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Abstract
Large amounts of data from microbiome-related studies have been (and are currently being) deposited on international public databases. These 
datasets represent a valuable resource for the microbiome research community and could serve future researchers interested in integrating 
multiple datasets into powerful meta-analyses. However, this huge amount of data lacks harmonization and it is far from being completely 
exploited in its full potential to build a foundation that places microbiome research at the nexus of many subdisciplines within and beyond biology. 
Thus, it urges the need for data accessibility and reusability, according to findable, accessible, interoperable and reusable (FAIR) principles, as 
supported by National Microbiome Data Collaborative and FAIR Microbiome. To tackle the challenge of accelerating discovery and advances in 
skin microbiome research, we collected, integrated and organized existing microbiome data resources from human skin 16S rRNA amplicon-
sequencing experiments. We generated a comprehensive collection of datasets, enriched in metadata, and organized this information into data 
frames ready to be integrated into microbiome research projects and advanced post-processing analyses, such as data science applications 
(e.g. machine learning). Furthermore, we have created a data retrieval and curation framework built on three different stages to maximize the 
retrieval of datasets and metadata associated with them. Lastly, we highlighted some caveats regarding metadata retrieval and suggested 
ways to improve future metadata submissions. Overall, our work resulted in a curated skin microbiome datasets collection accompanied by a 
state-of-the-art analysis of the last 10 years of the skin microbiome field.
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Introduction
Directly in contact with the environment, the skin microbiome 
is a tangled and dynamic ecosystem that interacts with both 
the host and its surroundings (1). It is characterized by diverse 
ecological niches, where the microbiota, the host skin cells and 
the host immune system are involved in the maintenance of 
skin health. In the last decade, numerous studies have investi-
gated the composition of the human skin microbiome under 
very different conditions (2–4).

The advent of high-throughput DNA sequencing (HTS) 
technologies has revolutionized numerous research fields, and 
the study of the human microbiome was no exception. Fol-
lowing the introduction of HTS technologies, the number of 
studies investigating the human microbiome has increased, 
expanding our knowledge about its implications for human 
health. In particular, it was demonstrated that its pivotal link-
age with diet and age (5, 6) and specific microbiome patterns 
were shown to relate to the body region sampled (7, 8). Geog-
raphy and ethnicity have also been shown to affect the skin 
microbiome (9) and numerous diseases have been associated 

with an altered microbial state (10), as in the cases of atopic 
dermatitis (11) and psoriasis (12).

Since their adoption, the new sequencing strategies have 
been getting cheaper and cheaper, becoming available for 
researchers and companies on a global scale. In recent years, 
large amounts of data have been deposited in public databases 
and more is going to be produced in the near future, as the 
number of sequencing experiments is exponentially growing.

There are three major databases used to store nucleotide 
sequence data: the National Center for Biotechnology Infor-
mation (NCBI)’s Sequence Read Archive (SRA) (13), the 
EBI’s European Nucleotide Archive (ENA) (14) and the DDBJ 
Sequence Read Archive (DRA) (15). These three databases are 
brought together by the International Nucleotide Sequence 
Database Collaboration (INSDC) and are constantly synchro-
nized to share their data (16). The publicly available datasets 
deposited in these databases represent a valuable resource for 
the microbiome research community. Public available data 
can be now accessed and downloaded to be re-analyzed or 
integrated to perform meta-analysis studies (17–19).
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As a consequence, in the last few years, we are fac-
ing an increasing adoption of novel large-scale data science 
approaches to address challenges in microbiome science (20). 
For example, machine learning strategies can be applied to 
perform powerful prediction tasks on metagenomics data
(e.g. disease prediction based on microbiome composition). 
However, these strategies require a large amount of data 
to train and test models, making the integration and har-
monization of multiple datasets a necessary step (21, 22). 
In this way, the availability of large-scale sequencing data 
can enable microbiology researchers to ask new questions 
and develop new strategies to study the human-associated 
microbial communities (23, 24).

However, this huge amount of microbiome data still lacks 
harmonization and is far from being completely exploited to 
its full potential. Guidelines have been proposed and tools 
have been developed to promote the standardization of sam-
ple processing, sequencing and data analysis across the micro-
biome field (25–32) but achieving global standardization is 
not an easy task. Initiatives such as the Human Microbiome 
(33) and the Earth Microbiome Projects (34) have favored 
the development of standardized procedures. In addition, 
important field-specific databases were created, such as the 
Human Oral Microbiome Database (35) or the GMrepo, a 
database of curated and consistently annotated human gut 
metagenomes (36).

Several research groups have been proposing different 
sources of microbiome data: initiatives like the Human Micro-
biome and the Integrative Microbiome Projects (37, 38), 
MicrobiomeDB (39), HumanMetagenomeDB (40), curated-
MetagenomicData (41), the ML Repo (42), QIITA portal 
(43) or the MG-RAST portal (44) suggested both data man-
agement infrastructures and frameworks to guarantee data 
accessibility and reuse.

Despite the contribution of groups involved in this field, 
the lack of metadata and the presence of datasets with missing 
or inconsistent information can reduce the interpretability of 
the data generated, influencing the understanding of microbial 
dynamics and ecological patterns (23, 24, 45). Inconsis-
tency and uncontrolled metadata filling were demonstrated 
by Gonçalves and Musen (46), revealing the necessity of 
standardized metadata compilation (47).

