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Abstract
Bipolar disorder (BIP) is one of the most common hereditary psychiatric disorders worldwide. Elucidating the genetic basis of BIP will play a 
pivotal role in mechanistic delineation. Genome-wide association studies (GWAS) have successfully reported multiple susceptibility loci confer-
ring BIP risk, thus providing insight into the effects of its underlying pathobiology. However, difficulties remain in the extrication of important 
and biologically relevant data from genetic discoveries related to psychiatric disorders such as BIP. There is an urgent need for an integrated and 
comprehensive online database with unified access to genetic and multi-omics data for in-depth data mining. Here, we developed the dbBIP, a 
database for BIP genetic research based on published data. The dbBIP consists of several modules, i.e.: (i) single nucleotide polymorphism (SNP) 
module, containing large-scale GWAS genetic summary statistics and functional annotation information relevant to risk variants; (ii) gene mod-
ule, containing BIP-related candidate risk genes from various sources and (iii) analysis module, providing a simple and user-friendly interface to 
analyze one’s own data. We also conducted extensive analyses, including functional SNP annotation, integration (including summary-data-based 
Mendelian randomization and transcriptome-wide association studies), co-expression, gene expression, tissue expression, protein–protein inter-
action and brain expression quantitative trait loci analyses, thus shedding light on the genetic causes of BIP. Finally, we developed a graphical 
browser with powerful search tools to facilitate data navigation and access. The dbBIP provides a comprehensive resource for BIP genetic 
research as well as an integrated analysis platform for researchers and can be accessed online at http://dbbip.xialab.info.
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Introduction
Bipolar disorder (BIP) is a common and serious psychiatric 
condition that typically manifests with strong shifts in mood, 
vacillating between episodic bouts of mania and depression 
(1, 2). With a lifetime prevalence rate of 1–4% (3), BIP usu-
ally occurs in adolescence or early adulthood, but diagnosis is 
often established after the onset of symptoms with a common 
delay. In addition to mood fluctuations between mania/hypo-
mania and depression, individuals with BIP frequently exhibit 
cognitive deficits and other psychiatric comorbidities (4). BIP 
patients also show higher rates of suicide and risks of related 
medical complications (such as osteoporosis, diabetes melli-
tus, metabolic syndromes and cardiovascular and endocrine 
disorders) compared to the general population (5, 6). 
Accordingly, BIP is associated with a huge economic burden.

For example, in the USA alone, the national economic bur-
den of BIP exceeded 195 billion dollars in 2020, with 25% 
directly attributed to healthcare costs (7). Thus, due to its high 
morbidity, mortality and social and economic costs, BIP has 
become a major health problem globally.

At present, the etiology of BIP remains largely unknown. 
Evidence from multiple studies implicates both environmen-
tal and genetic factors in the initiation of BIP (8, 9). Twin 
studies suggest that the narrow-sense heritability of BIP is 
as high as 70% (10), indicating a critical role of genetic 
factors in this disorder. As such, genetic studies could help 
unravel the mechanisms underlying BIP and assist in the dis-
covery of novel therapeutic targets. To reveal the genetic 
architecture underlying BIP, linkage (11, 12), association (13, 
14) and meta-analysis studies (15) have identified many novel 
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BIP-associated susceptibility variants, genes and chromoso-
mal regions (16), although the detection of credible suscep-
tibility variants and genes has been limited due to the small 
sample size and low coverage of genetic markers. However, 
the wealth of data uncovered from genome-wide association 
studies (GWAS) provides a powerful approach to explore the 
genetic etiology of BIP (2). In 2007, the Wellcome Trust Case 
Control Consortium (17) reported the first BIP GWAS. Subse-
quently, multiple studies on different human populations have 
identified various genetic loci and genes associated with BIP 
(18–32). The most recent GWAS carried out by the Psychiatric 
Genomics Consortium (PGC) (41 917 cases and 371 549 con-
trols) reported 64 genome-wide significant loci, including 33 
newly discovered loci (33). In addition to the most common 
form of genetic variation in the human genome (i.e. SNPs), 
other structural genomic variants are reported to play promi-
nent roles in BIP, e.g. copy number variations (CNV) and rare 
variants (34–36).

