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Abstract
DNA metabarcoding is a widespread approach for the molecular identification of organisms. While the associated wet-lab and data process-
ing procedures are well established and highly efficient, the reference databases for taxonomic assignment can be implemented to improve 
the accuracy of identifications. Insects are among the organisms for which DNA-based identification is most commonly used; yet, a DNA-
metabarcoding reference database specifically curated for their species identification using software requiring local databases is lacking. Here, 
we present COins, a database of 5’ region cytochrome c oxidase subunit I sequences (COI-5P) of insects that includes over 532 000 rep-
resentative sequences of >106 000 species specifically formatted for the QIIME2 software platform. Through a combination of automated 
and manually curated steps, we developed this database starting from all COI sequences available in the Barcode of Life Data System for 
insects, focusing on sequences that comply with several standards, including a species-level identification. COins was validated on previously 
published DNA-metabarcoding sequences data (bulk samples from Malaise traps) and its efficiency compared with other publicly available ref-
erence databases (not specific for insects). COins can allow an increase of up to 30% of species-level identifications and thus can represent 
a valuable resource for the taxonomic assignment of insects’ DNA-metabarcoding data, especially when species-level identification is needed 
https://doi.org/10.6084/m9.figshare.19130465.v1.
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Introduction
DNA metabarcoding is a popular method in molecular tax-
onomy widely used for organisms’ identification starting from 
short DNA sequences of one or a few genes (1, 2). This method 
has wide applicability in many different fields in which the 
identification of living organisms is required (3–6). DNA-
based identification methods are more useful on organisms 
for which identification using other approaches is problem-
atic, requires vast expertise or takes a long time. Due to 
their species richness and ubiquity and to the high level of 
specialization required for their morphological identification, 
insects represent one of the groups for which DNA-based 
identification is commonly used (7–10).

Currently, DNA-metabarcoding wet-lab protocols and 
raw data analysis pipelines are well established, allow-
ing researchers to obtain high-quality results both from 
insect environmental DNA and insect community DNA sam-
ples (11). Nevertheless, the choices of the DNA marker(s) 
and of the reference database for sequences’ taxonomic 
assignment are two key aspects that can affect the accuracy 
of identifications.

Depending on the aim of the study, different DNA markers 
are deemed as appropriate for insect molecular identification 
(12, 13). Some of them have a wide taxa coverage but a low 
taxonomic resolution, e.g. 16S ribosomal RNA (rRNA) and 
18S rRNA (13, 14), while others permit more specific identi-
fications, e.g. cytochrome oxidase subunit I (COI (14)). The 
choice of the marker is usually driven by the amount of data 
available as reference, in particular when prior knowledge on 
the sampled insect taxa is lacking (as in the case of biodi-
versity surveys; insectivorous animals’ diets characterization 
(15, 16)). In this case, COI is the best choice thanks to the 
high number of publicly available sequence data stored within 
online repositories (major ones being Barcode of Life Data 
(BOLD) System and GenBank (17, 18)), especially for the 5′

end (COI-5P), the region that can be amplified using universal 
DNA-barcoding primers, such as LCO1490/HCO2198 (19). 
In recent years, a consistent number of DNA-metabarcoding 
primers targeting this region have been developed (20, 21) and 
demonstrated to work effectively on different insect taxa (21).

Regarding reference databases of COI sequences, some 
types of software directly connecting to BOLD system 
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databases for taxonomic assignments of operational taxo-
nomic units (OTUs)/amplicon sequence variants (ASVs) are 
available (22, 23), but other tools (e.g. QIIME (24), Ribo-
somal Database Project (RDP) classifier (25) BLAST+ (26)) 
need local reference databases. For the latter, some publicly 
available ready-to-use databases have been developed (e.g. 
MIDORI (27)). Nevertheless, in some cases, the use of self-
developed reference databases can increase taxa identification 
accuracy. Generating a customized reference database can be 
a challenging process, and until recently, it has been pos-
sible only using self-developed pipelines. Recently, Robeson 
and colleagues (28) released RESCRIPT, a largely automated 
tool for creating metabarcoding reference databases starting 
from online repositories of public sequence data. Exploiting 
the large amount of publicly available data for developing 
DNA-metabarcoding reference databases for insects’ identi-
fication can be convenient, considering that the identification 
success and accuracy using DNA metabarcoding is strongly 
dependent on the completeness of the reference database in 
terms of taxa representative sequences (29). Indeed, such 
kinds of references for insects can be developed de novo only 
by combining the forces of multiple researchers having differ-
ent taxonomic competence, due to the high taxa richness and 
intra-taxon diversity (in terms of COI variability) character-
izing this group. Although the large amount of COI sequence 
data stored in online repositories may sound like a funda-
mental asset for creating a good reference database, dealing 
with data developed by other people and generated in the con-
text of different studies can be a double-edged sword. In fact, 
sequences of undesired origin [nuclear mitochondrial pseu-
dogenes (numts) and contaminants] or related to the wrong 
taxonomy are commonly released (11), and identifying them 
among a huge amount of data can be challenging. The pres-
ence of erroneous sequences in a reference database can lead 
to the misidentification of taxa. However, fully automatiz-
ing their filtering within a bioinformatic pipeline is unlikely 
to succeed; as a result, a manual curation step is always 
fundamental (28).

