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Abstract
HumanMine (www.humanmine.org) is an integrated database of human genomics and proteomics data that provides a powerful interface to 
support sophisticated exploration and analysis of data compiled from experimental, computational and curated data sources. Built using the 
InterMine data integration platform, HumanMine includes genes, proteins, pathways, expression levels, Single nucleotide polymorphism (SNP), 
diseases and more, integrated into a single searchable database. HumanMine promotes integrative analysis, a powerful approach in modern 
biology that allows many sources of evidence to be analysed together. The data can be accessed through a user-friendly web interface as 
well as a powerful, scriptable web service Application programming interface (API) to allow programmatic access to data. The web interface 
includes a useful identifier resolution system, sophisticated query options and interactive results tables that enable powerful exploration of 
data, including data summaries, filtering, browsing and export. A set of graphical analysis tools provide a rich environment for data exploration 
including statistical enrichment of sets of genes or other biological entities. HumanMine can be used for integrative multistaged analysis that 
can lead to new insights and uncover previously unknown relationships.
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Introduction
HumanMine (www.humanmine.org) is an integrated
database of human genomics and proteomics data that pro-
vides a powerful interface to support sophisticated explo-
ration and analysis of data compiled from experimental, 
computational and curated data sources. Built using the 
InterMine data integration platform, HumanMine includes 
genes, proteins, pathways, expression levels, single nucleotide 
polymorphisms, SNPs, diseases and more, integrated into 
a single searchable database. Therefore, HumanMine pro-
motes integrative analysis, a powerful approach in modern 
biology that allows many sources of evidence to be anal-
ysed together. Data integration enables different pieces of 
information about a particular biological entity, or set of 
entities, to be surveyed together without the need to visit 
several databases. Such an approach has many advantages, 
including fewer false positives, compensation for missing or 
unreliable information and interrogation at different levels 
of genetic, genomic or proteomic regulation so helping in 
the understanding of complex biological systems. An impor-
tant step in understanding such processes is also the inter-
pretation of complementary data from model organisms. 
HumanMine interoperates with InterMine databases for a 
number of model organisms including mouse (MouseMine, 

(1)), rat (RatMine, (2)), zebrafish (ZebrafishMine, (3)), fly 
(FlyMine, (4)), worm (WormMine, http://intermine.worm-
base.org/tools/wormmine), yeast (YeastMine, (4, 5)) and 
Arabidopsis (ThaleMine, (6)). Here we describe how Human-
Mine can be used for integrative multistaged analysis that 
can lead to new insights and uncover previously unknown 
relationships.

We will start by using the gene PAX6 to illustrate the capa-
bilities of HumanMine and then consider a more detailed use 
case in which HumanMine is used to support the exploration 
of disease comorbidities.

InterMine
InterMine (7) is a data warehouse framework designed to 
facilitate the integration of diverse biological datasets and pro-
vide tools for bioinformatics analysis and visualization both 
through a web interface and through extensive web services 
generated automatically from the underlying data model. 
InterMine was originally developed as FlyMine to address 
these issues for the Drosophila community. It has since 
been adopted by other model organism databases (MODs) 
including mouse (1), yeast (5), worm (http://intermine.
wormbase.org), fish (3) and rat (2) and a growing 
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number of databases covering other animals, including 
Planaria (8), Hymenoptera (9), locusts (10) and armyworm 
(11). Plant species include Arabidopsis (6), Medicago 
(12), wheat (https://urgi.versailles.inra.fr/WheatMine), maize 
(11, 13), and several from the legume family (14) (see 
registry.intermine.org). InterMine is also used for drug 
development (TargetMine (15)) and by large-scale projects 
and consortia (PhytoMine (16), modMine (17), AllianceMine
(https://www.alliancegenome.org/alliancemine)). Human-
Mine, described here, provides access to selected human data 
through the InterMine interface. A detailed description of the 
InterMine system is available elsewhere (7), but here we briefly 
review the data model and the relationships between differ-
ent types of data. InterMine is able to integrate data from a 
wide variety of sources in various biological formats, includ-
ing GFF3, FASTA, VCF, OBO, BioPAX (18), GAF, PSI (19) 
and Chado (20) and includes a powerful identifier resolution 
system such that any outdated identifiers from a dataset are 
mapped to the current ones. The underlying object-based core 
data model is based on the Sequence Ontology (SO (21)). 
This core is extended to include additional data types that 
do not fit the SO, such as protein–protein interactions. Each 
type in the model (e.g. Gene, Disease) is called a class and 
is described through a set of attributes (such as gene sym-
bol and gene length). References between classes link related 
data types (e.g. Gene and Allele) and facilitate navigation 
and exploration of the data. InterMine allows users to work 
with single items or lists of items (for example, a list of 
genes) and provides a number of search and analysis inter-
faces, including a keyword search, a genomic regions search 
and an advanced query builder, which exposes the data model 
and relationships and so allows the user to construct complex 