Despite considerable progress in identifying susceptibility 
variants for BIP, the extraction of useful and functional infor-
mation from the massive amount of genetic data still poses a 
significant challenge (36). First, as with other common psy-
chiatric diseases, most genetic risk variants identified from 
BIP GWAS are located in non-coding regions of the human 
genome (26, 31), and how they confer risk remains largely 
unknown. Second, while GWAS have succeeded in identifying 
BIP-associated genetic loci, only a handful have been resolved 
to individual genes (37) based on genetic characteristics. Thus, 
there are obvious difficulties in recognizing specific suscepti-
bility genes underlying GWAS loci. Third, further integration 
of different multi-omics data sets [e.g. integrated analysis of 
genetic and gene expression data (33, 38)] is necessary to 
clarify specific susceptibility genes and provide experimental 
validation. Thus, to best utilize current genetic data, there 
is a pressing need for in-depth data collection and mining 
to help provide novel insights into the pathogenesis of BIP 
and develop more effective methods for early diagnosis and 
treatment.

In this study, we developed a comprehensive genetic 
database for BIP (dbBIP) to meet the increasing needs of data 
acquisition and analysis. The dbBIP database aims to pro-
vide researchers with comprehensive BIP genetic data based 
on data collection, data integration and functional analysis. 
The dbBIP sources come from the extensive and systematic 
integration and storage of diverse BIP studies and include 
data on genetic findings, SNP functional annotation, gene 
expression, brain expression quantitative trait loci (eQTL) 
and network-based proteins. The dbBIP not only offers a user-
friendly interface to browse, search, analyze and visualize data 
but also provides meaningful information for further func-
tional characterization of high-confidence candidate variants 
and genes.

Methods and materials
Genetic data
Many genetic studies have been carried out in the last decade 
to identify the genetic risk variants for BIP. The two largest 
BIP GWAS, i.e. PGC2 (31) and PGC3 (33), were included in 
the dbBIP database. The PGC2 data set from the PGC BIP 
Working Group, which includes 20 352 BIP cases and 31 358 
healthy controls of European descent (14 countries in total), 
identified 30 genome-wide significant loci (including 20 newly 

identified loci) associated with BIP (31). The more recent 
PGC3 GWAS data set from the PGC, which includes 41 917 
BIP cases and 371 549 healthy controls, identified 64 genomic 
loci associated with BIP (33). We downloaded the SNP associ-
ation results of PGC2 and PGC3 (https://www.med.unc.edu), 
with details regarding participant recruitment, sample prepa-
ration and statistical analysis reported in previous publica-
tions (31, 33). In total, summary data on 19 963 820 SNPs 
were downloaded.

Although CNVs show robust associations with neurode-
velopmental disorders (39–41), recent research indicates that 
they likely pose less risk to BIP than to autism and schizophre-
nia (41–45), and only a limited number of significant CNVs 
associated with BIP have been detected by genetic studies 
(46–48). Green et al. (34) analyzed the CNV status of 41 321 
subjects (including 2591 BIP cases and 8842 healthy con-
trols) and identified several independent CNV loci associ-
ated with BIP, including deletions at 3aq29, duplications at 
1aq21.1 and duplications at 16p11.2. As such, we identi-
fied genes affected by the above-reported CNVs and deposited 
detailed CNV information into the dbBIP, including detection 
platform, number of cases and controls, CNV location and 
CNV-affected genes.

Both de novo and disruptive mutations are implicated 
in the pathogenesis of BIP (49, 50). The development of 
next-generation sequencing, especially whole exome/genome 
sequencing (WES/WGS), has enabled the detection of rare and 
de novo mutations at the exome and genome level (51, 52). To 
collect data on genetic mutations related to BIP, we searched 
the PubMed database for relevant articles published since 
2015 using keywords ‘whole exome sequencing and bipolar 
disorder’ or ‘whole genome sequencing and bipolar disorder’. 
All returned results were manually checked and examined, 
resulting in the collation of eight original WES/WGS stud-
ies with BIP results (http://dbbip.xialab.info/Exome_sequenc-
ing_publications).