Here, we present COins, a curated reference database for 
insect molecular identification that can be used with soft-
ware requiring a local reference database. This novel database 
leverages the COI sequence of the 5′ region published on 
BOLD and has been developed using a combination of auto-
mated and manual curation steps. The goal was to develop a 
tool allowing more accurate and specific identification to be 
obtained than by using the resources currently available for 
the molecular identification of insect taxa.

Materials and methods
Data mining and database curation
All DNA sequences of insects publicly available on the BOLD 
COI database were downloaded (search query ‘Insecta’) on 
18 September 2020 along with the information on the spec-
imens from which they were generated. All subsequent steps 
were performed through ad hoc bash and R software (R Core 
Team, 2019) scripts unless otherwise specified. From the 
mined dataset, COI-5P and full gene sequences were selected, 
and any sequences that lacked the relevant taxonomic infor-
mation on the specimens they were developed from (i.e. 
order, family, genus and species of belonging) were removed. 
Then, multi-FASTA format files were generated for each insect 
order included in the dataset, and the related taxonomy was 

reported as sequences ids (insect orders sub-datasets, Step 1; 
Figure 1). In order to avoid the presence within the datasets 
of sequences annotated as insect but actually belonging to 
other organisms, the sequences were compared with selected 
Homo sapiens, Wolbachia and Rickettsia sequences using 
BLAST+ (30), and the entries matching non-insect sequences 
with an e-value < 1e−20 were removed (Step 2; Figure 1). Addi-
tionally, sequences >150 amino acids were identified using 
Transeq from the EMBOSS software (31) and removed (Step 
2; Figure 1). As a further step, the sequences associated 
with an invalid species-level taxonomy were identified and 
removed using two methods: (i) an ad hoc script looking 
for key terms included in species names, i.e. ‘sp.’, ‘cf.’, ‘cfr.’, 
‘group’, ‘nr.’ and numbers and (ii) a manual filtering for 
detecting further invalid names non-identifiable through key 
terms (e.g. collection localities, collectors or species author 
names instead of species name, alphabetic codes replacing 
species name and many others) (Step 2; Figure 1). To fur-
ther verify sequences homology, each dataset was aligned at 
the codon level using MAFFT software (32), and the iden-
tity of all sequences introducing gaps in the alignments was 
verified using the BLASTn tool (33) and, in case of incon-
gruence, removed (Step 3; Figure 1). The resulting datasets 
were then trimmed to keep only the COI gene ‘Folmer region’ 
(19); all sequences having a length of ≤420 bp were then 
discarded using the R library spider (34) (Step 4; Figure 1). 
In the subsequent step, one representative sequence for each 
haplotype of the species included in the datasets was selected 
using the R package haplotypes (https://biolsystematics.
wordpress.com/r/) (Step 5; Figure 1). All insect orders’ sub-
datasets were then combined into a single multi-FASTA file 
in which BOLD process ids were used as sequences’ iden-
tifiers, and sequences’ associated taxonomy was stored in a 
separate file (Step 6; Figure 1). Within this file, five Rick-
ettsiales sequences amplified from insects using the Folmer 
primers pair (19) were also included. Due to these sequences’ 
similarity to insects’ COI-5P, including them in the database 
could allow the avoidance of misassignment. Finally, the 
database was formatted for QIIME2 (.qza files available at 
https://doi.org/10.6084/m9.figshare.19130465.v1). Any fur-
ther updated version of the database will be published at 
the same link. COins will be updated whenever a meaning-
ful number of COI insect sequences will be published on the 
BOLD system.