Findable, accessible, interoperable and reusable (FAIR)
principles are supported within the National Microbiome
Data Collaborative and FAIR Microbiome community
(https://www.go-fair.org/implementation-networks/overview/
fair-microbiome) (23, 45) to promote data discovery and reuse 
in the microbiome field, and allow for broader dissemination 
of knowledge and compliance for both humans and machines.

Thus, making microbiome data and metadata accessible 
is a key aspect to guarantee a concrete opportunity to per-
form meta-analyses and data reuse (42, 48, 49). In this 
context, well-curated and FAIR microbiome datasets are now 
a necessity to explore microbiome patterns, apply data science 
techniques and promote data reusability (50, 51).

In order to help researchers interested in performing meta-
analyses with human skin microbiome data and exploring 
the context-specific information related to potentially use-
ful datasets, we focused our work on published human skin 
microbiome datasets, creating a curated skin microbiome col-
lection accompanied by a state-of-the-art analysis of the last 
10 years of the skin microbiome field.

In particular, during the last decade, most of the stud-
ies have relied on amplicon-sequencing approaches, where 
different hypervariable regions of the 16S rRNA gene are 
amplified and sequenced to identify the microbial taxa present 
in a sample (52, 53). For this reason, we built a com-
prehensive human skin microbiome collection enriched with 
detailed metadata information, focusing on existing 16S 
rRNA amplicon-sequencing microbiome datasets from the 
human skin biome.

To achieve our goal, we first collected datasets from the 
INSDC, which store the majority of the publicly available 
nucleotide-sequencing datasets together with their associated 
metadata (16). As the availability of these metadata and the 
possibility of recovering them are crucial for ensuring the 
reusability of the available datasets (46), we dedicated special 
attention to maximizing the amount of metadata informa-
tion that can be recovered. To do so, we combined different 
metadata retrieval approaches enriched with a manual cura-
tion step. Then, we generated explorable data frames at 
different curation levels containing all the retrieved datasets 
together with the associated metadata. Further, we high-
lighted some of the shortcomings of the current approaches 
for data and metadata retrieval and we called attention to 
some of the issues that currently afflict the reusability of 
the deposited data. Overall, the output of our work consti-
tutes a valuable resource for researchers interested in per-
forming meta-analyses with human skin microbiome data, 
who can explore our collection to find a list of datasets 
that can be integrated to answer old and new biological
questions. 

Materials and methods
Metadata retrieval and manual curation procedures
To obtain a comprehensive list of skin microbiome studies 
derived from amplicon approaches with the associated meta-
data, we specifically used data available in public repositories 
that allowed open access and had no copyright restrictions. 
Thus, we built a three-step framework (Figure 1) based on 
the following steps:

• Step 1: dataset retrieval from INSDC;
• Step 2: metadata retrieval and enrichment; and
• Step 3: output curation with the removal of redundant and 

spurious information.

In the sections below, all the steps are described together 
with the methods and strategies used.

Step 1: dataset retrieval from INSDC
To generate a comprehensive list of datasets of human skin 
microbiome derived from 16S rRNA amplicon sequencing 
available on the INSDC public databases, we decided to rely 
on two different approaches: (i) an automatic search, which 
allows querying the INSDC databases automatically using 
keywords and (ii) a manual approach on the SRA and ENA 
portals.

The automatic search of the datasets was performed with 
the R package ‘SRAdb’ (54). SRAdb relies on an SRAdb 
SQLite database, a regularly updated database of metadata 
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Figure 1. Schematic representation of the three-step framework adopted in the study to collect datasets and metadata and generate three differently 
curated data frames.

associated with the raw reads deposited on SRA and its inter-
connected databases (ENA, DRA). The SRAdb database (up 
to 36 GB) was downloaded and stored locally on 17 June 
2021. We performed a full-text search with the following 
query: ‘human skin microbiome OR human skin microbiota 
OR human skin metagenome’.

For the manual approach, instead, we performed a search 
on the NCBI’s SRA and EBI’s ENA databases with the fol-
lowing criteria: datasets coming from 16S rRNA amplicon 
sequencing, containing only human skin samples that were 
deposited from 2012 onward and that presented an associated 
publication.

Step 2: metadata retrieval and enrichment
An enrichment step was performed on both automatic and 
manual outputs in order to recover the largest amount of 
metadata associated with the datasets previously found. For 
this step, we integrated three different strategies: (i) SRAdb 
was used to collect all the possible information from the 
retrieved list of studies and samples; (ii) for some run-
associated metadata that could not be retrieved with SRAdb, 
we used the Entrez Direct (EDirect) tool (55); and (iii) for 
the list of manually recovered studies, we collected study-
specific metadata from the associated publication, including 
information that cannot be found on the INSDC databases. 
We focused our attention on the sample origin, the labora-
tory and bioinformatics strategies and the data related to the 

context in which the studies were performed. In particular, 
we retrieved study-specific information related to the collec-
tion method used, the 16S rRNA gene hypervariable region 
sequenced, the clustering method used [operational taxo-
nomic units (OTUs), amplicon sequence variants/ribosomal 
sequence variants (ASVs/RSVs)], the number of recovered 
units/variants reported in the study, the database used for 
taxonomic assignment and its version, the disease condition 
investigated (if any), the location of the sampling, the pres-
ence of an MGnify analysis (56), the DOI and the year and 
journal of publication.