Functional genomic data
Most BIP risk variants reside in non-coding genomic regions 
and lack functional interpretation. By systematically integrat-
ing BIP-related GWAS and functional genomics data, we can 
identify potential causal variation(s) at a given susceptibility 
locus. Here, we used three well-optimized functional anno-
tation tools, i.e. Combined Annotation-Dependent Depletion 
(CADD) (53), Linear insight (LINSIGHT) (54) and Regu-
lomeDB (55), to prioritize potential risk SNPs. CADD uti-
lizes evolutionary conservation information and functional 
data from the ENCODE database (56) to rank variants that 
are likely to be pathogenic or deleterious. LINSIGHT pre-
dicts negative selection on non-coding regions as well as 
functional variants using genomic data via the generalized 
linear and probabilistic molecular evolution models. Regu-
lomeDB uses high-throughput experimental data sets from 
ENCODE and other sources to identify potential regula-
tory variants. For CADD (scores of 0–99) and LINSIGHT 
(scores of 0–1), higher scores are indicative of functional 
SNPs, while for RegulomeDB (scores of 1–6), lower scores 
are indicative of functional SNPs. We downloaded all three 
annotated functional genomic data sets to annotate all vari-
ants identified by PGC3 GWAS (33), with all annotated results 
then integrated into the dbBIP. Detailed information on these 
annotation approaches can be found in previous publications
(53–55).
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As regulatory sequences typically reside in open chromatin, 
we hypothesized that BIP risk variants involved in neurodevel-
opmental processes may affect chromatin accessibility. Based 
on human-induced pluripotent stem cell (iPSC)-derived neu-
rons, Zhang et al. (57) identified many allele-specific open 
chromatin (ASoC) variants. Thus, in view of the abundance of 
BIP GWAS variants in ASoC SNPs in glutamatergic (iN-Glut) 
samples (57), we collected functional genomic results from 
the iN-Glut samples and annotated the potentially functional 
SNPs that may affect chromatin accessibility during neurode-
velopment in BIP. Data analysis methodologies are reported 
in Zhang et al. (57).

Regional association plots
We used LocusZoom (58) to visualize genomic regions of 
interest based on BIP summary statistics in PGC3 (33) (e.g. 
P values of genetic variants) downloaded from the PGC 
portal (https://www.med.unc.edu/pgc/download-results/), in 
full compliance with the PGC terms. Additional details are 
reported in previous study (58) and on the LocusZoom web-
site (https://my.locuszoom.org/).

Integrative analysis data
As stated above, most GWAS-identified BIP genetic risk vari-
ants are located in non-coding regions, especially within 
putative regulatory elements, suggesting possible BIP risk 
via gene expression regulation (26). Both summary-data-
based Mendelian randomization (SMR) (38) and FUSION/
transcriptome-wide association studies (TWAS) (59) are pow-
erful tools for the integration and identification of risk genes 
that may increase disease susceptibility under altered expres-
sion and thus were applied in the current study. For PGC2 
(31), we carried out SMR and FUSION/TWAS analysis by 
integrating GWAS summary statistics and brain eQTL data 
from the CommonMind Consortium [CMC (60)], BrainSeq 
Consortium (second phase) [LIBD2-DLPFC (61)] and Psy-
chENCODE Consortium (62) data sets. Details on the SMR 
and FUSION/TWAS integrative analysis procedures can be 
found in previous studies (63, 64). All integrative analysis 
results (including SMR and FUSION/TWAS) can be freely 
downloaded from the dbBIP database.

