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Abstract
There are >2500 different genetically determined developmental disorders (DD), which, as a group, show very high levels of both locus and 
allelic heterogeneity. This has led to the wide-spread use of evidence-based filtering of genome-wide sequence data as a diagnostic tool in DD. 
Determining whether the association of a filtered variant at a specific locus is a plausible explanation of the phenotype in the proband is crucial 
and commonly requires extensive manual literature review by both clinical scientists and clinicians. Access to a database of weighted clinical 
features extracted from rigorously curated literature would increase the efficiency of this process and facilitate the development of robust phe-
notypic similarity metrics. However, given the large and rapidly increasing volume of published information, conventional biocuration approaches 
are becoming impractical. Here, we present a scalable, automated method for the extraction of categorical phenotypic descriptors from the 
full-text literature. Papers identified through literature review were downloaded and parsed using the Cadmus custom retrieval package. Human 
Phenotype Ontology terms were extracted using MetaMap, with 76–84% precision and 65–73% recall. Mean terms per paper increased from 
9 in title + abstract, to 68 using full text. We demonstrate that these literature-derived disease models plausibly reflect true disease expressivity 
more accurately than widely used manually curated models, through comparison with prospectively gathered data from the Deciphering Devel-
opmental Disorders study. The area under the curve for receiver operating characteristic (ROC) curves increased by 5–10% through the use of 
literature-derived models. This work shows that scalable automated literature curation increases performance and adds weight to the need for 
this strategy to be integrated into informatic variant analysis pipelines.
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Introduction
The use of genome-wide sequencing technologies combined 
with rational frequency, inheritance and consequence-based 
variant filtering strategies has transformed the diagnosis of 
genetically determined developmental disorders (GDD) (1–4). 
Although filtering efficiently reduces the number of genetic 
variants for diagnostic consideration, each of these have to 
be reviewed to determine if the clinical features (phenotype) 
of the individual being tested can be explained by one or more 
of these genotypes. This usually requires manual review of 
peer-reviewed case reports/series that describe relevant geno-
type/phenotype associations (5). The matching is based on 
expert opinion as few metrics exist to rank the associations 
with any statistical rigor.

Phenotypic data in the literature are not usually recorded in 
a standardized, computationally tractable format. Plain text 

descriptions of similar clinical features may be recorded in 
several different ways. For example, a technical term such 
as ‘hypertelorism’, may be recorded as its synonym ‘widely 
spaced eyes’. In addition, case reports are found across a wide 
range of journals, with different structures and file formats for 
each publication.

The Human Phenotype Ontology (HPO) was developed to 
store phenotypic data in a computationally accessible format 
(6). Several initiatives have been developed to link diseases 
to phenotype data, in the form of HPO terms, for exam-
ple, Online Mendelian Inheritance in Man (OMIM) (7) and 
Orphanet (8). However, these rely on manual expert cura-
tion and therefore are not inherently scalable and cannot be 
updated automatically.

Methods of extracting phenotype data from text at 
scale previously have relied on abstracts or open access 
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papers (9, 10). At the time of writing, Europe PubMed 
Central (EPMC, https://europepmc.org/) contained approxi-
mately 39.5 million articles, of which only 3.8 million were 
open access. Therefore, there is likely a significant volume of 
phenotypic data that has not been used previously.

Our overall aim is to create systems that allow scalable, 
automated and clinically orientated literature curation to aid 
the robustness of diagnosis through genomic testing. Here, 
we present a method for creating disease models describing 
GDD, comprising lists of HPO terms, with weighting accord-
ing to term frequency in the literature. Utilizing intellectual 
property law for research in the UK https://www.gov.uk/guid-
ance/exceptions-to-copyright, we retrieve the full text of 
almost all relevant case reports and extract phenotypic data 
mapped to HPO terms for a set of GDD. We evaluate this 
against prospectively gathered patient phenotypes from the 
Deciphering Developmental Disorders (DDD) study (1) and 
compare to current widely used manually curated sources.