In addition, a bibliometric analysis of published papers 
related to the datasets retrieved was performed. Research 
areas and categories from the Web of Science (WoS) collec-
tion and Elsevier’s Scopus classifications were added to each 
publication. Notably, since Scopus reported multiple subject 
areas for each publication, we included multiple columns in 
the data frame to keep all the information, while the column 
‘Scopus_Research_Subject’ collapsed this information into a 
single cell. We further generated a column categorizing a scien-
tific journal as a medicine-related journal (Medicine_Journal) 
or not depending on the presence of ‘Medicine’ among the 
Scopus subject areas. Lastly, an additional column containing 
any useful notes related to the study was added.

A comprehensive list of the manually curated metadata 
with description is available in Supplementary File 1, also 
available in our Github repository (https://github.com/giuli-
aago/SKIOMEMetadataRetrieval).
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Step 3: outputs curation and metadata correction
Once all the information was stored into three data frames 
that differed in the way the datasets and the meta-
data were retrieved, we proceeded to reorganize them 
by removing redundant metadata and Not Available (NA) 
inflated columns. For the smallest and most refined data 
frame, we further inspected the data frame rows to remove 
undesired samples and to correct wrongly assigned meta-
data. In detail, we removed samples that were not obtained 
from amplicon sequencing and corrected metadata by double-
checking with the related publications.

Script and data availability
For all the steps of datasets and metadata retrieval, a list of 
studies and associated metadata were kept (Data Frame 1, 
Data Frame 2 and Data Frame 3). All the outputs are 
available in our Github repository (https://github.com/giu-
liaago/SKIOMEMetadataRetrieval), accompanied by the 
scripts used for the retrieval framework. In particular, scripts 
describe the use of SRAdb, EDirect tool, and the entire R 
pipeline to obtain the final outputs and codes for plot creation 
and data frame exploration.

Results
Following the three steps presented in the Methods section 
(dataset retrieval from INSCD; metadata retrieval and enrich-
ment; and data frame curation), we first tested two 
approaches to retrieve datasets of the human skin micro-
biome from the INSCD databases (Step 1): a manual search 
of the datasets and an automatic search with SRAdb (54). We 
then collected metadata information for the retrieved datasets 
(Step 2) using three different approaches: automatic search 
with SRAdb (54), EDirect (55) and a manual search from the 
associated publication for the manually retrieved studies. In 
this way, we obtained three data frames:

• Data Frame 1, containing only datasets retrieved with 
SRAdb and metadata collected automatically with SRAdb 
and EDirect;

• Data Frame 2, containing all the datasets identified with 
both the strategies (manual and automatic) together with 
all the metadata that could be recovered with SRAdb, 
EDirect and manual inspection of the publication. It 
represents the most comprehensive of the three datasets;

• Data Frame 3, a subset of Data Frame 2, containing 
only the manually retrieved datasets together with all 
the metadata that could be recovered both manually and 
automatically with SRAdb and EDirect. It represents the 
smallest but most curated of the three datasets.

Data Frame 2 and Data Frame 3 both contain 62 meta-
data columns (from manual and automatic metadata search), 
whereas Data Frame 1 only contains 37 metadata columns 
obtained from the automatic search. All three data frames 
were curated to remove redundant columns and NA-inflated 
columns (Step 3). Among the redundant metadata, we 
observe columns containing the IDs of run, experiment, 
submission, sample/BioSample and study/BioProject. Other 
metadata recovered by both methods were the spots, the 
bases, the library strategy, the sequencing platform used 

and the Taxon ID. Data Frame 3 was further curated 
to remove undesired samples coming from whole-genome 
sequencing experiments and to correct wrongly assigned
metadata.

The following sections will show the results, starting from 
a comparison between the data collection approaches used 
and then moving to describe the state of the art of metadata 
related to the submission process and the metadata obtained 
from our manual curation step, in particular regarding the 
bioinformatic strategies used and the skin data characteristics 
retrieved directly from the published studies.

Comparison of datasets collection approaches and 
metadata retrieval
The automatic search with SRAdb recovered a total number 
of 97 182 samples from 203 studies (Data Frame 1) with 8492 
samples that were uploaded before 2012. The manual search, 
instead, recovered a total of 21 958 samples from 68 studies 
(Data Frame 3) starting from 2012.

We compared the ability of the two approaches in iden-
tifying the desired datasets. Notably, the automatic search 
failed to identify 47 studies that were recovered by the manual 
search, indicating that SRAdb does not perform an exhaustive 
search of the available datasets. The automatic search iden-
tified 182 studies not found by the manual search. Based on 
these observations, we generated a data frame (Data Frame 2) 
that comprised both automatically retrieved and manually 
identified studies. This data frame contains 108 207 rows 
(samples) coming from 250 different studies and a total of 
62 columns containing the metadata.

The metadata associated with the datasets can be dif-
ferentiated into three major categories: (i) metadata related 
to dataset submission (obtained by the automatic search), 
(ii) metadata associated with the laboratory procedures and 
bioinformatic pipelines (obtained by automatic and man-
ual searches) and (iii) manually collected context metadata 
describing other relevant aspects of the study (e.g. disease/con-
dition investigated or sample origin).