For PGC3 (33), the results reported in Mullins et al. (33) 
were included in our developed database. To prioritize candi-
date risk genes of BIP, Mullins et al. (33) integrated genetic 
associations from the PGC3 (33) GWAS with eQTL data 
from the PsychENCODE Consortium (62) (1321 brain sam-
ples) and eQTLGen Consortium (65) (31 684 whole blood 
samples) using SMR. They also integrated PGC3 GWAS sum-
mary statistics with brain eQTL summary data from the 
PsychENCODE Consortium (62) using the TWAS/FUSION 
method.

Differentially expressed genes
Increasing evidence supports the importance of gene expres-
sion dysregulation in BIP pathogenesis (66). To identify differ-
entially expressed genes (DEGs) in BIP subjects and healthy 
controls, the PsychENCODE Consortium (62) established a 
large-scale gene expression data set using post-mortem dor-
solateral prefrontal cortex (DLPFC) tissues of 144 BIP cases 
and 899 healthy controls (European ancestries) using RNA-
sequencing (RNA-seq). This data set is regarded as one of the 

most representative of gene expression in BIP. Thus, we down-
loaded the gene mRNA expression values (http://resource.psy-
chencode.org/) and included the data in the dbBIP. Detailed 
information on the study subjects is provided in the original 
publication (62). To visualize the data, we used the jQuery 
plug-in plotly (https://plot.ly/javascript/) to generate boxplots 
for the target genes in BIP cases and controls.

Protein–protein interaction data
Proteins are essential for biological processes, and those impli-
cated in the same disease often show strong associations 
or interactions (67, 68). Protein–protein interaction (PPI) 
network analysis is an effective method to assess whether 
proteins encoded by BIP susceptibility genes show high inter-
actions with other proteins. Li et al. (69) constructed a scored 
human InWeb_IM PPI network based on various indicators 
(e.g. reproducibility of interactive data) and quality control 
and integration of data, resulting in a more biologically rel-
evant network than comparable resources. Currently, the 
InWeb_IM contains >500 000 interactions, aggregated from 
eight databases (i.e. DIP, BioGRID, BIND, IntAct, NetPath, 
MatrixDB, Reactome and WikiPathways) and covering 87% 
of human UniProt IDs (69). Thus, we downloaded the lat-
est release of InWeb_IM PPI data, which can be visualized 
and queried in the dbBIP. For visualization, dbBIP can con-
struct PPI plots based on interactions among input proteins, 
including force and circular display types.

Spatiotemporal expression pattern data
Exploring spatiotemporal variations in risk gene expression 
in the brain can help clarify the role of such genes in the 
pathogenesis of diseases such as BIP (70). To elucidate the 
potential role of candidate BIP susceptibility genes in the 
central nervous system, we used two independent expres-
sion data sets (71) to analyze spatiotemporal expression pat-
terns. First, normalized RNA-seq data from BrainSpan (71) 
expression samples (http://www.brainspan.org/) of different 
aged subjects (8 post-conception weeks to 40 years, N = 42) 
were downloaded and transformed (63, 72). Expression data 
obtained from four prefrontal cortical regions of the brain (i.e. 
orbital, medial, dorsolateral and ventrolateral prefrontal cor-
tices) were integrated into the dbBIP. The second expression 
data set was obtained from BrainCloud (73) (http://brain-
cloud.jhmi.edu/) and contained gene expression values from 
the human prefrontal cortex of post-mortem brains across dif-
ferent ages as well as human mRNA expression data of 267 
normal subjects analyzed using microarrays (73). Details on 
the BrainCloud data set are provided in the original publica-
tion (73). For query functions, the dbBIP supports user queries 
by gene symbols and generates a spatiotemporal expression 
plot for each queried gene.

Tissue expression analysis data
Here, gene expression data obtained from the Genotype-
Tissue Expression (GTEx) project (v8p release) (74) were used 
to investigate expression levels of various target genes across 
separate human tissues (especially the brain). Gene expres-
sion levels were quantified using RNA-seq, and relevant gene 
expression data from 53 human tissues were downloaded 
from the GTEx (http://gtexportal.org/) (74), which also pro-
vides information on collection, extraction, expression and 
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processing procedures (74). The dbBIP can generate histogram 
plots to visualize tissue expression analysis of the above data.