searches over the integrated data. In addition, a comprehen-
sive web services API makes it straightforward to access data 
supplied by InterMine databases within programs, with sup-
port for most commonly used scripting languages (22). As 
many aspects of HumanMine conform to the FAIR principles 
of data management (23), the features described help to make 
analyses reproducible and the data more findable, accessi-
ble, interoperable and reusable. HumanMine uses the recently 
released new interface to InterMine, BlueGenes (Manuscript 
in preparation).

Data
HumanMine currently includes around 40 different data 
sets (Supplementary Table S1). The latest human reference 
genome and annotation release are loaded from the NCBI 
(https://www.ncbi.nlm.nih.gov/genome/?term=human[organ-
ism]). Data are focussed on high-throughput sets covering 
the genome, transcriptome, interactome and proteome 
and include full genome and proteome annotation, gene-
pathway and Gene Ontology annotations, expression data 
including tissue- and disease-specific expression, proteome-
wide and genetic interaction data, disease and phenotype 
data including Genome-Wide Association Studies, clin-
ically significant SNPs and cis-eQTLs. A full list of 
data sources, including dates and versions, is available 
via the HumanMine home page (https://www.human-
mine.org/humanmine/results/All%20data%20sources). Data 
are updated quarterly and we hope to include new data 
sources as they arise. The results reported here were gen-
erated using HumanMine version 12, released February
2022.

Figure 1. Keyword search. A search for ‘Pax6’ returns a filterable menu of data classes and organisms with the number of entities found in each on the 
left and individual entities displayed on the right. Each individual entity provides a link to its report page.
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HumanMine access and help
HumanMine is freely available for the public to use, but cre-
ating an account allows a user to save custom queries and lists 
permanently. If a user is not logged in then lists and queries 
are saved for the duration of the session.

Extensive help documentation is available to aid in the use 
of both the user interface and the web services together with 
a number of video tutorials (http://intermine.org/intermine-
user-docs/; http://intermine.org/im-docs/docs/web-services/in
dex/#api-and-client-libraries).

InterMine is an open source project and anyone with 
suitable computational expertise and computing resources 
can produce an in-house version of HumanMine using the 
relevant code repositories (humanmine (https://github.com/
intermine/humanmine), humanmine-biosources (https://git
hub.com/intermine/humanmine-bio-sources)). Recent work
on building a software-as-a-service InterMine Cloud will 
make this type of process easier and available to non-
programmers.

Exploratory data analysis: report pages and 
list analysis
The HumanMine interface provides a number of routes for 
exploring the integrated data, from keyword search and 
report pages to automated analysis of lists of data. For exam-
ple, if a researcher wishes to explore data related to the PAX6
gene they can use the simple keyword search. This returns 
links to genes, publications, interaction data, proteins, exons, 
UniProt protein features, mesh terms and a protein domain 
(Figure 1). The keyword search accepts any identifier type, 
such as a gene symbol or ontology term and keywords and 
allows use of operators like AND, OR and NOT between 
terms. All data types within the database are searched and 
the results returned are faceted by class, making it easier to 
find the data of interest, for instance, the PAX6 related pro-
teins from Homo sapiens. Following the Homo sapiens PAX6
gene link presents a report page collating much information 
about its function including expression, phenotypes, sequence 
variants, disease and homology (Figure 2—the report page has 

