of the data are normalized by submitters using differ-
ent methods. Although it is highly heterogeneous among these
data, the absolute difference in methylation level is actually
small based on our analysis. For example, there were ∼4100
samples for which both the uniformly normalized and prepro-
cessed beta values were provided; however, only the former
was deposited in ImmuMethy. We compared the difference
between these beta values and found that the difference in
absolute beta values was larger than 0.1 for only ∼5% of
sites in each sample. Therefore, the method of analysis should
only affect the interpretation of methylation values for a small
proportion of cytosine sites. This suggests that for the major-
ity of cytosine sites, the preprocessed beta values from a mix
of different studies can still be used for a quick evaluation of
methylation status, intensity and tendency with ImmuMethy

and the heterogeneity of the preprocessed data is not the main
concern for an overview of data.

However, as mentioned above, the preprocessed data can-
not be directly used for comparison among different datasets.
For precise comparisons and when more differentially methy-
lated sites with minor absolute differences are expected, the
analysis can be performed within the same datasets, such
as the same GEO series. However, the large difference in a
methylation level provides the easier interpretation of biolog-
ical effects, and the significant small difference may still result
from the undiscovered batch effect. Therefore, in addition
to statistical significance, it is also important to use abso-
lute differences in methylation levels to identify more reliable
differential sites.

Arrays and NGS are dominant tools in the epigenome-wide
association study field. WGBS has the greatest advantage in
the quantitative determination of the methylation states of
all CpG sites in the human genome, but it is very expen-
sive. Reduced representation bisulfite sequencing is more cost
effective, but datasets based on this protocol still await accu-
mulation. All current data are array-based, as the sample
sizes are much larger than those of HTS. However, stud-
ies have revealed that the methylation values determined by
arrays and HTS platforms are highly correlated (43–45), with
the correlation coefficients reaching over 0.98 in some cases
(44). This suggests that the hypothesis of MPL and homeosta-
sis presented in this study should remain valid, even when
enough HTS data have been accumulated and analyzed. In
fact, using WGBS data of immune cells from BLUEPRINT
(http://dcc.blueprint-epigenome.eu/#/files), we performed a
preliminary analysis, and the results also support the current
conclusions about limited DNA MPL (data not shown).

High reproducibility at the 450kCpG sites in the 850k
platform has been observed (14). However, microarray tech-
nologies do not identifymethylation signals specific to positive
and negative DNA strands separately, nor do they distinguish
allele-specific signals. In addition, nonspecific hybridization
signals for some probes may occur. Therefore, genome-wide
methylome sequencing of large quantities of samples can fur-
ther improve our understanding of DNA methylation and its
tendency. We aim to produce this database in a timely update
and include datasets from HTS platforms in the future.

Traditionally, an individual CpG site is classified as fully
methylated (close to 1), unmethylated (close to 0) and par-
tially methylated (close to 0.5) based on a variable cut-off
of DNA methylation levels. However, different studies use
different cut-offs to define methylation status. For exam-
ple, a CpG site is classified as methylated and unmethylated
based on DNA methylation levels higher than 80% and less
than 20%, respectively, and others (20% to 80%) are clas-
sified as partially methylated (46, 47). In some studies, the
partially methylated sites were further classified into three
categories: intermediate between partially methylated and
methylated (60–80%), partially methylated (40–60%) and
intermediate between unmethylated and partially methylated
(20–40%) (48). Another study considered methylation lev-
els less than 60% as low methylation and higher than 80%
as high methylation (23). In addition, methylation levels of
≥90% or ≤10% CpG sites were considered fully methy-
lated (100%) or unmethylated (0%), respectively (49). In a
recent study based on the hidden Markov model, individual
CpG sites were identified to be full-methylated site (FMS),
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middle-methylated site (MMS) and unmethylated site (UMS)
based on cell type-specific cut-offs (50). For CpG sites, the
cut-off separating UMSs from MMSs is approximately 0.2 in
both GM12878 and H1-hESC cells, whereas the cut-off sep-
arating MMSs from FMSs is approximately 0.75 and 0.88 in
GM12878 and H1-hESC cells, respectively (50). Therefore,
various thresholds were used to define methylation status in
different studies.

In this study, we divided methylation sites into three cat-
egories: MTSs, UTSs and NTSs. The classification aims to
reflect the tendency of methylation level distribution at the
population but not individual levels. Therefore, although the
categories are closely associated with differentiated methyla-
tion status, the classification does not determine whether a
site is fully methylated or fully unmethylated under a specific
condition. This is because of the dynamic characteristics of
DNA methylation and the various functional states of single
cells contained in bulk samples. Therefore, even for MTSs,
an unmethylated status may also be observed under certain
conditions at some cytosine sites. In contrast, for unmethy-
lated sites, methylation may occur under some other condi-
tions. Bulk samples comprise multiple single cells with various
methylation statuses, even for the same cell types; therefore,
the methylation tendency reflects an overall probability of
being methylated or unmethylated.

In contrast to a previous study (50), which predicts methy-
lation status according to the CpG site context under a specific
condition, the current results do not reflect the mutual asso-
ciations among cytosine sites. It is interesting and worth
further investigating their spatial correlation in the next step.
Although the current categories are from a different perspec-
tive and not the same as those mentioned above, the majority
of unmethylated and methylated sites belong to unmethylated
and methylated sites (Figure 7), respectively, based on the
traditional definition thresholds. However, the current ten-
dency detection is based on statistical tests only from two
intervals, although other intervals of interest may also be
selected, depending on different research purposes. However,
it is necessary to properly understand the underlying biologi-
cal and nonbiological meanings, particularly for the sites with
peaks adjacent to 0.5 and the sites with split methylation in
methylation profiles.

MPL reflects the dynamic change in methylation levels
in response to conditions. Low plasticity indicates a small
change in methylation levels across samples, whereas high
plasticity indicates a large change in methylation levels.
Inverted methylation tendencies, such as from unmethylation
to methylation, or vice versa, indicate higher plasticity than
that of differentiated methylation within the same tendency
sites. Plasticity is tightly associated with layering, and high
plasticity provides the chance of sample division or stratifica-
tion through component deconvolution. These divisions, as
well as their further subdivisions, lead to sample heterogene-
ity, which implies dissimilarity and diversity. Therefore, plas-
ticity explains the underlying mechanism of heterogeneity.
Therefore, the plasticity analysis facilitates “marker” evalua-
tion, which implies homogeneity and stability (although these
qualifications are relative). For example, DNA methylation
markers imply that they are lowly plastic.

In our previous studies, we performed the quantitative
measurement of gene plasticity, which was referred to as
expressional gene plasticity (51), and potential applications

based on plasticity analysis were implicated, such as marker
gene evaluation (51), novel immune cell subpopulation iden-
tification (52) and internal phenotype analysis according to
the correlated and anticorrelated expressional relationships
(53). The current study focuses on gene plasticity at the DNA
methylation level, i.e. methylational gene plasticity. There-
fore, gene plasticity can be expressed at multiple levels, such
as the levels of transcriptome and methylome. Other levels
of gene plasticity at proteome, exome and other types of
epigenomes and so on, are under further study. In contrast
to expressional plasticitomes (52), methylational plasticito-
mes comprise all plastic methylation sites, which will inform
functional studies of epigenetic modifications involved in the
regulation of the corresponding methylation sites and further
biological consequences. All these contribute to the study of
plasticitomics.
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