QTL data
Various non-coding genetic variants play essential roles in 
BIP (2, 75). These genetic associations potentially signal 
variants that impact gene expression by affecting RNA tran-
scription, splicing and stability (74). Given the importance 
of eQTL data in investigating candidate risk variants and 
their effects, we explored different eQTL data sets to iden-
tify genes in the brain that may show transcriptional level 
changes under the influence of the BIP susceptibility variants. 
This resulted in the inclusion of three large-scale brain eQTL 
studies in our database [i.e. CMC (60), O’Brien et al. (76) and 
PsychENCODE Consortium (62) eQTL data sets]).

The CMC eQTL data set (60) contains 1 817 945 signifi-
cant cis-eQTL (at a P <1 × 10–3) from the DLPFC tissue of 467 
human subjects of European descent. This data set was down-
loaded from the website (https://www.synapse.org/CMC) for 
inclusion in the dbBIP. The eQTL data set reported in O’Brien 
et al. (76) (N = 120) contains eQTL results derived from pre-
natal post-mortem brains collected at the second trimester. 
Significant eQTL results (P < 0.05) were downloaded and 
included in the dbBIP. The large brain PsychENCODE Con-
sortium eQTL data set (62) (N = 1695), which explores the 
relationship between genetic variation and gene expression 
in the human brain (especially DLPFC tissues), was directly 
downloaded from PsychENCODE (http://resource.psychen-
code.org). In diseased brains, high-effect isoform changes 
are considered to be highly reflective of genetic risk (62). 
Therefore, we also downloaded and deposited transcript QTL 
(tQTL) data from CMC (60) and PsychENCODE (62)) in the 
database.

Co-expression data
Recent studies suggest that BIP susceptibility genes are sig-
nificantly co-expressed in time- and tissue-specific patterns. 
Thus, co-expression analysis could help to identify high-
priority candidate genes for BIP from genetic studies. To 
identify whether BIP susceptibility genes are co-expressed in 
the human brain, we performed gene co-expression analyses 
using the RNA-seq expression data of BIP cases (N = 144) 
from the PsychENCODE Consortium (62). Pearson correla-
tion coefficients were then calculated, as described previously 
(77), and those genes with correlation coefficients ≥0.8 were 
retained in the dbBIP.

Prioritization of BIP risk genes
To integrate evidence derived from different BIP studies and 
identify and prioritize potential candidate risk genes for BIP, 
we used the arbitrary cumulative scoring method developed 
by Ayalew et al. (78). This approach supposes that BIP-
associated genes may be discovered in independent studies 
and are thus scored as promising BIP candidate genes based 
on (I) GWAS-identified genes (31, 33), (ii) CNV-disrupted 
genes (34), (iii) WES/WGS-identified genes (49, 50, 79–89), 
(iv) SMR integrative analysis [genetic associations from large-
scale PGC3 (33) and PsychENCODE brain eQTL data (62)], 
(v) TWAS integrative analysis (genetic summary statistics 
from PGC3 (33) and PsychENCODE brain eQTL data (62)), 
(VI) DEGs (62) and (VII) brain expression results from The 

Human Protein Atlas (90) (genes are ‘expressed’ when FPKM 
expression >5). Consequently, each analysis contributes one 
point to the identified gene via polyevidence scoring (78), 
and the final gene score is calculated based on a cumulative 
scoring strategy, with high scores suggesting multiple analysis 
evidence supporting the gene as a BIP susceptibility gene.

Results
Database summary
Based on comprehensive genetic and multi-omics data collec-
tion and re-analysis, we systematically integrated related data 
and results in the dbBIP (http://dbbip.xialab.info) (Table 1). 
Thus, the dbBIP not only contains genetic susceptibility vari-
ants (i.e. SNPs) and potential risk genes for BIP but also 
provides in-depth analysis results, including SNP functional 
annotation, integrative analysis and DEG analysis. Specifi-
cally, the dbBIP integrates powerful online analysis tools and 
allows advanced users to easily customize and extend analysis, 
e.g. static LocusZoom, QTL (including eQTL and tQTL), PPI, 
co-expression, spatiotemporal expression and tissue expres-
sion analyses (Figure 1). All data generated or analyzed in this 
study are freely available to view and download at the dbBIP 
website (http://dbbip.xialab.info/Download). 