Materials and methods
Full-text retrieval
A test set of 99 GDD defined in the Developmental Disorders 
Genotype2Phenotype (DDG2P) database (4) were selected, to 
include conditions well-represented in the DDD study (1) and 
in OMIM (7). For each of these, a literature review was under-
taken using PubMed searches. The initial search was by gene 
symbol in title—{gene symbol}[TI]. If this returned less than 
300 results, an abstract review was undertaken to identify rel-
evant case reports. If the initial search returned more than 300 
results, modifier terms were added such as {gene symbol}[TI] 
AND {syndrome name} or {gene symbol}[TI] AND ‘intellec-
tual disability’. Only papers that described case reports for 
variants in a single gene were included.

From this process, a list of case report PubMed IDs 
(PMIDs) was generated for each of the 99 diseases. These were 
inputted into the Cadmus full-text retrieval package (https://
doi.org/10.5281/zenodo.5618052), which will be described 
in detail in a forthcoming publication. In brief, metadata 
obtained using each PMID was used to send requests for 
download for each paper to sources that authorize full-text 
retrieval for research purposes. Multiple sources were used to 
maximize the chances of download, including, but not lim-
ited to, Crossref, doi.org and EPMC. File formats generated 
through this include Hypertext Markup Language (HTML), 
eXtensible Markup Language (XML), Protable Document 
Format (PDF) and plain text. Where multiple formats were 
retrieved, a series of quality assessments were used to identify 
the best full-text version. The text was cleaned and converted 
to a string. The abstract and references were parsed out. This 
final document was used for all following steps and will be 
defined as the ‘full text’ in subsequent paragraphs.

Phenotype extraction
Phenotypic features in text were identified and mapped to 
Unified Medical Language System (UMLS®) concept unique 
identifiers (CUIs) using the 2018 release of MetaMap (11). 
The source vocabulary for MetaMap was restricted to CUIs 
corresponding to the HPO (6), which is Category 0 under 
the UMLS Metathesaurus® licence. This version of MetaMap 
used the 2018_07_23 version of the HPO. MetaMap includes 
negation information for each phenotypic feature identified; 

the frequency of each non-negated feature in the text was 
used for term weighting. Negated terms, whilst potentially 
useful to identify phenotypic features that are not associated 
with a given disorder, were not included in this work as the 
comparison DDD dataset does not include these. CUIs were 
then mapped to HPO terms, using the mappings in the UMLS 
Metathesaurus® (Release 2020AA).

MetaMap performance evaluation
To test the performance of MetaMap (11), a set of 50 
papers—randomly selected from the list of full-text down-
loads described above—were manually annotated. Non-
negated phenotypic features in the text were annotated 
directly to HPO terms Against this standard, MetaMap was 
evaluated for precision (fraction of true positive terms in out-
put) and recall (fraction of true positive terms compared to all 
true terms in full text), using a variety of usage options. The 
F1 score (harmonic mean of precision and recall) was also 
calculated.

Disease model creation
For each group of PMIDs corresponding to a given disease, 
extracted HPO terms and their frequency were aggregated to 
create a ranked, weighted disease model. Corresponding dis-
eases in manually curated sets were mapped using the disease 
MIM identifier, and the HPO annotated file genes_to_phe-
notype file downloaded from http://purl.obolibrary.org/obo/
hp/hpoa/genes_to_phenotype.txt on 22 April 2021. This 
includes disease-specific HPO term lists (models) from 
OMIM (mim2gene) (7) and Orphanet (8). OMIM-derived 
terms mostly do not include frequency/weighting, whereas 
Orphanet terms are uniformly annotated. The frequency in 
both cases was recorded as an HPO frequency term, e.g. 
Very frequent (HP:0040281), present in 80–99% of the cases. 
OMIM models corresponding to the 99 G2P/DDD disease 
set were used for the majority of analyses. A subset of 43 
Orphanet models were used for weighted analyses, as the 
Orphanet annotations were not available for the full set. HPO 
term models from the DDD study (1) were created using 
aggregated lists from probands with diagnoses corresponding 
to the 99 disease set. These were recorded prospectively by 
clinicians recruiting individuals to the study with a suspected, 
undiagnosed GDD.