Figure 2. The PAX6 report page. Report pages present data through a range of interactive tables, graphs and visualizations depending on the data type. 
A selection of features from the report page for the human PAX6 gene are shown here. (A) A summary of the main identifiers and chromosomal 
location. (B). An interactive table of Gene Ontology annotations. Only the first five rows are shown. (C). A table of disease annotations (original data 
source: OMIM, https://www.omim.org). Only the first five rows are displayed. (D). A graph showing up- and downregulation of the PAX6 gene in various 
disease conditions (original data from ArrayExpress experiment E-MTAB-62, https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-62). (E). A graph 
showing protein localization data (from the Protein Atlas project, https://www.proteinatlas.org/humanproteome/tissue.). (F). A protein structure viewer 
pulling in data from the Protein Data Bank (https://www.rcsb.org).
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the following permanent URL, formed using the NCBI identi-
fier for the gene, 5080: https://www.humanmine.org/human-
mine/gene:5080). Specifically, we learn that PAX6 is expressed 
in the developing eye and brain, is involved in transcription 
and is associated with a number of eye-related disorders such 
as aniridia, keratitis and Peters Anomaly. Examination of 
gene expression and protein localization data shows us that 
PAX6 is expressed not only in various brain structures but 
also in the pancreas and is upregulated in various cancers
(Figure 2).

Within the report page for the PAX6 gene, it is also 
possible to identify interesting gene sets (‘lists’) in which 
PAX6 is found. For instance, PAX6 is found in a number of 
Genomics England gene panels, highlighting its importance in 
many areas of development. Selecting the list ‘PL_Genomic-
sEngland_GenePanel:Glaucoma_(developmental)’, from the 
PAX6 report page, allows us to explore aggregated data for 
this set of genes. Alongside a table detailing the individual 
members of the list, enrichment statistics show Gene Ontol-
ogy terms for various visual and sensory organ development 
(such as iris morphogenesis (P-value: 1.20e-3) and eye devel-
opment (P-value: 1.57e-2)) while enriched pathway terms 
include TRAF3-dependent IRF activation pathway (P-value: 
7.83e-4). Widgets and tools then allow us to examine the 
chromosome distribution of the genes in the list, identify inter-
acting partners through both a table and a network graph, 
examine heat maps of gene expression, visualize pathway 
interactions and Gene–GO term relationships (Figure 3).

The ability to create and use lists of entities is integral to 
data analysis within HumanMine. All lists can be viewed with 
such list analysis pages which, like the report pages, pro-
vide summarized data for the contents of the list. Lists of 
items with standardized annotations, such as Gene Ontology 

annotations, facilitate analysis by statistical enrichment meth-
ods. InterMine uses the hypergeometric distribution with a 
choice of multiple test corrections to provide enrichment 
statistics for lists of genes i.e. to discover whether an anno-
tation is unexpectedly frequent within the group. Interactive 
tables of enrichment P-values, calculated for Gene Ontol-
ogy terms, pathway annotations, protein domain annotations 
and publications are displayed on the gene list analysis pages. 
The tables can be adjusted for test correction, P-value thresh-
old and background reference set (the default being all genes 
in the human genome with an annotation of the type being 
analysed, e.g. all human genes that have associated GO anno-
tations) and subsets of the genes with a particular enriched 
term can easily be viewed and saved as further lists. In addi-
tion to the enrichment tables, a tools library allows for the 
easy addition of visualizations to the list pages by the database
maintainer.

Lists created within HumanMine or from an external 
source can be saved into the user’s account for further use. In 
addition, HumanMine provides a number of public lists (sets 
of interesting genes from relevant publications or resources) 
such as the sets of rare-disease and cancer genes defined by 
the Genomics England Gene PanelApp project (https://pan-
elapp.genomicsengland.co.uk, (24)) (only ‘Green’ level panels 
are included, which have a high level of evidence for the 
gene–disease association). Such public lists have a number of 
applications including identifying whether a gene of interest is 
present in any of the lists (shown on gene report pages), noti-
fying users of significant overlaps between their lists and the 
public lists (currently available through the web services but 
soon to be developed for the user interface) and simply as a 
convenient list of genes known to be significantly involved in 
a particular disease.

