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Abstract
Large volumes of publications are being produced in biomedical sciences nowadays with ever-increasing speed. To deal with the large amount 
of unstructured text data, effective natural language processing (NLP) methods need to be developed for various tasks such as document 
classification and information extraction. BioCreative Challenge was established to evaluate the effectiveness of information extraction methods 
in biomedical domain and facilitate their development as a community-wide effort. In this paper, we summarize our work and what we have 
learned from the latest round, BioCreative Challenge VII, where we participated in all five tracks. Overall, we found three key components 
for achieving high performance across a variety of NLP tasks: (1) pre-trained NLP models; (2) data augmentation strategies and (3) ensemble 
modelling. These three strategies need to be tailored towards the specific tasks at hands to achieve high-performing baseline models, which 
are usually good enough for practical applications. When further combined with task-specific methods, additional improvements (usually rather 
small) can be achieved, which might be critical for winning competitions.
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Introduction
The scientific publications in biomedical sciences have been 
increasing in volume with an accelerated speed. The amount 
of the scientific literature has posed a daunting challenge for 
researchers to find relevant information for their research. 
Failing to identify the most relevant information may cause 
misinterpretation of experimental results or wasted time 
and/or resources on duplicated works.

To deal with this challenge, automatic information 
extraction and document classification methods have been 
developed over the years with various successes (1–13). To 
evaluate these methods and facilitate the continued develop-
ment, BioCreative Challenge was established in 2007 to test 
the information extraction methods in biomedical domain 
(14–17).

In the latest challenge, BioCreative Challenge VII, there are 
five different tracks:

Track 1: DrugProt: Text-mining drug/chemical–protein 
interactions.
Track 2: National Library of Medicine (NLM)-Chem 
Track: Full-text Chemical Identification and Indexing 
in PubMed articles.

Track 3: Automatic extraction of medication names in 
tweets.
Track 4: Coronavirus Disease 2019 (COVID-19) text-
mining tool interactive demo.
Track 5: LitCovid track multi-label topic classification 
for COVID-19 literature annotation.

Our team, FSU2021, participated in all the five tracks. 
Overall, our methods performed well for all the tracks, espe-
cially for Tracks 2 and 3. In Track 2, we ranked the second 
for the first two sub-tasks and ranked the best for the third 
sub-task. In Track 3, we ranked the fourth. Except for Track 
4 which did not score the participating tools, our methods 
performed substantially better than the median scores and 
baselines.

In the past couple of years, the pre-trained language mod-
els have become the mainstream for many natural language 
processing (NLP) tasks and achieved the state-of-the-art per-
formances. They formed the baselines for all our NLP models. 
On top of the baseline models, we explored two general 
strategies: data augmentation and ensemble models. Data 
augmentation was used for all the tracks except Track 4 and it 
is effective for Tracks 1, 2 and 3. Ensemble models were used 
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for Tracks 1 and 5 and it helped in both cases. In addition, 
we tried some track-specific strategies, especially for Track 2, 
which are described in detail in Methods.

In this paper, we describe our works in these five tracks 
and discuss the strategies that worked and the lessons we 
have learned. The experiences and lessons learned in the 
BioCreative Challenge VII helped us to achieve the best over-
all score on the LitCoin NLP Challenge held from November 
2021 to February 2022 organized by the National Center for 
Advancing Translational Sciences (NCATS) and the National 
Aeronautics and Space Administration (NASA) (18).

Data and methods
The data used in BioCreative Challenge VII have been 
described previously in the proceeding papers of the work-
shop and also by overview papers in the Database special issue 
(19–26).

We organize the methods used by the types of the methods, 
instead of tracks. For the details on the methods used in each 
track, please refer to the workshop proceeding papers.

Selection of pre-trained models
We tried different per-trained models on different tracks, 
including Bidirectional Encoder Representations from Trans-
formers (BERT) (27) (Tracks 1, 2, 3 and 5), BioBERT 
(28) (Track 1, 2, and 3), PubMedBERT (29) abstract only 
(Track 5), PubMedBERT fulltext [Tracks 1, 2, 3 (abstract only 
and full text) and 5], Sentence BERT (30) (Track 1), T5 (31) 
(Track 1), BlueBERT (32) (Track 2), SciBERT (33) (Track 2), 
RoBERTa (34) and ClinicalBERT (35) (Track 2).