Reference database efficiency test
DNA-metabarcoding raw data (obtained from 54 bulk sam-
ples collected with Malaise traps) developed in Kirse et al.
(35), using mlCOIintF (5′–ACA CTC TTT CCC TAC ACG 
ACG CTC TTC CGA TCT GGW ACW GGW TGA ACW 
GTW TAY CCY CC–3′) and dgHCO2198 (5′–GTG ACT 
GGA GTT CAG ACG TGT GCT CTT CCG ATC TTA AAC 
TTC AGG GTG ACC AAA RAA YCA–3′) primers pair, were 
obtained from the Sequence Read Archive (SRA) archive 
(project accession number PRJNA68109) and used to test 
the efficiency of the developed database. The bioinformatic 
analyses were performed using the QIIME2 platform (24). 
Raw sequences were denoised with the DADA2 algorithm (36) 
to remove errors and obtain the actual biological sequences 
(ASVs).

The ASV taxonomic assignment was then performed using 
two approaches: (i) BLAST+ local alignment between query 
and reference reads (sequence identity = 97%, minimum 
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Figure 1. COins database development steps.

consensus among top hits = 80% (26)) and (ii) the naïve 
Bayes taxonomic classifier trained on the reference database 
using the fit-classifier sklearn method (confidence = 0.97 
(37, 38)). Three different databases were used as reference: 
(i) the database developed in this study, hereafter named 
COins; (ii) MIDORI CO1 unique version 245 (Leray et al., 
in preparation; http://www.reference-midori.info/download.
php#) and (iii) a reference database of COI sequences cre-
ated using RESCRIPT software starting from animals’ COI
sequences registered in BOLD (retrieving date July–August 
2020), hereafter named ResBO (database available at https://
osf.io/d4jra/).

Results
The database
A total of 5 065 234 insect COI sequences were mined from 
BOLD. After filtering (up to Step 4; Figure 1), 3 745 421 
sequences were lost (mainly due to the removal of sequences 
lacking species-level identification). At the end of Step 6 
(Figure 1), the database was composed of 532 617 unique 
sequences, belonging to >106 000 species of 27 different 
insect orders. The most represented order within COins is 

Lepidoptera, followed by Diptera and Coleoptera (Table 1). 
Only a few sequences of Zoraptera and Notoptera are present 
(Table 1). 

Two metadata files associated with COins are avail-
able. The first one comprises the information on the iden-
tification procedure of the voucher specimens from which 
COI sequences included in the database were generated. 
The same information is reported also for all identical 
sequences within haplotypes that were removed in Step 
5 of the database curation (Figure 1). The second file 
reports the information on identical sequences belonging 
to different species present within the database. These 
files can be consulted when any specific molecular iden-
tification obtained using COins is doubtful (available at 
https://doi.org/10.6084/m9.figshare.19130465.v1).

Database efficiency test
The 54 DNA-metabarcoding samples (32) used to test the 
database efficiency, included a total of 27 348 365 raw reads 
(mean per sample = 506,451.2 reads), after denoising and fil-
tering 8312 ASVs were obtained. The two algorithms adopted 
in this study (BLAST+-based and fit-classifier sklearn) demon-
strated a good congruence in the taxonomic assignments of 
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Table 1. Number of unique sequences for each insect order included in 
the database

Order Number of sequences

Archaeognatha 79
Blattodea 1558
Coleoptera 65 684
Dermaptera 140
Diptera 122 306
Embioptera 69
Ephemeroptera 7150
Hemiptera 28 494
Hymenoptera 58 124
Lepidoptera 209 290
Mantodea 378
Mecoptera 304
Megaloptera 281
Neuroptera 1821
Notoptera 3
Odonata 5142
Orthoptera 7369
Phasmatodea 172
Plecoptera 4733
Psocodea 1800
Raphidioptera 41
Siphonaptera 473
Strepsiptera 56
Thysanoptera 1778
Trichoptera 15 321
Zoraptera 2
Zygentoma 49

the ASVs detected, with COins sharing the highest number 
of ASVs’ unique identifications between algorithms than the 
other databases, i.e. 80.6% in comparison to 73.6% for 
MIDORI and 67.8% for ResBO (Figure 2).