Figure 3. List analysis page for the public list: PL_GenomicsEngland_GenePanel:Glaucoma_(developmental). Like the report pages, list analysis pages 
provide a number of interactive tables and graphs. A selection is shown here. (A). Interactive table summarizing the contents of the list. (B) A network 
graph showing Gene–Pathway connections for genes in the list. Only genes that have two or more pathway connections are shown (this option can be 
toggled on the menu panel). The menu panel also allows filtering of the pathway annotations used in the graph. (C) Enrichment statistics for Gene 
Ontology terms, Publications, Protein domains and Pathway annotations. (D) A heat map showing protein localization for each gene in the list (original 
data from The Protein Atlas project https://www.proteinatlas.org/humanproteome/tissue).
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Figure 4. Lists. All lists, both public and private for a user account, can be viewed under the Lists tab.

All lists, both public and belonging to a user, can be viewed 
on the ‘Lists’ page, which has a number of functions for the 
organization and exploration of the lists available, includ-
ing the addition of free-text descriptive annotation as ‘tags’, 
creation of folders, as well as search and filtering functions 
(Figure 4). Two or more lists can be combined using set 
operations: union, intersection, difference and subtraction.

Structured data analysis: template searches 
and the query builder
After exploring the report pages for a particular entity, a 
researcher may wish to ask more structured or focussed ques-
tions about the data. Continuing with our PAX6 example, we 
noted earlier that PAX6 is upregulated in a number of cancers, 
including small cell lung cancer. To investigate this further a 
researcher may follow a number of lines of investigation. For 
example, to (i) identify other genes upregulated in small cell 
lung cancer and (ii) identify whether any of these genes inter-
act with PAX6. A library of ‘canned’ or pre-formed searches, 
called template searches, allow the user to easily search across 
any integrated data set (Figure 5).

For example, the above two questions about PAX6 could 
be investigated with a single template search, ‘Gene(s) +
Disease –> Interactors + Disease Expression’. This template 
combines disease expression data (ArrayExpress experiment 
E-MTAB-62 (25)) and interaction data (IntAct (26) and 

BioGrid (27)) and allows us to search for genes that interact 
with PAX6 that are, according to the data, also upregulated 
in a defined disease state, here lung cancer.

A template search typically has one or more ‘start’ data 
types as input and one or more ‘end’ data types that are 
provided as output and allows the user to add constraints 
(or filters) to these to control the subset of data returned. Tem-
plates cover both simple searches and more complex searches 
combining two or more datasets, and in most cases can be exe-
cuted with either a single item (e.g. a gene) or a list of items 
(such as a pre-saved gene list).

More advanced data mining is available through the query 
builder, which can be used to generate de novo queries or to 
modify template searches. For instance, the template ‘Gene(s) 
+ Disease –> Interactors + Disease Expression’ can be dis-
played in the query builder and can be modified to return 
genes that interact with PAX6 that are expressed in lung squa-
mous cell cancer as well as small cell lung cancer (Figure 6). 
The query builder interface displays a hierarchical data model 
browser through which classes of data can be selected for 
combining into a search. Constraints that filter the data and 
the results that are provided as output can be defined through 
the interface together with more advanced features such as 
constraint logic (data types are combined with an ‘AND’ 
by default but can be configured for OR, see Figure 6) and 
data join type, i.e. whether the intersection of two datasets 
should be returned or the union of the datasets (the latter 
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being returned by default). For instance, in our example, it 
is possible to return either all interacting genes regardless of 
whether they also show expression in the defined conditions 
or only return those interactors for which the expression con-
ditions are satisfied. Template searches and the Query Builder 
present results as InterMine Results Tables. From here, we 
can, for example, use a column summary function to find that 
(i) 18 interacting genes are returned and (ii) that, using the col-
umn summary to filter the table, 14 of the genes are associated 
with small cell lung cancer and 12 with lung squamous cell 

cancer (Figure 7). The ‘Save as list’ function of the results 
table allows us to save the set of 14 upregulated small cell 
lung cancer genes that interact with PAX6 enabling this set to 
be further analysed through the list analysis page, further tem-
plate searches and set operations on lists. The Gene Pathway 
Visualizer on the list analysis page, for example, highlights 
a number of potentially important cancer genes including 
SOX2, CSNK2A1, LMX2, SMAD5, APP and TP73 (Figure 8). 
The intersection of these genes with a set known to be involved 
in small cell lung cancer from the DisGenNet (28) dataset 