We established a common MySQL relational database 
to store all dbBIP information, which runs on an Ubuntu 
14.10 LTS operating system. A user-friendly web platform for 
browsing and searching was implemented using PhpMyAd-
min and JavaScript, powered by Bootstrap (responsive and 
mobile-first front end is a web interface based on a free and 
open-source CSS framework).

The dbBIP database provides users with a powerful search 
engine and a user-friendly web interface to access, browse and 
download different data types and connections. Users simply 
need to enter query items, with the input format and content 
easily located on each dbBIP query page. In addition to ‘Quick 
Search’ via keyword, dbBIP presents an ‘Advanced Search’ 
function for genes to allow users to combine queries for a 
detailed overview of gene results. Most returned results in the 
dbBIP are output as tables. Therefore, the DataTables plug-
in (https://datatables.net/) was added to the database to allow 
advanced users to search and manipulate (show/hide/reorder) 
table columns. The database provides a detailed explanation 
of the returned results by each query, including the original 
data source and definition of each table column.

Key dbBIP modules
Currently, the dbBIP contains three main modules, i.e. SNP, 
Gene and Analysis modules (Figure 1 and Table 1). The 
SNP module contains three separate tabs: ‘PGC2 GWAS’, 
‘PGC3 GWAS’ and ‘Functional SNPs’. The PGC2 and PGC3 
tabs allow powerful functional searches and GWAS SNP 
queries and provide various statistics, including SNP posi-
tion, odds ratio, P value and annotation information (i.e. 
CADD, LINSIGHT and RegulomeDB). The ‘Functional SNPs’ 
tab currently contains 1985 GWAS risk SNPs that affect chro-
matin accessibility during neurodevelopment in BIP (based 
on integration of Zhang et al. 57) data (i.e. ASoC is asso-
ciated with functional disease variants) and PGC3 GWAS
variants.

The Gene module consists of seven tabs and six differ-
ent levels of data: (I) Genes prioritized from multiple sources 
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Figure 1. Overview of database content and construction. The dbBIP contains genetic data and analytical tools with browse, search, download and 
visualize functions.

Table 1. Data description of SNP, gene and analysis modules

Module Entry Data set Tissue Reference

SNP PGC2 GWAS PGC2 Blood (31)

PGC3 GWAS PGC3 Blood (33)

Functional SNPs Zhang et al. (2020) iPSC-derived neurons (57)

Gene Genes identified by SMR CMC, LIBD2-DLPFC, PsychENCODE and 
eQTLGen

Brain and Blood (60–62, 65)

Genes identified by TWAS CMC, LIBD2-DLPFC and PsychENCODE Brain (60–62)

Genes identified by GWAS PGC2 and PGC3 Blood (31, 33)

Genes identified by CNVs Green et al. (2016) Blood (34)

Genes identified by exome sequencing Literature Blood (49–50, 79–84)

Genes expressed differentially in 
PsychENCODE

Gandal et al. (2018) Brain (62)

Analysis Static LocusZoom PGC3 Blood (33)

Gene eQTL query CMC, fetal brain and PsychENCODE Brain (60, 76, 62)

Transcript eQTL query CMC and PsychENCODE Brain (60, 62)

PPI Li et al. (2016) Human tissue (69)

Co-expression analysis Gandal et al. (2018) Brain (62)

Expression pattern analysis Brainspan and BrainCloud Brain (71, 73)