The taxonomic assignments of these ASVs using as ref-
erence ResBO resulted in 2381 (using BLAST+ algorithm) 
and 2870 (fit-classifier sklearn algorithm) ASVs assigned to 
the Insecta class. COins identified 2368 (BLAST+) and 8026 
(fit-classifier sklearn) Insecta ASVs, while MIDORI identi-
fied 1876 (BLAST+) and 3273 (fit-classifier sklearn) ASVs. 
Among them, order-level assignments were obtained for 2374 
(BLAST+) and 2008 (fit-classifier sklearn) ASVs adopting 
ResBO as reference; 2367 (BLAST+) and 2611 (fit-classifier 
sklearn) ASVs using COins and 1864 (BLAST+) and 2219 
(fit-classifier sklearn) ASVs using MIDORI (Figure 3). Regard-
ing species-level assignments, the following results were 

obtained: ResBO identified 1530 (BLAST+) and 1608 (fit-
classifier sklearn) ASVs to species; COins 2117 (BLAST+) 
and 2243 (fit-classifier sklearn) ASVs to species and MIDORI 
1594 (BLAST+) and 1584 ASVs (fit-classifier sklearn) to 
species (Figure 3).

Among the species-level identified ASVs using BLAST+-
based algorithm, 825 different species were recognized by 
MIDORI: 27 of them were shared with ResBO, which iden-
tified 887 species (Figure 4a). The highest number of species 
was found using COins, i.e. 1051, 184 of them in common 
with ResBO (Figure 4a). Using the BLAST+-based algo-
rithm, 41.4% of the species were identically identified by the 
three reference databases (Figure 4a). A similar situation was 
observed when fit-classifier sklearn algorithm was applied, 
in fact 836 different species were identified by MIDORI 
(Figure 4b), 29 of them were shared with ResBO, which 
identified 866 species, and COins detected 1108, 202 in com-
mon with the last database (Figure 4b). Using this algorithm, 
the percentage of common species recognized by the three 
databases was 40.1% (Figure 4b).

COins identified some ASVs as belonging to Rickettsiales 
(<20), these ASVs were assigned to Insecta, Arthropoda 
or remained unassigned when using the other reference 
databases.

Discussion
In this study, a reference database of COI sequences 
(5′ region) for insects’ taxonomic assignment using DNA 
metabarcoding was developed, starting from the data avail-
able on BOLD. These data were filtered according to several 
criteria in order to remove sequences, which might be poten-
tial sources of error during taxonomic assignments of the 
ASVs. Different motivations for sequence removal—along 
with their implications—are discussed below.

Sequences associated with incorrect or invalid taxonomy. 
The most common situation was the presence of sequences 
annotated as insect but instead derived from other organ-
isms, in particular Homo sapiens and also the most common 
bacterial endosymbionts of insects (e.g. Wolbachia and Rick-
ettsia). The latter is an already well-known problem related 
to online reference databases (39). Filtering COI sequences 
separately as sub-datasets for each insect order allowed us 
to detect further inconsistencies between sequences’ variabil-
ity and their associated taxonomy. In particular, during the 

Figure 2. Number of ASVs identified by the two taxonomic assignment algorithms adopted in this study, i.e. the machine learning-based algorithm 
fit-classifier sklearn (SK L) and the BLAST+ (BL+) algorithm, using each database: (a) MIDORI database, (b) COins database and (c) ResBO database. 
Numbers of common identifications between the two algorithms are also expressed in percentages.
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Figure 3. Number of ASVs assigned to the different taxonomic levels (from order to species) when using ResBO, COins and MIDORI as reference. 
Numbers of assignments obtained using the BLAST+ (BL+) and fit-classifier sklearn (SK L) algorithms are specified too.

Figure 4. Number of species identified using each database MIDORI, COins and ResBO. (a) Number of species identified adopting the BLAST+
algorithm (BL+). (b) Number of species identified adopting fit-classifier sklearn algorithm (SK L). All values are also reported as percentages.

alignment step, some sequences showing low overall homol-
ogy with the others in the same sub-dataset were found to 
be related to misidentifications at the order level. Within 
this study framework, the official validity of all sequences-
associated taxonomic names was intentionally not investi-
gated, because of ongoing debates on the taxonomic status of 
some insect taxa. As a matter of fact, the increasingly com-
mon use of molecular taxonomy has introduced a bias in 
insect taxonomy: frequently, new species are recognized based 
on molecular information (e.g. through molecular species 
delimitation or in the context of DNA-barcoding studies) and 
named, but never, or only much later, formally described. 