Data augmentation
Several data augmentation strategies were used as follows:

1. For Track 1, after training the BERT model, we obtained 
a subset of training data that the trained model pre-
dicted wrong. For every sentence, we used StanfordNLP 
to get the shortest path between the chemical name and 
gene name and then randomly deleted one word not in 
the path. We labelled them the same as the originals and 
augmented training data sets with these sentences in all 
our models.

2. For Track 2, we first replaced the chemical entities 
with random strings (i.e. Aspirin→badjaxfjfg). We also 
randomly selected one nonchemical entity in sentences 
which contain chemical entities and then replaced it 
with a random string (i.e. that →hsw).

3. For Track 3, we considered three different data augmen-
tation strategies:

a. Augment true cases by replacing each original true 
entity with a randomly chosen medication men-
tion from the pool. The medication mention pool 
could be generated from either BioCreative_Train-
Task3.0 and 3.1 two data sets or BioCre-
ative_TrainTask3.0 and 3.1 and SMM4H18 three 
data sets.

b. Augment true cases by replacing each original true 
entity with a random string. The string contains 
3–10 characters randomly selected from a–z to 
A–Z.

c. Augment true cases by dropping a randomly 
selected word which is not or not part of a true 
entity.

4. For Track 5, we tried the following strategies:
d. Double cases for all instances by removing 10 

words with lowest term frequency–inverse docu-
ment frequency (TF-IDF);

e. Double cases for all instances by removing 10 
words with highest TF-IDF;

Each of the strategy has its own advantages in terms of 
adding additional useful information for the model train-
ing. For example, replacing an entity with another entity 
of the same type is relatively safe as it uses only the true 
entities, but it may not ‘squeeze out’ enough information as 
using the random strings. Replacing an entity with random 
strings is more aggressive by forcing the model to learn more 
about the context information by introducing new names the 
pre-trained models have never seen before. But it may intro-
duce some unwanted bias. Dropping a non-essential word 
introduces more diversity into the context itself although 
it may bring in more grammar mistakes or missing words 
that are still important for classification. For each of the 
strategies, there are options of augmenting all or partial 
data; and the number of rounds the data would be aug-
mented based on positive cases. A combination of different 
strategies could also bring compound effects into the model
training.

Ensemble models
We tried ensemble models for Tracks 1 and 5. In Track 1, we 
also experimented with training additional machine learning 
models using outputs of individual models.

The first and simplest idea is using the majority vote from 
the output of individual models. When all the models pre-
dict differently, we use the result from the one that yields the 
highest F1 score in the training data.

In Track 1, we also experimented with the idea of train-
ing ensemble models based on the clustering results from the 
Sentence BERT model and Hierarchical Density-based Spa-
tial Clustering of Applications with Noise (HDBSCAN). If 
the performances of the models vary from cluster to cluster, 
such ensemble methods can learn this pattern and adjust the 
weights of the models dynamically according to the cluster of 
any given sentence. Inspired by this idea, we implemented two 
ensemble models: (i) simple ensemble and (ii) trained ensem-
ble. For the simple ensemble method, we assigned each cluster 
a model, which yielded the best accuracy over all the sentences 
in the cluster for the training data. We found using the accu-
racy metric instead of the F1 score to select models yielded 
the better result in our experiments. When making predic-
tions, we first predicted the cluster of the sentence and then 
used the model assigned to that cluster to make the final pre-
diction. For the trained ensemble method, we extracted the 
following features from our models (because the T5 model 
was added in the last week of the competition, we did not 
have enough time to incorporate its results into the ensem-
ble method): (i) last layer features of the BERT model; (ii) 
class probabilities of the BERT model; (iii) cluster ID from 
the HDBSCAN and (iv) class label from k-NN classification. 
We trained an ensemble model of (i) XGBoost (11); (ii) logistic 
regression; (iii) Extra Trees classifier and (iv) Random Forest 
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classifier, to predict one among the following four scenarios: 
(i) both BERT and Sentence BERT predicted wrong; (ii) only 
BERT predicted the label right; (iii) only Sentence BERT pre-
dicted the label right and (iv) both models predicted the label 
right. During inference, for sentences that fall into the first sce-
nario, we used the predicted label from the model that yielded 
the better F1 score overall.

For Track 5, we trained multiple models and took the topic 
label probabilities predicted by different models as input and 
computed an average of the predicted probabilities of each 
topic label as the final prediction.