The automatic search for metadata with SRAdb and EDi-
rect was performed for all the datasets, both manually and 
automatically retrieved, to collect metadata related to dataset 
submission (i). After the curation step, we conserved a total 
of 37 metadata columns that were included in all three data 
frames. These 37 columns contain information related to:

• the study with BioProject, Study_ID, Study_description 
and Study_abstract;

• the submission and its date with the Year_of_release, 
Release_Date and Load_Date;

• the experiment with the specification of the Library Strat-
egy used (Library_Strategy), details about pair-end or a 
single-end sequencing (Library_Layout), and the library 
Insert size (Insert_Size);

• the sequencing platform and the model used (Platform, 
Model);

• the run with the average sequence length (AvgLength), the 
spots, the bases, the size of the file (Size_MB) and the path 
for the download (Download_path);

• the experiment title (Experiment_title);
• a description of its design (Design_description);
• the name of the library (Library_name) and attributes of 

the experiment (Experiment_attribute);
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• the sample with BioSample, Sample_ID, Sample_alias, 
Sex, Body_Site, Description and Sample_attribute and

• the associated Taxonomic ID with the scientific name 
(TaxID, Scientific_Name).

A comprehensive description of all the 37 metadata is 
available in Supplementary File 1.

In Data Frames 2 and 3, we also included 23 additional 
columns that contain metadata not available on INSDC and 
obtained from the manual inspection of the publication. These 
metadata were recovered only for the manually retrieved 
datasets and contained information on the laboratory pro-
cedures and bioinformatic pipelines (ii) together with other 
relevant metadata describing the context of the study (iii).

In the next sections, all the categories of metadata and 
their distribution are outlined. A full description of the meta-
data included in the data frames is given in Supplementary 
File 1, also available in our Github repository (https://github.
com/giuliaago/SKIOMEMetadataRetrieval).

Distribution of metadata related to dataset 
submission and library preparation
By comparing the distribution of the number of datasets 
released over the years among the three different data frames 
(Figure 2B), we observed that Data Frame 1 showed a peak 
in 2015 when 17 551 datasets were released. Differently, 
Data Frame 2 showed a peak in 2017 with 19 041 datasets 
released during that year. For Data Frame 3, we observed 
two peaks: one in 2013 with 4841 datasets released and 
one in 2017 with 7293 datasets released. However, if we 
look at the number of studies, the peak was reached in 2019 
with 16 studies investigating the human skin microbiome
(Figure 2A).

After removing datasets with a value equal to zero for 
the following metadata, we calculated the median number 
of spots (sequencing clusters that generated sequence), bases 
(nucleotides), average read length and insert size (size of the 
amplicon without sequencing adapters) for Data Frames 1, 2 
and 3. The median number of spots were, respectively, 23 590, 
24 564, 22,560.5 (Figure 2E), whereas the median number of 
bases was 4 114 610, 4 364 032 and 7 270 396 (Figure 2F). 
The mean of the datasets’ average read length in Data Frame 
1 is 227.0235 bp, whereas for Data Frame 2 is 254.0603 bp 
and for Data Frame 3 is 440.2783 bp. The median values 
are 150 bp for Data Frames 1 and 2 and 502 bp for Data 
Frame 3 (Figure 2G and I). The median insert size is 500 in 
Data Frames 1 and 2 and 300 in Data Frame 3 (Figure 2H 
and I). Mean values are 455.5963, 440.2783 and 349.0783, 
respectively.

Information about the sex of the individuals can be col-
lected for 36 231 out of 97 182 samples in Data Frame 1 
(20 011 females; 16 220 males), 37 340 out of 108 207 sam-
ples in Data Frame 2 (20 234 females; 17 106 males) and 3461 
out of 21 958 samples in Data Frame 3 (1276 females; 2185 
males).

We recognized 66 different descriptions (more or less accu-
rate), defining the sampled region of the body. However, 
metadata on the body site is absent in most of the datasets. 
In detail, a total of 42 489 empty metadata information were 
found for Data Frame 1, 52 972 for Data Frame 2 and 18 061 
for Data Frame 3.

In our data frames, we have observed the use of differ-
ent Taxon IDs to describe the samples. Data Frame 3, which 
contains only samples of human skin microbiome, presents 
11 different taxon IDs, which correspond to the following 
scientific names: ‘human skin metagenome’, ‘Homo sapiens’, 
‘metagenome’, ‘metagenomes’, ‘human metagenome’, ‘skin 
metagenome’, ‘Staphylococcus aureus’, ‘clinical metagenome’, 
‘gut metagenome’, ‘human gut metagenome’ and ‘bacterium’. 
The number of Taxon IDs increases in the other two data 
frames so that in Data Frame 2, we observe 173 different 
Taxon IDs.

Methodological pipeline insights and context 
metadata of skin microbiome datasets
For the 68 manually retrieved studies, we further collected 
other metadata from the associated publications. Based on 
these manually collected metadata, we observed that most 
of the studies had used swabs to collect samples (53 studies; 
19 928 samples), with only a few relying on other methods 
like biopsies (5 studies; 257 samples), scrubs buffer washes (1 
study; 1358 samples) or a combination of swabs and other 
methods (7 studies; 311 samples).