Disease model evaluation
Evaluation of literature-derived models through comparison 
with DDD models was designed to assess their similarity to 
real life, clinical, prospectively gathered data. OMIM models 
were used as an example of widely used manual curation (7). 
Two similarity metrics were used: rank-biased overlap (RBO) 
(12) and semantic similarity using information content (IC) as 
defined by Resnik (13).

RBO is a method of comparing ranked lists that is top-
weighted, can compare lists that contain differing members 
and is monotonic with increasing depth of list (12). RBO 
allows for the top-weightedness parameter p to be fine-tuned 
to weight the score more or less towards higher-ranked items 
in the list. For this analysis, p was equal to 0.98, weighting 
towards the top 50 terms in a list. RBO may be expressed as 
a min–max range; however, for this work, the extrapolated 
RBOEXT point score was used for ease of comparison. RBO 
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was calculated for all models in the literature-derived set vs 
the DDD set, OMIM vs DDD and literature vs OMIM (1, 7). 
Literature- and DDD-derived models were ranked according 
to term frequency. OMIM model terms are not generally 
annotated with a frequency; the frequency of each term across 
all OMIM models was used for ranking.

For the semantic similarity measure, the HPO terms in both 
comparison datasets, e.g. literature vs DDD, were used to cal-
culate the IC for each term following the method used by 
Helbig et al. (14). If f  is the number of diseases annotated 
with an HPO term g and n is the total number of diseases, the 
ICg is defined as—log2(f /n) (15). The most informative com-
mon ancestor (MICA) of two terms is the parent term in the 
ontology with the highest IC. For a disease-disease compar-
ison, a matrix m is created with HPO terms of one disease
(l terms) as the rows and the terms of the other (k terms) as 
the columns. Each position in the matrix (mij) is a comparison 
between pairs of HPO terms and is populated with the MICA 
for that pair. The similarity score between diseases is com-
puted by summing the average of the rows and the columns, 
with a normalization measure (14). 

We calculated the semantic similarity between literature-
dervied, DDD, and OMIM sets using unweighted models.

A comparison of weighted models using the Orphanet 
(8) subset was undertaken; however, there was no straight-
forward method of normalizing the frequency weightings 
between datasets. For the Orphanet models, which con-
sisted of a flat list of phenotype terms annotated with HPO 
frequency terms, the percentage range in HPO frequency 

annotation was mapped to the mean of this range. For 
example, a term annotated as Very frequent with the range 
80–99% was mapped to 89. Each term in a disease list 
was repeated according to its frequency mapping, thereby 
creating a weighted model. For literature-derived and DDD 
models (1), frequency annotations were binned into four 
bins using numpy.histogram, corresponding to HPO terms 
Very frequent, Frequent, Occasional and Very rare. Frequency 
weighting was then applied as per the Orphanet models. For 
models weighted in this manner, l row terms and k column 
terms in the disease comparison matrix m therefore may con-
tain repeats, with the MICA sum average altering accordingly 
(16). Comparisons were calculated for the 43 diseases in the 
Orphanet set vs DDD models and for the corresponding 43 
literature-derived models vs DDD.

Results
Full-text papers describing GDD were downloaded, pheno-
typic features extracted and weighted disease models con-
structed. These were evaluated against data from the DDD 
study (1) and manually curated models. An overview of this 
process is shown in Figure 1.

Full-text retrieval and phenotype extraction
For 99 GDD in the test set, 1018 relevant case reports 
were identified (Supp. Table S1). Cadmus (https://doi.
org/10.5281/zenodo.5618052) successfully downloaded at 
least one format (HTML/XML/PDF/plain text) for 962/1018 
papers (94.5%) (Supp. Table S2). There were significantly 
more HPO terms in full text than in title + abstract after phe-
notype extraction (Figure 2). There were also more terms in 

Figure 1. Overview of the disease model pipeline. Input was PMIDs for case reports describing developmental genetic disorders. Full-text downloads 
were performed using the Cadmus package. Output was disease models consisting of HPO terms weighted according to their frequency in full text. 
These were evaluated against ‘real life’ models from the Deciphering Developmental Disorders study and against gold standard manually curated 
models.
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Figure 2. (A) Comparison of number of unique HPO terms extracted from full text vs title + abstract for sample of 962 papers, using full-text download 
pipeline. (B) Comparison of number of unique HPO terms in disease models generated by full-text download pipeline vs manually curated models in 
OMIM, for a sample of 99 diseases.