Task-specific methods
In addition to the above strategies, we also tried some task-
specific methods. In this paper, we will focus on Track 2, for 
which we have performed very well overall (36).

Track 2 has three sub-tasks: (i) named entity recognition; 
(ii) chemical normalization and (iii) chemical indexing. We 
ranked the second on the first two sub-tasks and ranked the 
first on the third sub-task.

For the named entity recognition (NER) sub-task, we first 
used Ab3P (37), an abbreviation definition detector trained 
on PubMed abstracts, to recognize abbreviations in the text. 
The full names and their abbreviations are linked within the 
same articles, and all the occurrences received the same NER 
label. We checked the consistency for the same term in an arti-
cle, since they should be annotated as the same type, except 
overlapping with other entities.

We also trained another BioBERT-based protein NER 
model to detect protein entities. The goal was to further 
remove wrongly labelled chemical names which are part of 
protein names. The reason for using BioBERT is because this 
model performed better for protein NER task. The rule is:

1. If a token word was recognized by PubMedBERT-
based Chemical NER model as a chemical entity and by 
BioBERT-based protein NER model as a protein entity 
at the same time, its predicted entity label (‘B’ or ‘I’) 
would be changed ‘O’.

2. If a predicted chemical entity name was followed by 
a predicted protein entity name, then the predicted 
chemical entity label (‘B’ or ‘I’) would be changed to ‘O’.

For chemical normalization, we built a sieve-based 
pipeline using multiple dictionaries including supplemen-
tary concept records, MRCONSO, PubTator (38) and
NLM-Chem.

For chemical indexing, we built a model to predict 
the indexing status of individual Medical Subject Headings 
(MeSH) IDs by extracting features from the articles, where 
the MeSH IDs were identified. We dealt with one MeSH 
term at a time by predicting whether it should be used for 
indexing or not. To remove the noise from the long text, 
we broke up full texts into sentences and selected the sen-
tences with chemical mentions of the corresponding MeSH 
terms as input to the model. The labels are simply True or 
False based on if the MeSH terms were used for indexing 
the articles or not. We added engineered features before the 
sentences, such as the section where the sentences were taken 
from and the chemical names whose MeSH terms were to be
predicted.

Table 1. Results using different pre-trained models. The values in the table 
are F1 scores on test data

Pre-trained models Track 1 Track 2 Track 3 Track 5

BERT – 0.8018 – –
BioBERT 0.683 0.8433 0.5957 0.9067
PubMedBERT abstract – – 0.5922 0.9027
PubMedBERT fulltext 0.732 0.8679 0.6257 0.9066
BlueBERT – 0.8442 – 0.8956
SciBERT – 0.8495 – –
ClinicalBERT – 0.8114 – –
T5 0.739 – – –
RoBERTa 0.8536

Table 2. Performance of different data augmentation strategies for four 
tracks. Not all the data augmentation methods were tried for all the tracks 
due to the differences in the data/tasks. * F1 score on validation data

Data augmentation 
methods Track 1 Track 2 Track 3 Track 5

No data augmentation 0.721 0.8711 0.7090 0.9298*
Dropping a non-essential 

word
0.749 0.7913 –

Replacing words with 
random strings

– 0.8744 0.800 –

Replacing an entity name 
with another name of 
the same type

– – 0.837 –

Dropping words with 
lowest TF-IDF values

– – – 0.9271*

Dropping words with 
highest TF-IDF values

– – – 0.9257*

Results
We organize the results part first by the methods we used. 
We then present some detailed results for Tracks 2 and 3, for 
which our team performed well.

Pre-trained models
Table 1 shows the results using different pre-trained mod-
els for the four tracks. Clearly PubMedBERT works better 
than other alternatives. When calculating the results, we only 
used the training and validation data provided by the BioCre-
ative organizers by splitting the training data into training 
and validation data and used the validation data as the test
data. 

Data augmentation
Table 2 shows the results from data augmentation for the four 
tracks. In general, the effect of augmentation depends on the 
specific NLP tasks and data sets. When calculating the results, 
we only used the training and validation data provided by the 
BioCreative organizers by splitting the training data into train-
ing and validation data and used the validation data as the test 
data. 