Tissue expression analysis GTEx Human tissue (74)
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of data; (II) Genes detected from integrative analysis of two 
GWAS [i.e. PGC2 (31) and PGC3 (33)] and four eQTL data 
sets [i.e. CMC (60), LIBD2-DLPFC (61), PsychENCODE (62) 
and eQTLGen (65)] using the SMR approach; (III) Genes 
detected from integrative analysis of two GWAS [i.e. PGC2 
(31) and PGC3 (33)] and four eQTL data sets [i.e. CMC 
(60), LIBD2-DLPFC (61), PsychENCODE (62) and eQTL-
Gen (65)] using the TWAS/FUSION approach; (IV) Genes 
detected in two large-scale BIP GWAS data sets; (V) Genes 
influenced by CNVs (based on large-scale CNV research). Fif-
teen CNVs were included and annotated, with information 
on CNV location, genes affected by CNV and CNV detec-
tion platform provided; (VI) Genes identified by WES/WGS 
based on 13 studies (http://dbbip.xialab.info/Exome_sequenc-
ing_publications) and (VII) DEGs based on RNA-seq data 
between DLPFC BIP patients (N = 144) and control subjects 
(N = 899).

In the Analysis module, we compiled LocusZoom, eQTL, 
tQTL, PPI, co-expression, spatiotemporal expression and tis-
sue expression data. This module provides a user-friendly 
and powerful interface to query and analyze one’s own data 
in the dbBIP. LocusZoom allows users to search and draw 
regional associations of interest. Users can also query the 
eQTL and tQTL results included in the dbBIP. The spa-
tiotemporal expression pattern tab allows users to investigate 
if target genes are preferentially expressed in specific brain 
regions and/or at specific developmental stages. We embedded 
the BrainSpan and BrainCloud data sets in the dbBIP. The PPI 
tab provides a one-click test to discern potential PPIs among 
queried proteins. Based on the above calculated gene score, we 
utilized ECharts.js (https://echarts.baidu.com) to color code 
each queried gene in the PPI network. The co-expression 
tab prioritizes BIP candidate genes from large-scale transcrip-
tome study and allows users to explore if BIP susceptibility 

Figure 2. Top candidate causal genes identified in this study. By integrating prediction results from different methods, 29 high-confidence causal genes 
were identified. OSBPL2, STK4 and PACS1 had the highest scores and thus represent the most promising causal genes for BIP.
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Table 2. Significant pathways of genes with a polyevidence score of 3 and 
above

Category Pathwaya P value P adj

GOTERM_CC_DIRECT Membrane 1.28E−06 3.63E−04
GOTERM_MF_DIRECT Protein 

binding
1.08E−06 4.42E−04

GOTERM_CC_DIRECT Dendrite 1.02E−04 1.45E−02
GOTERM_CC_DIRECT Cytosol 1.81E−04 1.59E−02
GOTERM_CC_DIRECT Neuronal 

cell body
2.24E−04 1.59E−02

aThe table shows significant pathways identified by DAVID that are enriched 
among genes that have a polyevidence score of 3 and above. P adj val-
ues represent P values corrected by the Benjamini–Hochberg procedure in 
DAVID.

genes are co-expressed in specific brain subregions. The tissue 
expression analysis tab allows users to explore BIP risk gene 
expression in distinct human tissues.

Prioritized BIP genes and enriched pathways
As well as offering users an easy-to-use online search and 
analysis tool, the database also prioritizes susceptibility genes 
of BIP risk via cumulative scores to help researchers select 
the most promising candidates for functional investigations. 
Overall, 29 prioritized candidate risk genes (score of 3 
or greater) for BIP were identified by polyevidence scoring 
(Figure 2). Three potential risk genes, i.e. OSBPL2, STK4 and 
PACS1, showed the highest scores in the prioritized task, sug-
gesting that they may represent prospective BIP susceptibility 
genes. OSBPL2 is located on chromosome 20aq13 and has 
been implicated by genome-wide significant association with 
nearby SNPs in BIP genetic study (33). Furthermore, diseases 
associated with OSBPL2 include deafness, and previous stud-
ies report a prevalence of BIP in deaf and hard-of-hearing 
outpatients (91, 92), with deaf youth potentially more vul-
nerable to BIP. STK4 is located in chromosome 20aq13.12, 
and genetic variants located in or near STK4 showed genome-
wide significant association with BIP (31, 32). STK4-related 
pathways include the MAPK signaling pathway (93), and 
we noticed that pathways involved in the genetic predispo-
sition to BIP include the MAPK signaling pathway as well 
(94). PACS1 is located in chromosome 2p13.1, and genetic 
variants in PACS1 showed genome-wide significant associa-
tion with BIP in PGC2 (31) and PGC3 (33). Interestingly, 
Chen et al. found that overexpression of PACS1 reduced the 
density of dendritic spines, revealing the potential biological 
mechanisms of this gene in BIP (95). In addition, we used 
the Database for Annotation, Visualization and Integration 
Discovery (DAVID) (96, 97) for pathway analysis of genes of 
interest (i.e. polyevidence score ≥3), which were found to be 
significantly enriched in membrane, dendrite and neuronal cell 
body-related pathways (Table 2).