Table 1. Number of unique HPO terms across 99 disease test set

Source Full-text download DDD OMIM Full text + DDD DDD + OMIM Full text + DDD + OMIM

Number of unique HPO terms in set 3234 1569 972 3741 1935 3864

Table 2. Performance of MetaMap usage options

MetaMap options Precision Recall F1 score

Word sense disambiguation, no 
derivational variants, restrict 
to HPO

0.80 0.70 0.74

Word sense disambiguation, 
restrict to HPO

0.81 0.69 0.74

No derivational variants, 
restrict to HPO

0.79 0.70 0.74

Blanklines off, restrict to HPO 0.76 0.73 0.74
Restrict to HPO 0.77 0.71 0.74
Blanklines off, word sense 

disambiguation, no deriva-
tional variants, conjunction 
processing, restrict to HPO

0.79 0.69 0.74

Blanklines off 0.82 0.67 0.74
No options 0.84 0.65 0.73
Conjunction processing, restrict 

to HPO
0.77 0.70 0.73

Evaluated against 50 manually annotated papers describing developmental 
disorders. Word sense disambiguation—disambiguate concepts with sim-
ilar scores. Restrict to HPO—use only HPO for mapping concepts. No 
derivational variants—compute word variants without using derivational 
variants. Blanklines off—process text as a whole document. Conjunction 
processing—join conjunction-separated phrases.

the full-text-derived models than in OMIM (Figure 2). Table 1 
shows the number of unique terms across the whole dataset 
by source.

The performance of phenotype concept extraction and 
HPO mapping in a 50 paper sample from the above set was 
evaluated using precision, recall and F1 score for a number of 
different MetaMap (11) output options (Table 2). The source 
was restricted to the HPO alone as performance was similar to 

other options but faster to process due to the smaller vocabu-
lary size. This configuration was used for all the other analyses 
in this work.

Evaluation of disease models
The comparison of weighted disease models constructed from 
full text to models derived from other sources was not 
straightforward. The example model for CHD7 in Figure 3 
illustrates some of the issues. This describes the condition 
CHARGE syndrome, which is an acronym for Coloboma 
of the eye, Heart defects, Atresia of the choanae (choanal 
atresia), Restriction of growth and development and Ear 
abnormalities/deafness. The top-five ranked terms in the full-
text-derived model are therefore highly relevant to this con-
dition. However, a number of terms clinically relevant to 
these were also present in the same model, and this pat-
tern is repeated across comparison datasets. Similar pheno-
typic features may be recorded in a heterogeneous manner 
by biomedical annotators using the same source documents. 
This inter- and intra-observer variability is a well-known phe-
nomenon (17, 18). However, the issue of clinical phenotype 
heterogeneity across disease models is less well studied. For 
example, for CHARGE syndrome in Figure 3, a number of 
children of the term ‘Abnormality of the ear’ were included 
across the different datasets. These terms vary in their discrim-
inant power for this condition—‘Hypoplasia of the semicircu-
lar canal’ is more specific for CHARGE than ‘Microtia’ (19). 
It is possible to use the ontology structure in HPO to relate 
similar terms, as per the semantic similarity MICA method. 
However, if two terms only share a high-level ancestor as 
in the example above, a significant loss of informativity will 
result, hindering meaningful comparison.
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Figure 3. Example of top-five ranked terms in the disease model for CHD7/CHARGE syndrome (left column). Clinically related terms in the remainder of 
the disease model (n= 540), OMIM model (n= 71) and Orphanet model (n= 82) shown.
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Figure 4. Disease model comparison heatmaps using RBO for literature-, OMIM- and DDD-derived models. Each model on the y -axis is compared with 
every model in the DDD set. Disease/DDD models describing the same disorder are on the rightward slanting diagonal. (A) compares OMIM and DDD 
models. (B) compares literature-derived and DDD models. (C) compares literature-derived and OMIM models. 99 diseases in comparison set.