Considering the marker gene used, the most commonly 
sequenced hypervariable regions of the 16S rRNA gene have 
been the V1–V3 (6176 samples), followed by the V4 (5694) 
(Figure 3A). However, if we consider the number of stud-
ies, we observed that most of them relied on the V1–V3 
(24 studies) and V3–V4 (21 studies) regions (Figure 3A). The 
Illumina-sequencing platforms were the most used (88 295 
samples in Data Frame 2), particularly the Illumina Miseq 
platform (49 297 samples in Data Frame 2), followed by 
Roche 454 platform (19 777 samples in Data Frame 2). A total 
of 11 412 samples have no specific platform model assigned 
(Figure 3C).

Regarding the bioinformatic pipeline used, most of the 
manually inspected studies have clustered reads into OTUs 
(56 studies), and only a few (6 studies) relied on ASVs or RSVs 
(35). For six studies, this information was not reported in the 
article methods (Figure 3D).

Taxonomy assignment was mainly performed with Green-
genes database (57) (29 studies), followed by SILVA (58) 
(15 studies). Other works relied on different databases, 
including RDP (59) (3 studies), EzTaxon-e (60) (3 studies), 
NCBI (1 study) and HOMD (1 study). Strikingly, many stud-
ies did not report this information in the articles’ method 
section (16 studies) (Figure 3E).

Our analysis also comprehended a detailed inspection of 
skin and disease conditions related to the microbiome anal-
ysis. Among our list, we identify 42 studies investigating 
26 different diseases/conditions of the skin (Figure 3B). The 
most commonly investigated disease in our curated dataset 
is atopic dermatitis (eight studies), followed by psoriasis and 
parapsoriasis (five studies), while seven studies investigated 
skin injuries of different kinds. Among the other diseases/con-
ditions investigated, we observed acne (three studies), skin 
pathogenic infections, such as bacterial, fungal and parasitic 
infection (three studies), allergic traits and atopic individuals 
(three studies), dandruff (two studies), leprosy (two studies), 
hidradenitis suppurativa condition (two studies), autoimmune 
bullous disease (one study), dystrophic epidermolysis bullosa 
(one study), vitiligo (one study), squamous cell carcinoma 
(one study), filaggrin-deficient human skin (one study) and 
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Figure 2. (A) Number of studies and samples from Data Frame 3 released every year starting from 2012. (B) Comparison of the number of samples 
released each year for the three Data Frames. Data Frames 1 and 2 contain samples starting from 2008, whereas Data Frame 3 only from 2012. (C) 
Distribution of the variable ‘sex’ in the three Data Frames. In all three cases, the majority of the samples do not have such information reported. (D) The 
number of Taxon ID/Scientific names used in the three Data Frames (barplot) and relative abundance (as a logarithm) of the Taxon ID/Scientific names 
used for the samples in Data Frame 3 (pie chart). (E–H) Comparison of the median number of spots (E), bases (F), reads average length (G) and insert 
size (H) in the three Data Frames. (I) Read length distribution in the three Data Frames. (J) Distribution of the insert size in the three Data Frames.
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Figure 3. (A) Number of samples and studies that used specific 16S rRNA hypervariable regions in Data Frame 3. (B) The number of studies and samples 
for each disease/condition investigated in Data Frame 3. (C–E) Frequency of use of the different sequencing platforms (C), clustering methods (D) and 
taxonomic databases (E) in Data Frame 3. (F) Table showing the WoS research areas and Scopus research subjects that described the scientific journals 
in which the studies of Data Frame 3 have been published. The research areas/subjects are divided into three boxes depending on how often they were 
associated with the Scopus research subject ‘Medicine’. Going from left to right are shown the research areas/subjects that were always (left), 
sometimes (center) and never (right) associated with the Scopus research subject ‘Medicine’. (G) Geographical distribution of the studies included in 
Data Frame 3.

other conditions such as obesity and low birth weight (two 
studies). Overall, 26 studies collected samples from healthy 
human skin (in Data Frame 3, column 43 ‘disease/condition’).

Looking at the geographic distribution of the studies, we 
observed that most of them were conducted in the USA (22 
studies), followed by European countries (19 studies) and 
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China (11 studies). Other countries that featured more than 
one study were South Korea (four studies), Brazil (three stud-
ies) and India (two studies; in Data Frame 3, column 44 
‘Location’; Figure 3G).

Finally, the 68 manually retrieved studies were published in 
40 different scientific journals from 17 different WoS research 
areas. According to Scopus classification, 36 studies were 
published in medicine-related scientific journals (Research 
Subject = Medicine). Figure 3F shows how often specific WoS 
research areas and Scopus research subjects are associated 
with the Scopus research subject ‘Medicine’ in the present 
dataset.

Discussion
In this section, we discuss the results obtained from our work, 
in particular focusing the attention on three main aspects: 
(i) outcomes related to dataset collection, (ii) caveats related 
to metadata retrieval and data reuse and, finally, (iii) the 
importance of having a curated collection of a microbiome 
dataset for advancing the microbiome research field through 
data-driven approaches and powerful meta-analysis.

Skin microbiome data retrieval: dataset collection 
is not an easy task
The INSDCs databases are the source of an enormous amount 
of publicly available datasets that can be accessed and down-
loaded to perform powerful meta-analyses (16). The field of 
microbiome research can greatly benefit from the availability 
of this large amount of data (23). However, the reusability 
of a dataset strictly depends on the possibility of retrieving it 
and on the amount of information (metadata) deposited by 
the authors at the time of submission (46, 61).