Discussion
BIP is a common and severe psychiatric disorder marked 
by episodic disturbances in mood, cognition and behavior. 
Both genetic and environmental risk factors participate in 
the pathogenesis of BIP, although its high heritability (up to 
70%) points to genetic factors playing a primary role in its 
occurrence. Research on BIP genetic architecture has shown 
significant progress in recent years, and over 60 significant 

susceptibility loci have been successfully identified. Despite 
this, BIP etiology remains poorly understood. Thus, there 
is a pressing need to systematically integrate multiple layers 
of data from diverse sources, such as genetic, gene expres-
sion, PPI, co-expression and eQTL data, to extract meaningful 
biological information for BIP genetic studies. Hence, to fill 
this gap, we developed a web-based platform that integrates 
multi-omics resources from different BIP studies. This is the 
first BIP genetic database that focuses on interpreting genetic 
data from GWAS based on multi-omics data and integrated
analysis.

To date, only the BIP genetic database (BDgene) (98) 
is available for BIP research. Compared with the BDgene 
database, the dbBIP has several advantages. First, the BIP sus-
ceptibility genes included in the BDgene database were mainly 
based on small sample linkage and genetic association studies, 
and the database has not been updated since 2016. Second, the 
dbBIP offers a powerful analysis module for advanced users to 
perform customized analysis, including LocusZoom, eQTL, 
tQTL, PPI, co-expression, temporal and spatial expression 
pattern and tissue expression analyses. Third, the priority of 
candidate risk genes in the dbBIP was determined via in-depth 
data integration based on multi-omics data. Accordingly, the 
top prioritized genes (as good candidates) provide positive 
preliminary results, which deserve further functional charac-
terization. Fourth, the dbBIP provides a one-stop searching 
resource for genes and offers comprehensive information col-
lection from the above three modules. Lastly, as new technolo-
gies and analysis methods are rapidly evolving and novel BIP 
susceptibility variants and genes are constantly being identi-
fied, the dbBIP database will be updated to incorporate recent 
findings, thus providing a valuable and up-to-date resource 
for the BIP research community.

This study also has several limitations. First, a straight-
forward and arbitrary scoring algorithm using various data 
(e.g. genetic studies, integrative analysis and gene expression 
researches) was selected to prioritize promising BIP candidate 
risk genes. However, simple and operational scoring systems 
can miss potential overlap between the source data used for 
scoring (e.g. genes identified by integrative analysis also con-
tain information from genetics and gene expression studies), 
which may affect score credibility. Second, we treated all evi-
dence from different origins equally. However, GWAS tend to 
provide more reliable candidate risk genes than CNV stud-
ies and should be given greater weight. Multiple algorithms 
can be developed and used in the future to address these 
limitations.

Our newly developed dbBIP database offers a wealth of 
resources for translating genetic results and elucidating the 
molecular and pathogenic mechanisms underlying the occur-
rence and development of BIP. The database includes all 
recently available BIP-related data (including genetic and 
multi-omics data), thus allowing researchers the opportunity 
to access and analyze BIP susceptibility genes under a uni-
fied online tool. Therefore, the dbBIP provides a practical 
and convenient platform for BIP research from a genetics 
perspective.
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