Comparison heatmaps using RBO for literature-derived, 
DDD and OMIM datasets (1, 7) (Figure 4) were generated, 
where every disease in one dataset is compared to every dis-
ease in the other. This was to determine if a corresponding 
pair, e.g. CHD7-full text vs CHD7-DDD, is more similar than 
any other in the comparison. These show a weak, but recog-
nizable signal for the literature vs DDD and OMIM vs DDD. 
There is a clear signal for the literature vs OMIM models, 
showing that full-text-mined models are similar to manual
curation.

The performance of full-text-derived models vs OMIM 
models in ranking the correct corresponding model in the 
DDD set was evaluated using receiver operating character-
istic (ROC) curves (Figure 5). The full-text-derived models 
outperformed OMIM in both similarity metrics—ranked lists 
using RBO (12) and unweighted semantic similarity (14)—as 
defined by an increase in the area under the curve (AUC). 
A similar semantic similarity analysis using a subset of mod-
els from Orphanet showed comparable performance to those 
derived from full text when unweighted. However, weighted 
models did not show similar performance for either Orphanet 
or the full-text-derived set (Supp. Figure 1).

The results using a relatively simple list-based
comparator—RBO (12)—and more advanced ontology-
derived semantic similarity were perhaps more similar than 
may have been expected. This generated the hypothesis that 
the signal from RBO-based comparisons was dependent more 
on set overlap than term rankings. This could partially explain 

the similar results seen with the unweighted MICA method 
(14). To test this, the percentage of exact term matches across 
comparison datasets was plotted against the RBO score for 
each disease model, including the OMIM data (Figure 6). 
RBO scores did not clearly correlate to increasing set overlap. 
The RBO scores were in a broadly similar range regardless of 
high or low set overlap. This indicated that ranking of terms 
is an important determinant of similarity for this metric, not 
just set overlap. Of note, there was a significant overlap of 
exact match terms between the literature-derived and OMIM 
models. This indicates these were highly similar.

Discussion
Here, we demonstrate a method for automated literature cura-
tion that enables the creation of disease models based on 
ranked and weighted lists of clinical features from any of the 
most widely used structured vocabularies. This method can 
be compared to previous work linking genotype–phenotype 
data using manual and automated approaches. Databases 
such as OMIM and Orphanet (7, 8) are widely used in 
clinical and research settings because the disease–phenotype 
relationships contained therein are of high quality. This means 
that phenotype descriptors have been manually reviewed by 
expert curators directly from the source literature. However,
this is a highly resource-intensive approach. Curation time 
needs to be spent not only documenting newly described 
disorders but also regularly updating existing entries. This 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac038/6603635 by guest on 20 April 2024



Figure 5. ROC curves using threshold ranking for literature-derived/OMIM disease models compared to real-life terms in the DDD study, across sample 
of 99 diseases, with a disease model and DDD model for each. Each disease model is compared to every model in the DDD set. (A) uses RBO to 
compare ranked lists of terms. Literature-derived and DDD models were ranked according to the model term frequency. OMIM models were ranked 
according to the frequency of terms across all OMIM models. (B) uses mean MICA to compare models, with IC calculated according to Resnik. 
Unweighted models were used for comparison, meaning each term in a model appeared only once, and term frequencies were not utilized. (C) shows 
the AUC for each model comparison.

represents a significant challenge given the volume of new 
publications describing GDD on a monthly basis (20). It is 
therefore likely that these manually curated databases do not 
include a truly comprehensive overview of the peer-reviewed 
literature for each GDD described.