If the number of datasets available is limited (such as for 
poorly studied environments), a manual search will consent to 
gather all the studies available in a relatively fast way. How-
ever, for well-studied environments, the number of datasets 
can be very large and it becomes more convenient to rely on 
automatic approaches (62). The automatic approach allows 
for a fast and comprehensive search of datasets of interest, 
but at the same time, it lacks a curation step that validates 
the recovered datasets. Moreover, the automatic search does 
not permit the retrieval of important information that was not 
deposited in the INSDC databases together with the raw data. 
Conversely, the manual search is more accurate and allows a 
researcher to retrieve a well-validated list of studies together 
with other information by inspecting the associated publica-
tion. Its drawbacks are that it is time-consuming and presum-
ably less comprehensive than the automatic search. Moreover, 
it does not consent to retrieve sample-specific information.

Our results showed that the automatic search did find a 
greater number of datasets than the manual (97 182 samples 
from 203 studies vs 21 958 samples from 68 studies). Many 
can be the reasons that explain this difference. First, the auto-
matic search tends to be more exhaustive than a manual one 
if the number of available datasets is large. Second, the list of 
studies is not inspected to remove undesired studies that do 
not match some of the desired criteria but might be retrieved 
by the searching tool. Third, the manual search was limited 
to the dataset deposited in the last 10 years, starting from 
2012, while the automatic search recovered studies starting 
from 2008. Indeed, 8492 samples found by the automatic 

search were uploaded before 2012. Despite these observa-
tions, neither the manual nor the automatic search with 
SRAdb was capable of recovering all the studies, highlighting 
the importance of combining the two approaches.

Together, our results indicated that SRAdb was not 
exhaustive in its search, and to maximize the number of 
datasets retrieved, a combination of manual and automated 
approaches might represent the optimal strategy. We observe 
that the larger the number of available datasets, the less 
feasible an extensive manual search, favoring an automated 
approach for the dataset retrieval step. Conversely, for top-
ics with a particularly small number of datasets available, 
the manual search still remains the most accurate way of 
recovering them.

Caveats of metadata retrieval and data reuse
Depending on the topic, a researcher interested in perform-
ing a meta-analysis can decide to rely on different approaches 
to retrieve metadata associated with the datasets of interest, 
both directly through the INSDC data portal (16) or with spe-
cific tools (54, 55, 63). In this work, we decided to combine 
three approaches, based on SRAdb (54), Entrez (55) plus a 
manual search from the publication, with the aim of gener-
ating a comprehensive data frame containing all the datasets 
from the human skin microbiome amplicon sequencing avail-
able on INSDC databases. As for the search of the datasets, 
also for metadata retrieval, we observed that the combination 
of automatic and manual approaches is capable of gathering a 
larger amount of information than the two approaches alone.

However, while with a manual search, it is possible to 
recover much information related to a dataset if a publica-
tion is available, this approach is not feasible if the number 
of datasets is high (62). Moreover, sample-specific informa-
tion for large datasets can only be collected using automatic 
approaches, making an automatic search a necessity.

Automatic approaches of metadata retrieval (such as those 
used in this study) collect the metadata deposited on the 
INSDC databases. As such, they are capable of accessing only 
the metadata that were made available by the researchers dur-
ing the data submission. Failing in accessing specific metadata 
can affect the reusability of a given dataset, highlighting the 
importance of proper and extensive metadata storage.

We recognized three major causes that affect the reusability 
of publicly available microbiome datasets: (i) Missing meta-
data. A lot of essential metadata are simply not available 
either because not included among the requested metadata or 
because not mandatory and hence not compiled by the sub-
mitter. One example is the absence of metadata specifying 
the 16S rRNA hypervariable region amplified and sequenced 
for most of the studies, which seriously compromises data 
harmonization efforts. Another information that is often not 
reported is the presence of an associated publication. The 
availability of the raw reads on public databases is a require-
ment for publication in many scientific journals. During the 
raw reads submission, the researcher is required to provide 
metadata associated with the dataset, including the pres-
ence of a publication. As such, since this step predates the 
publication itself most of the datasets are uploaded without 
specifying this information. (ii) Metadata wrongly assigned. 
Sometimes metadata can be wrongly assigned to the samples. 
This can also be the result of mandatory metadata fields that 
are ambiguous and can lead a researcher inexperienced in the 
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submission process to compile the field in an incorrect way. 
Wrong metadata can cause the inclusion of wrong datasets 
into an analysis, potentially affecting the results and lead-
ing to incorrect biological conclusions, or, conversely, they 
can cause the exclusion of datasets from analyses in which 
they would have fitted. As an example, by comparing the 
metadata deposited on INSDC with what was reported in 
the publication, we were able to identify studies that wrongly 
assigned the library strategy as ‘RNA-Seq’ and ‘WGS’ instead 
of ‘AMPLICON’. (iii) Inconsistency of the used terminology. 
Some metadata fields can be filled with multiple correct meta-
data leading to inconsistency in the terminology used and 
affecting the possibility of automatizing the search and filter-
ing of datasets based on these metadata. Good examples are 
the numerous Taxon ID and scientific names associated with 
the samples, which are not necessarily wrong, but the lack of 
consistency in the terms used compromises the usefulness and 
value of this metadata.