Figure 5. (A) A library of ‘template’ searches is available from the ‘Templates’ tab. The template library can be searched using keywords or filtered using 
the various data category tags. (B) The ‘Gene(s) + Disease Interactors + Disease Expression’ template expanded. Each template provides one or more 
constraints that can be modified according to the search the user wishes to run. A preview of the template result is shown with options to view the full 
results or edit the query in the Query Builder.
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Figure 6. The Query Builder. The query builder consists of three main panels—the model Browser (A), the query editor (B) and the query preview (C). 
The ‘Gene(s) + Disease Interactors + Disease Expression’ search is shown with an extra constraint for ‘condition = Lung squamous cell cancer’ added. 
Each constraint in the query editor is labelled with a letter enabling the constraint logic to be edited here to give ((A or E) and C and D and B).

confirms that two, SOX2 and TP73 are known to be directly 
implicated in small cell lung cancers, suggesting that the rest 
of the list may also be worthy of further investigation in the 
context of lung cancer.

Thus the Results Table is a powerful query analysis tool 
in itself, providing many features for the manipulation of 
the results, including the column summaries (simple statistics 
describing the data in a column including the number of dis-
tinct attributes for categorical data, or, for numerical data, the 
mean, median, minimum and maximum), data filtering, sort-
ing, list generation and the ability to add additional columns 
of data (Figure 7). The results tables can be exported in com-
mon formats including TAB/CSV and as a frictionless data 
package (https://frictionlessdata.io). Nucleotide and protein 
sequences can be exported in FASTA format. An additional 
feature of the results tables in the new BlueGenes interface 
is the automatic generation of enrichment statistics and the 
inclusion of analysis tools as seen on the list analysis pages 
(Figure 3). The enrichment is based on the first column of 
genes or proteins, however, if more than one column of genes 
or proteins is present in the table, another column can be 
selected for the enrichment calculations from the settings bar.

Using HumanMine to explore external data
We learnt from the GO annotations on the report page that 
PAX6 is a transcription factor involved in many cellular func-
tions. It follows, therefore, that a researcher may wish to 
analyse genes that are regulated by PAX6. HumanMine pro-
vides two interfaces for the upload of external data, a list 
upload and a region search. For instance, a set of human genes 
already identified as PAX6 target genes (29) can be uploaded 
to HumanMine (HumanMine public list PL_Pax6_Targets) 
using the list upload function enabling them to be analysed 
alongside the integrated data using any of the functional-
ity discussed above. The template ‘Gene → Gene Expression 
(Tissue, Disease; Array Express, E-MTAB-62)’ can be run 
using this list as input and with ‘Atlas Expression > type’ set 

to disease_state and ‘Condition’ set to ‘Contains’ Lung. The 
resulting results table can be further filtered using the Atlas 
Expression Condition column summary to show data for just 
‘small cell lung cancer’ and ‘Lung small cell cancer’ so identify-
ing 51 upregulated genes, five of which (ASCL1, EPHA7, ID2, 
RUNXITI and SOX2) already have a known involvement in 
small cell lung cancer according to the DisGenNet data, with 
the others, therefore, providing a set of candidate genes for 
further research.

HumanMine allows users to upload any lists of objects for 
which data classes exist (for instance genes, proteins, tran-
scripts). The list upload system includes a powerful identifier 
resolution system such that any outdated identifiers or syn-
onyms can be updated to the current human annotation. For 
genes, HumanMine supports NCBI Entrez (30) gene identi-
fiers, Ensembl (31) gene identifiers and HGNC (32) identifiers, 
with the main genome annotation being from NCBI. Thus, 
once a list has been uploaded it can be analysed in the same 
way as a list generated from within the database and will 
benefit from an automatically generated list analysis page.

The Region Search tool makes it possible to identify, for 
specified genomic spans, genomic sequence features such as 
genes and regulatory regions that overlap the spans. Thus the 
list of PAX6 target genes could equally have been created 
by using a published set of ChIP-seq binding intervals (29) 
and searching for overlapping genes. The region search results 
interface allows such a set of genes to be easily saved as a list. 
The genomic regions can be extended by specified amounts 
beyond the 5′ and 3′ coordinates given, and a strand-specific 
search can be carried out if required. Features identified can be 
saved as lists or exported, either individually for each region 
specified or for all regions searched.