Given the significant resources required to create and 
update manually curated disease–phenotype databases, stud-
ies have been undertaken to extract this information in 
an automated manner. For example, Kafkas et al. (21) 
used pointwise mutual information (22) to rank genotype–
phenotype associations for both HPO and the Mouse Ontol-
ogy (6, 23) in sentences extracted from a corpus of PubMed 
open access papers. Li et al. used a similar approach to gener-
ate autism-related gene–phenotype associations, although the 
corpus in this case was filtered using relevant search terms 
(24). Pilehvar et al. mapped phenotypic features to diseases 
by using Fisher exact testing to determine significant co-
occurrence of disease-phenotype terms in Medline abstracts 
or paragraphs from PubMed open access articles (25, 26). 
This study used the Mondo ontology (27) to define disease 
names, including GDD. The database created by Pilehvar et al.
(26), PheneBank, is the most comprehensive automated GDD-
phenotype curation work of which we are aware. However, 
this study and those of Kafkas et al. and Li et al. (21, 24) 
had the significant limitation that the abstracts/manuscripts 
used were not filtered for human case reports/case series. This 
means phenotype associations were likely made from other 
sources, for example, animal models. The use of names only, 
i.e. text strings, to define disease entities also meant the under-
lying molecular mechanism was not defined. This means, 
for example, that there is no way to differentiate between 
gene-specific phenotypes where the disease name relates to 
multiple genes. Pilehvar et al. did also extract gene–phenotype 
mappings (26), but there was no method of differentiating 

somatic from germline variation; therefore, these were likely 
to include, for example, cancer-related manuscripts. This 
would also not differentiate between disorders caused by, for 
example, gain-of-function or loss-of-function variants in the 
same gene.

In this work, we utilized case series/case reports highly 
specific to individual GDD for automated text mining. This 
was to test the hypothesis that this approach would allow 
for the generation of disease–phenotype relationships, which 
closely replicated the true expressivity of a condition, in a 
similar manner to manual curation, with the benefits of a 
less resource-intensive automated system. Therefore, given the 
limitations of current automated disease models as discussed 
above, manually curated databases were used as a comparison 
in this work.

We tested this hypothesis using a subset of GDD to gener-
ate models using the HPO. We showed that full-text download 
can be achieved using standard licence agreements with both 
the journals and the online search engines at scale for a 
corpus of over 1000 papers, with close to 95% retrieval 
rate. Unsurprisingly, our annotation using full-text returned 
more phenotypic descriptors per paper when compared to 
title + abstract and per disease cf. manually curated models.

We showed that full-text models had a high degree of set 
overlap with those created from manual curation in OMIM 
(Figure 6), although the full-text models were generally larger 
(Figure 2). The full-text models outperformed manual cura-
tion when identifying corresponding diagnoses from the DDD 
study, using two similarity metrics. The first of these, RBO, 
compared ranked lists of terms and therefore did not utilize 
the ontology structure. It was perhaps surprising to show 
similarity between disease models without the advantages 
of an ontology-based metric. This was not only due to set 
overlap (Figure 6) and indicates that term weighting may 
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Figure 6. Exact model term overlap against RBO. For each pair of comparison models—A & B—the percentage of exact match terms (A in B/A) is shown. 
The corresponding RBO similarity score for A & B is also plotted. RBO scores multiplied by 100 to normalize to percentage range. FT—full-text-derived.

be important in developing phenotype similarity metrics in 
future. The performance improvement using full-text-derived 
models may reflect a higher number of disease-relevant terms 
per disease compared to OMIM, given the disparity in model 
sizes between them.

The second MICA-based similarity metric used the ontol-
ogy structure of the HPO to compare terms. This measure 
should provide a more robust method of comparison than 
RBO as the ontology allows for a direct measure of the 
relatedness of a term pair. The performance of full-text-
derived models was better than OMIM using this metric, 
even though term weighting was not utilized. However, the 
ROC curve derived from this was remarkably similar to the 
RBO-based measure. It is likely that developing condensed 

full-text-derived disease models, where clinically similar or 
discriminant terms are collapsed together, will demonstrate 
an improvement in predictive power using MICA-based sim-
ilarity scoring. This task is not straightforward, as shown in 
Figure 3. We, and others, are currently working on methods 
to collapse clinically similar HPO terms without losing infor-
mation.