Different works demonstrated the caveats of metadata 
retrieval and its consequences (46, 47, 64). Researchers have 
undertaken different approaches to ameliorate this step, in 
particular using a manual or automated/semi-automated cura-
tion (65) or developing tools specific for the download of 
metadata information (66). Most of the automated or semi-
automated methods are based on Natural Language Process-
ing techniques, used to recognize predefined entities in the 
unstructured text, in order to retrieve metadata from the text 
associated with the samples. Others try to normalize metadata 
information by grouping or mapping to ontologies (67–69). 
These methods still need a revised step of manual curation 
and sometimes cannot reconstruct the totality of the metadata 
associated (65). As we demonstrated before, manual cura-
tion seems the most accurate solution (65, 70) if data remain 
human-readable.

Considering the microbiome field, the INSDC significantly 
contributed with a recent perspective paper describing the 
steps that the microbiome research community should take 
to favor data FAIRification and metadata incorporation (45). 
As microbiome samples are particularly related to the context 
in which they were collected, data describing measurements 
or variables related to the context are critical (45). Two main 
subject areas were indicated by the INSDC to improve data 
standards: (i) promote microbiome data sharing and (ii) try 
to remove obstacles and difficulties related to data and meta-
data submission. Some of their observations and proposals 
are currently applied by the research community, such as, for 
example, the ‘Minimum Information about any (x) Sequence’ 
(MIxS) packages (71) or the incorporation of Digital Object 
Identifiers (DOIs) for datasets (72). Unfortunately, some work 
is still needed to establish standard procedures and a univer-
sal set of ontologies that are easily accessible by the entire 
community (45, 73).

In this context, this work also wants to disclose the situ-
ation of a subfield of the microbiome data world: the skin 
microbiome. The issues revealed by our results show that the 
search and secondary use of the datasets is still not easy to 
achieve.

Since different studies can rely on different methodologies, 
different datasets might not be directly comparable and pre-
cautions must be taken before combining multiple datasets in 
a meta-analysis. Without some metadata, a potentially valid 
dataset cannot be included in a meta-analysis. Therefore, it 

is essential for a researcher that wants to valorize a dataset 
to upload as much information as possible together with the 
raw reads so as to make the dataset reusable. To motivate 
researchers in uploading more information, the submission 
procedure should be made as simple and guided as possi-
ble, also to avoid misinterpretations and wrong metadata 
assignments. To reduce the missingness of metadata, more 
fields should be made mandatory, such as those referred to 
the 16S rRNA region sequenced, and new metadata should 
be included, such as a field that easily discriminates biologi-
cal samples from negative controls. It also urges the need for 
standardization of the Taxon ID used in microbiome studies. 
Guidelines should be given to avoid the use of imprecise Taxon 
IDs. Efforts should also be made to associate a link to the pub-
lication whenever it becomes available, to allow for easier and 
straightforward access to this resource.

As we have stated, numerous are the aspects related to data 
and metadata submission that can be improved. Some relate 
to the submission process itself that can be refined to favor 
microbiome data reusability while others strictly depend on 
the commitment of the researcher performing the submission, 
who should not overlook the relevance of this step and its 
importance for the whole scientific community.

The value of a curated skin microbiome collection
Over the past decade, researchers have explored the intricate 
ecosystem of the skin microbiome (10), unveiling the inter-
actions between the microbiome players (bacteria, archaea, 
fungi and viruses), the skin cells and the host immune cells 
that act as barriers, constituting a defense against pathogens 
invasion and inflammation (10, 74). Perturbations in the 
skin ecosystem can cause an unbalance that can even lead 
to the rising of immune disorders, like allergies, dermatitis 
or eczema, or chronic injuries, like ulcers. Determining the 
causes and effects of these processes is not an easy task. Tra-
ditional approaches to study skin microbiome mechanisms 
rely on culture-based techniques, leading to an underestima-
tion of the actors and a bottle-neck selection due to the strict 
range of cultivable species. The case of Staphylococcus genus 
can serve as an example. Being more easily cultivable than 
microorganisms belonging to Corynebacterium spp. or Propi-
onibacterium spp., it would dominate a microbiome dataset, 
leading to an underestimation of the real biodiversity (75). 
It became obvious that to overcome culture-dependent bot-
tlenecks and to explore the skin microbiome as a whole, a 
sequencing method must be applied (10).

In this context, large-scale sequencing data enable micro-
biology researchers to obtain deep insights into genetic 
and functional profiling (10) and, nowadays, grand chal-
lenges in microbiome science rely on large-scale data science 
approaches (20). Secondary analysis can be full of poten-
tial and by-passing the need of generating new large datasets 
can enormously reduce the costs associated with this kind of 
study. Impactful meta-analyses have already contributed to 
advancing the microbiome field, as demonstrated by numer-
ous studies (17–19).

From the more applied and clinically relevant studies of 
skin health and disease to the more theoretical works inves-
tigating microbial ecology and the holobiont evolution, all 
these subfields of microbiome research will benefit from the 
adoption of data-driven approaches based on large datasets 
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integration (76). The availability of a curated collection of 
microbiome datasets represents the required starting point to 
make this transition possible and scalable (23, 45).