Web services
In addition to the user interface, HumanMine can be accessed 
through a comprehensive web services layer (12) through 
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Figure 7. The Results Table showing results from the query ‘Gene(s) + Disease Interactors + Disease Expression’ for the PAX6 gene with constraints on 
the disease name for small cell lung cancer or lung squamous cell cancer. The results tables provide many additional functions including ‘Add columns’ 
allowing additional data to be added, ‘Manage filters’ allowing filters on any column to be defined, ‘Manage relationships’ enabling either the union or 
intersect of classes of related data in the table to be defined, ‘Save list’ enabling subsets of items in the table to be saved as lists, ‘Python’, automatic 
code generation, available as a drop-down list of available languages and ‘Export’ (A). The column summary on the Participant 2 > Symbol column (the 
genes with which PAX6 interacts) allows the number of unique interacting genes (18) to be found (B). Using the column summary on the Atlas 
Expression > Condition column it is possible to see the number of rows for each disease condition. This could be used to filter the table to show just one 
of the disease conditions (C). The ‘Save as list’ function can be used to save any set of items from the table. Here it may be useful to save the set of 
interacting genes (Gene > Interactions > Genes (18)) (D). To save the set of interacting genes specific to one of the cancers, the table could be filtered 
first using the column summary function as described above.

which all the functionality of the user interface can be 
accessed. Client libraries in several languages are available 
(http://intermine.readthedocs.io/en/latest/web-services/#api-
and-client-libraries) or RESTful endpoints may be accessed 

directly (http://iodocs.apps.intermine.org/). Automatic code 
generation through the user interface provides an easy start-
ing point for those wishing to use the web services. For 
example, code for running the template mentioned earlier, 
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Figure 8. The Gene Pathway Visualizer on the list analysis page, showing Gene–Pathway associations for the 14 upregulated small cell lung cancer 
genes that interact with PAX6. A number of potentially important cancer genes including SOX2, CSNK2A1, LMX2, SMAD5, APP and TP73 can be seen. 
Only genes that have two or more pathway connections are shown (this option can be toggled on the menu panel).

‘Gene → Gene Expression (Tissue, Disease; Array Express, 
E-MTAB-62)’, can be generated directly from the template 
form (Figure 9). This code can then be added to a script 
that has imported the corresponding client library, so facili-
tating script-based analysis in which data from InterMine is 
dynamically retrieved. In addition, an R library, InteMineR 
(33) available from BioConductor (https://www.bioconduc-
tor.org/packages/release/bioc/html/InterMineR.html), allows 
queries against HumanMine to be run using the R program-
ming language.

Use-case: using HumanMine to explore shared 
pathways in disease comorbidities
The combination of integrated data and analysis tools in 
HumanMine allows for the exploration of shared genes and 
pathways between two or more conditions. Asthma and type 
2 diabetes are two of the most prevalent chronic diseases, pre-
senting significant challenges to public health. While patients 
frequently only have one of either asthma or type 2 diabetes, 
the two diseases also have a well-documented but poorly 
understood comorbidity, in which they co-occur more fre-
quently than would be expected by chance (34). Studying 
disease comorbidities allows both a better understanding of 
the pathology of the respective diseases, as well as identifica-
tion of the underlying mechanisms of the comorbidity, which 
may provide opportunities for more targeted interventions 
and therapies.

For this example, data from multiple disease sources 
(OMIM (35), ClinVar (36), GWAS Catalogue (37), DisGen-
Net (28) and the Human Phenotype Ontology, HPO (38)) 
were searched for genes associated with either Type 2 dia-
betes or Asthma. The resulting lists of genes for each disease 
were combined by using the list intersection function to iden-
tify genes shared between the two diseases. Analysis of the 
resulting shared set of 912 genes (from now on called the 
shared set, Supplementary Table S2) provides a number of 

insights into the underlying causes of the comorbidity, some 
of which are discussed below (Figure 10). The enriched Gene 
Ontology terms and Pathway annotations for the shared set 
identify a number of underlying shared biological functions 
between the two conditions, in particular in the immune 
system, signal transduction and haemostasis (Supplementary 
Table S3A and B).