These species names are not considered valid according with 
the International Code of Zoological Nomenclature (40) until 
the formal description of the species is published, but online 
databases include the reference sequences which allow their 
identification under the new species name. Nonetheless, the 
filters applied to the sequences, the manual filter in partic-
ular, allowed the detection and discarding of many invalid 
species names unrelated to the above-mentioned situations 
and possibly linked with the absence of species-level morpho-
logical identification (e.g. genera names followed by numeric 
or alphabetic codes, but also geographical names or per-
son names replacing specific epithets). In case of doubt, the
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scientific works within which the sequences were developed 
were consulted.

Non-coding sequences were possibly derived from the 
amplification of numts (41), from sequencing errors, or from 
the lack of proper editing of electropherograms before data 
publication. This issue was particularly evident in the database 
alignment step, where many sequences were discarded since 
they introduced one or two bases’ gaps in the alignment.

Sequences not associated with species-level taxonomy 
within a reference database, especially if identified at the high-
est taxonomic ranks, appear to reduce the accuracy of the 
molecular identification, hindering the reaching of identifica-
tions at lower taxonomic levels. This scenario is also a likely 
explanation for some of the results achieved in the present 
study, i.e. the cases in which COins assigned the ASV at the 
species level, while ResBO assigned the same ASVs to a higher 
taxonomic level, despite the two databases include the same 
species-level identified reference sequences. At the same time, 
excluding from a reference database, the sequences not identi-
fied at the species level could potentially increase the number 
of missing identifications, especially when those sequences 
belong to the only representative of a specific taxon within 
the database.

Some of the sequences discarded from the database are 
clearly related to errors, and they could be the results of the 
lack of care of some BOLD users, as indeed is also a com-
mon situation in the case of other databases. The BOLD team 
routinely perform data curation, in particular checking dis-
cordant Barcode Index Number and suppressing potential 
erroneous sequences from the online database (42). As in the 
case of this study, the curation is performed manually. It is a 
time-consuming process done periodically, thus leaving some 
erroneous sequences in place for a while. This is why using 
publicly available data for developing DNA-metabarcoding 
reference databases for local use should always require a 
manual curation step (28).

The efficiency test on COins showed how this database has 
an identification efficiency comparable to that of the other 
databases (MIDORI and ResBO) at the highest taxonomic 
ranks (e.g. order and family), but it allows the assignment 
of a considerably higher number of ASVs to the species and 
genus levels, with a notable increase between 25% and 30% 
of species-level identifications.

The performed analyses also allowed observation to be 
made on the effect of using different assignment algorithms. 
The machine learning-based algorithm (fit-classifier sklearn) 
was found to assign a higher number of ASVs at any taxo-
nomic level, compared with the BLAST+ algorithm (Figure 3). 
An evident bias of the use of the fit-classifier sklearn algorithm 
in association with COins is that almost all the ASVs detected 
in the samples analysed were assigned to Insecta (8026 ASVs 
out of 8312) even if some of them likely belong to other classes 
(e.g. sequences that MIDORI and ResBO assigned to Collem-
bola or Arachnida). This is related to the underlying principle 
of machine learning-based algorithms, which assumes that all 
existing taxa are included in the reference used for the assign-
ment (37, 38). Yet, this drawback is only associated with 
higher level taxonomic assignments and does not affect the 
accuracy of low-level ones. As a matter of fact, COins was the 
database for which the highest congruence between identifi-
cation achieved through the two algorithms used in this study 
was achieved (Figure 2).

The results obtained using COins highlight the impor-
tance of manual curation during the development of refer-
ence databases for local use. The effort required is how-
ever undeniable. Unfortunately, fully automated filters that 
make sequences downloaded from public resources readily 
usable for metabarcoding taxonomic assignment are not yet 
available. In the meantime, it is necessary, albeit expen-
sive and time-consuming, especially in terms of updating, 
to make high-quality data available for those metabarcoding 
software platforms that use local reference databases. More-
over, the direct interaction between software such as QIIME2 
with the online BOLD COI database for metazoan ASV/OTU 
taxonomic assignment is also advisable.
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