Currently, numerous research teams around the world have 
put efforts in trying to collect and harmonize data from dif-
ferent microbiome fields and various curated collections of 
microbiome datasets have been published, like the Terrestrial-
MetagenomeDB (77), the HumanMetagenomeDB (40), or the 
Planet Microbe (78). Each one of these collections is focused 
on a specific topic and sometimes on a specific type of data 
and aims at providing each microbiome research subfield with 
a valuable resource to perform data-driven meta-analyses.

Based on these premises and focusing on the skin micro-
biome subfield, our work resulted in a comprehensive list 
of human skin microbiome datasets enriched with metadata 
information related to the methodological pipelines and the 
context of the dataset under study.

Skin research produces large quantities of data using a wide 
range of methods and equipment that require large collabo-
rative efforts. These research endeavors span a broad range 
of disciplines and are critical to investigating the skin physi-
ology, functions, interactions and health status, from a broad 
perspective. This can be seen in the bibliometric analysis of 
published papers related to the datasets retrieved. Research 
areas and categories from the WoS collection and Elsevier’s 
Scopus classifications showed a scattered distribution of pub-
lications in different research areas, but with a higher propor-
tion related to the medicine-related area. As the number of 
studies grows, it clearly appears that crossing the boundary 
between medicine and microbial ecology is the lynchpin for a 
deep understanding of skin health (4, 74). Indeed, a consistent 
proportion of the data collected is dedicated to disease con-
ditions, providing valuable material for clinical researchers, 
but also for microbial ecologists and researchers from other 
fields of research interested in studying the microbial dynam-
ics in the skin ecological niche. Moreover, taken together, 
more than half of the studies in our Data Frame 3 collect 
microbiome data from healthy subjects, providing an invalu-
able source of information. One of the main challenges for 
data harmonization is to link the phylogenetic diversity of 
host-associated microbes to their functional roles within the 
community and with the host. A great effort in this direc-
tion is the work of Bewick and colleagues (79), who built 
an extensive trait-based database starting from culture exper-
iments. Such works will benefit future endeavors to character-
ize the functional properties of the skin microbiome through 
data integration. Much remains to be learned about us as 
holobionts and much of the information is still kept inside
the data.

The curated list we generated can serve as a most compre-
hensive collection of datasets that can be searched and queried 
to identify datasets of interest. Researchers interested in con-
ducting meta-analyses with human skin microbiome datasets 
can use these data frames as a starting point to recover the 
dataset more suited for their analyses. As demonstrated by the 
presence of errors in the metadata, these data frames require 
a curation step. Here, we reported a curated data frame (Data 
Frame 3) in which we manually corrected errors in the meta-
data. We also reported two non-curated data frames obtained 
with the automatic search (Data Frame 1) and with a combi-
nation of manual and automatic search (Data Frame 2). These 

two data frames contain a greater number of studies and sam-
ples; however, a careful inspection of these datasets is advised 
before including any one of those into a meta-analysis.

Conclusions
The aim of our effort was to help accelerate human skin 
microbiome research by reducing the amount of time needed 
to search for datasets and metadata of interest and at the same 
time favoring data reuse by maximizing the amount of infor-
mation associated with each dataset. Here, we report three 
data frames containing a comprehensive collection of human 
skin microbiome datasets enriched with metadata recovered 
from different sources. The data frames are easily explorable 
and can be useful for researchers interested in conducting 
meta-analyses with human skin microbiome amplicon data.

Furthermore, we demonstrated that the reusability of a 
dataset depends on the amount of information that can be 
gathered on the dataset itself, that is, the amount of meta-
data deposited by the authors at the time of submission. 
We are aware that data sharing is increasing throughout the 
microbiome community, but there are still barriers to making 
microbiome data truly FAIR. Metadata standards exist, but 
their proper adoption by the research community is still lag-
ging, as also demonstrated by the National Microbiome Data 
Collaborative community.

Skin microbiome sampling has the advantage of being 
non-invasive, easily accessible and able to provide a huge 
amount of meaningful information. A curated collection of 
skin microbiome datasets, enriched with study-related meta-
data, could be used to investigate health-related phenotypes, 
offering the potential for non-invasive diagnosis and con-
dition monitoring. Our framework sets the stage for new 
analyses implementing AI approaches focused on understand-
ing the complex relationships between microbial communi-
ties and phenotypes, to predict any condition from micro-
biome samples. Indeed, considering the skin microbiome 
topic, a few, very recent works included data integration 
strategies and AI applications (80–82), showing the poten-
tial held by these approaches in advancing skin microbiome
research.

As the microbiome research field is headed to become a 
science founded on big data, the necessity of developing stan-
dardized procedures to generate and analyze data acquires 
importance. The adoption of standard methodologies will 
help future data integration efforts for the benefit of the whole 
research community. For this reason, we advocate for a con-
certed effort to favor standardized microbiome research and 
exhaustive data sharing.

Further, with this work, we want to build a foundation 
that places microbiome research at the nexus of many sub-
disciplines within and beyond biology, such as, for example, 
dermatology, medicine and microbial ecology.

For this reason, this project has the potential to accelerate 
the development of microbiome-based personalized medicine 
and non-invasive diagnostics.

Supplementary data
Supplementary data are available at Database Online.
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