There is evidence to suggest that asthma may increase the 
risk of developing type 2 diabetes (39). The mechanisms by 
which this increased risk may occur, however, are not fully 
understood. It has been suggested that increased levels of some 
inflammatory cytokines known to be present in asthma may 
contribute to the development of type 2 diabetes (39). This 
proposal is backed up here by the finding that 249 genes 
from the ‘shared set’ are annotated with the high-level GO 
term ‘Inflammatory response’ and the enrichment of a number 
of pathways involved in inflammation, particularly the inter-
leukin signalling pathways. The proinflammatory biomarkers 
interleukin-6 (IL6), C-reactive protein (CRP) and TNF-alpha 
(TNF), present in the ‘shared set’ and known to be elevated in 
low-grade inflammation, are thought to be major contributors 
to the development of type 2 diabetes (40, 41). Thus, it is pos-
sible that increased circulating levels of some inflammatory 
cytokines known to be present in asthma may also contribute 
to the development of type 2 diabetes.

Another important immune gene, TGFB1, present in the 
shared list, encodes the cytokine TGF-beta 1. Its roles in 
airway inflammation and remodelling in asthma are well-
defined (42), and asthma severity is associated with different 
TGFB1 polymorphisms in humans (43). The role of TGF-beta 
1 in type 2 diabetes is less established, however, an inter-
esting hypothesis is that it drives dedifferentiation of beta 
cells (44), a process implicated in type 2 diabetes pathogen-
esis (45); dedifferentiation is also part of asthmatic airway 
remodelling (46). Targeting TGF-beta 1 remains challeng-
ing (47) but could offer new therapeutic potential for both
diseases.
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Figure 9. Automatic code generation. From any results table, it is possible to view and copy code for the underlying query in various programming 
languages. Here the python code for the Gene(s) + Disease Interactors + Disease Expression result is shown (A). Code for Python, Perl, Ruby, Javascript 
and Java is available (B).

Figure 10. Exploring comorbidities using HumanMine. A schematic representation of the steps involved in the use-case ‘Using HumanMine to explore 
shared pathways in disease comorbidities’. See text for details.
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Figure 11. Gene expression heat maps for a selection of the genes from the shared set. (A). Protein tissue localization (original data from The Protein 
Atlas project, https://www.proteinatlas.org/humanproteome/tissue). The viewer has been filtered to show data for adipose tissue (adipocytes) and lung 
(macrophages and pneumocytes) only. (B). It is possible to toggle the expression score ‘bins’ on or off and a colour scale representing expression level 
is shown. (C). Heat map filtered to show RNA-seq data for adipose and lung (original data from The Protein Atlas project, 
https://www.proteinatlas.org/humanproteome/tissue). The viewer allows toggling between other expression data sets, showing different binned levels 
of expression and provides a scale for expression level.

Toll-like receptors (TLRs) are expressed on the membranes 
of leucocytes and activate immune cell responses in response 
to microbes. Such activation of TLRs in the lung can induce 
inflammation, inflammatory cell recruitment and cytokine 
release. In particular, TLR2 and TLR4 have been shown to 
sustain the inflammatory response in asthma (48). There is 
also evidence that TLR4 is directly involved in the pathophysi-
ology of type 2 diabetes (49, 50) and it has been suggested that 
drugs targeting the TLR4 signal pathway could be candidates 
for the treatment of inflammatory comorbidities (51). The 
‘Pathway → Genes’ template was used to retrieve all known 
genes of the TLR4 signalling pathway. List intersection shows 
that 45 genes from the shared set function in this pathway (out 
of a total of 128 pathway genes). Interestingly, 34 of these 45 
proteins have a drug entry in DrugBank (52) [Source: Target-
Mine (15); https://targetmine.mizuguchilab.org], reinforcing 
the therapeutic potential of this pathway.

A number of other genes in the shared set warrant fur-
ther analysis. For example, the enriched pathways include 
a number related to GPCR signalling with 128 genes being 
annotated with ‘signalling by GPCR’. Included in these 
are BDKRB1 and BDKRB2, receptors for pro-inflammatory 

bradykinins, which have an established role in asthma (53) 
but less is known about their roles in type 2 diabetes. BDKRB1 
has previously been identified as upregulated in allergic air-
way inflammation (54) and a mouse model of diabetes (55) 
and maybe worth further investigation.