Adding weighting, in the form of term frequency, to the 
MICA-based similarity comparison did not improve perfor-
mance (Supp. Figure 1). This may be partly due to the 
challenge of the normalizing term weighting between full-
text-derived, DDD, and manually curated datasets. The 
distribution of terms differed significantly between models, 
with generally much higher mean and median terms in the 
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full-text-derived set. Improving phenotype extraction to iden-
tify terms on a per individual, rather than per paper, basis 
would allow for straightforward normalizing of term weight-
ing, enable better comparison with manually curated models 
and potentially improve predictive power. Saklatvala et al.
(28) used text mining on OMIM data to generate disease-
associated phenotype terms weighted by frequency in a similar 
manner to the method in this work. They showed that weight-
ing improved prediction of disease-associated genes for indi-
vidual DDD probands, although sensitivity was low (23%). It 
would be interesting to repeat this analysis using the full-text 
models from this work in future.

Whilst the results we present here are encouraging with 
regard to the performance of automated literature curation, 
further improvements to disease models are needed before 
these can replace or minimize expert clinical interpretation 
of the peer-reviewed literature. This includes parsing out 
clinical descriptive text from papers to remove superfluous 
phenotypic descriptors in the introduction and discussion. 
Upweighting of disease-discriminant terms may also be help-
ful as well as collapsing clinically similar terms as mentioned 
above. Including negated terms, i.e. phenotypic descriptors 
that are explicitly never present in a disorder may yield further 
improvements.

The performance of MetaMap in named entity recog-
nition (NER) demonstrated here is comparable to newer 
deep learning models such as PhenoTagger (29). This may 
be because MetaMap has been specifically designed—and 
regularly updated—to perform in the biomedical concept 
extraction domain. However, there could be improvements 
in precision and recall available through the use of a deep 
learning NER model, particularly if domain-specific training 
data are used. Additionally, representation of phenotypic fea-
tures as word embeddings could allow for novel relationships 
between phenotypes and disease models to be elucidated. 
The results presented here showing that a non-ontology-based 
measure (RBO) is a useful similarity metric in the phenotype-
disease space support this.

Here we have demonstrated and tested a method for gen-
erating HPO-based disease models for a small subset of the 
>2500 different GDD. It is possible that this technique could 
be applied to any set of diseases for which there is a rea-
sonable level of aetiological homogeneity within case reports 
and/or case series, although this would require careful dis-
ease domain-specific evaluation. We consider this approach 
to be easily scalable, with the main bottleneck being in the 
efficient identification of the relevant clinical papers using 
online searches. We and others are actively developing sys-
tems to improve the discriminative power of the both the 
search strategies and the subsequent classification of the 
title/abstract/full text to minimize the requirement for manual 
review prior to full model creation. It is likely that leveraging 
annotated full-text downloads as demonstrated here will be 
useful in the classification of relevant papers for phenotype 
extraction.

Scaling up the method shown here will enable automatic 
addition of new disorders as well as updates to the pheno-
typic spectrum of known conditions. This means curation 
of databases such as DDG2P should become significantly 
less time- and resource-intensive. Ultimately, the expansion 
of automated curation to all GDD should enable testing to 
determine if phenotypic models as presented here improve 

diagnostic rates through computational comparison of indi-
vidual patient phenotypes to those generated from the lit-
erature. This could be could be, for example, through the 
addition of automated full-text disease models to diagnos-
tic systems developed for this purpose, such as LIRICAL 
and PhenIX (30, 31), which currently rely on manual cura-
tion such as OMIM (7). Alternatively, other similarity metrics 
could be used, for example, using vectorization of phenotype 
terms (16, 28). In time, this should allow for the incorporation 
of in-depth phenotypic data generated from automated liter-
ature curation into genomic bioinformatic analysis pipelines.
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Supplementary data are available at Database Online.
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