The HumanMine integrated data allows many other 
datasets to be examined alongside the disease data. For 
instance, five datasets allow investigation of gene expres-
sion at the tissue level (E-MTAB-62 and E-MTAB-513 (from 
https://www.ebi.ac.uk/arrayexpress), GTex (from https://gtex-
portal.org) and Human Protein Atlas (both protein localiza-
tion data and RNA-seq data, (56)). Such data allow other 
factors to be considered in the above analysis, for instance, 
genes from the shared set that are expressed in both the 
lung and adipose tissue. An initial analysis using the Human 
Protein Atlas (56) RNA-seq data indicates that 406 of the 
genes from the shared set are expressed in both tissues. These 
are enriched for the immune system and signal transduc-
tion pathways as discussed above and include IL6, TLR2 
and TLR4. The expression viewers on the list analysis page 
allow for a visual overview of the genes in the shared list 
that are expressed in the lung and adipose tissue (Figure 11).
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Figure 12. (A). A query to find publications in which the title includes both Asthma and Diabetes. (B). The results return seven publications as shown by 
the column summary.

Each expression set provides a slightly different result, empha-
sizing the benefit of being able to examine multiple datasets 
alongside each other.

Expanding the analysis further, the network of inter-
acting proteins for the shared set can be examined, the 

interacting partners of each gene being found using the ‘gene 
→ interactions’ template. Enrichment analysis of the result-
ing ‘expanded’ set highlights signalling by Rho GTPases. The 
RHO GTPases are emerging regulators of glucose homeosta-
sis and have been implicated in beta cell dysfunction (57). 
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Figure 13. Features of the InterMine interface can be combined to create iterative workflows. For instance, the entities from the results of a query 
generated either using the query builder or through a template search can be saved as a list. The list can be fed into further queries or combined with 
other lists using set operations to create further lists. At any stage, individual entities or lists can be examined in more detail through the list analysis and 
report pages.

They are also well known to play an important role in the 
pathophysiology of asthma and recent advances have sug-
gested novel roles for RhoA in regulating allergic airway 
inflammation. The RHO GTPases are promising targets for 
therapeutic treatment of asthma and two major Rho-kinase 
inhibitors have been developed (58).

A further way to enhance the analysis would be to investi-
gate the literature for publications exploring the asthma/dia-
betes comorbidity, for instance, by searching for papers that 
mention both in either their titles or abstracts. In addition to 
searching data, HumanMine makes it easy to begin a litera-
ture search for the interesting sets of genes identified, by means 
of the PubMed-to-gene mappings provided by PubMed. Edit-
ing the template ‘Gene → Publications’ in the query builder to 
remove the gene constraint and adding two constraints on the 
publication title (Figure 12) allows publications in which the 
title includes both Asthma and Diabetes to be easily identified. 
Seven publications are returned by the search, interestingly 
identifying a TLR2 polymorphism associated with type 1 
diabetes and allergic asthma (Figure 12). In addition, the pub-
lication enrichment for the shared set can also be searched 
for interesting clues. Although no papers directly analysing 
diabetes and asthma appear to cite an unexpectedly high num-
ber of the shared set members, there are some potentially 
interesting leads—for instance, 37 genes from a paper enti-
tled ‘Analyses of shared genetic factors between asthma and 
obesity in children’.

While it is not possible to provide a full analysis of the data 
and its implications in the therapeutic treatment of asthma 
and diabetes here, the above use-case illustrates how Human-
Mine facilitates an in-depth exploration of the data available 
and highlights many areas where further research could be 
focussed. The method outlined above can be applied to any 
combination of disease comorbidity and can easily be adapted 
to other research areas.

Conclusion
HumanMine is an advanced biological data warehouse for 
human genomics and proteomics data, exposing the data 
through intuitive graphical user interfaces and as well as 
allowing programs to access data through extensive web ser-
vices. The PAX6 and disease comorbidity examples illustrate 
how HumanMine can be used for powerful explorative and 
iterative data analysis. The combination of list creation, list 
operations, querying and filtering allows a workflow of tasks 
to be built up, the results of which can be examined at vari-
ous stages using enrichment tools, list tools and report pages 
(Figure 13). Furthermore, the combination of automatic code 
generation and web services makes it easy to replicate such 
steps in a script and so repeat the analysis at scale with 
different starting conditions and parameters.
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