Ensemble models
The majority vote approach gave a 0.753 F1 score on the test 
data for Track 1, which is substantially higher than individ-
ual models (increase by at least 1%). The averaging approach 
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Table 3. Track 2 chemical named entity recognition sub-task results. Our 
team (#128) ranked the second for this sub-task

File Strict-P Strict-R Strict-F

Run 1 0.8544 0.8658 0.8600
Run 2 0.8643 0.8403 0.8521
Run 3 0.8440 0.7896 0.8159
Run 4 0.8457 0.8617 0.8536
Baseline 0.8440 0.7877 0.8149
Best (Team 139) 0.8759 0.8587 0.8672

gave 0.9081 F1 score on the test data compared to 0.9027 
using the baseline BERT model for Track 5.

Detailed results for Track 2
Track 2 has three sub-tasks: named entity recognition, nor-
malization and indexing. The result of named entity recog-
nition is shown in Table 3, together with the baseline model 
performance and the performance of the best team according 
to Strict-F1 score. We (Team 128) ranked second according to 
Strict-F1 score. Strict-F1 score is the F1 score calculated when 
a prediction is considered as correct if the predicted entity 
overlaps strictly with the true entity, the same as the defini-
tion of Strict-P and Strict-R. The settings for different runs 
are as follows: 

Run 1:
a. Data augmented by:
 (1) replacing each of the chemical entities with a random 

string;
 (2) selecting 50% of sentences which contain chemi-

cal entities and randomly choosing one nonchemical entity 
and replace it with random string while the chemical entities 
remain unchanged;

b. Using Ab3P to post-process the prediction results to add 
chemical entity tags and remove wrong chemical tags;
Run 2:

a. Data augmented by:
 (1) replacing each of the chemical entities with a random 

string;
 (2) selecting 70% of sentences which contain chemical 

entities and randomly choosing one nonchemical entity and 
replacing it with a random string while the chemical entities 
remain unchanged;

b. Same as Run 1;
c. Same as Run 1;

Run 3:
a. Same as Run 2;
b. Same as Run 1;
c. Same as Run 1;
d. Using the BioBERT protein NER model to detect protein 

entity and changing the label of the chemical entities which are 
part of a longer protein name to ‘O’ if they were labelled as 
‘B’ or ‘I’;
Run 4:

a. Data augmented by:
 (1) replacing each of the chemical entities with a random 

string;
 (2) for all sentences which contain chemical entities 

and randomly selecting one nonchemical entity and replac-
ing it with random string while the chemical entities remain 
unchanged;

Table 4. Track 2 chemical normalization sub-task results. Our team (#128) 
ranked second for this sub-task

File Strict-P Strict-R Strict-F

Run 1 0.7833 0.8339 0.8078
Run 2 0.7792 0.8434 0.8101
Run 3 0.7780 0.8257 0.8011
Run 4 0.7755 0.8318 0.8027
Baseline 0.8151 0.7644 0.7889
Best (Team 110) 0.8621 0.7702 0.8136

Table 5. Track 2 chemical indexing sub-task results. Our team (#128) 
ranked first for this sub-task (unofficial). The official best performing team’s 
result is also shown

File Strict-P Strict-R Strict-F

Run 1 0.4424 0.5286 0.4817
Run 2 0.4397 0.5344 0.4825
Run 3 0.3776 0.3781 0.3779
Run 4 0.3805 0.3814 0.3809
Baseline 0.3134 0.6101 0.4141
Best (Team 110) 0.5351 0.4133 0.4664

b. Same as Run 1;
c. Same as Run 1;
d. Same as Run 3.

The result of chemical normalization is shown in Table 4. 
We also ranked second on this sub-task. 

The results for chemical indexing sub-task are shown in 
Table 5 and our team performed the best for this sub-task. It 
is unofficial ranking because we were invited to submit our 
result in 1 month after the challenge has ended. 

We performed error analysis by comparing BioBERT and 
PubMedBERT NER results. We found that (i) BioBERT 
tended to label nonchemical abbreviations as chemicals; 
(ii) BioBERT tended to label other entities related to chemi-
cal to chemical, such as diseases and viruses, and (iii) both 
BioBERT and PubMedBERT still make simple mistakes, indi-
cating room for further improvements.

Detailed results for Track 3
The performance of our submissions for Track 3 is shown 
in Table 6 together with the baseline and best performances. 
The Overlapping F1 score, precision, and recall were calcu-
lated by considering a prediction as correct if the predicted 
entity partially overlaps with the true entity. Our team (#128) 
ranked fourth for this track. The settings for the three submis-
sions are as follows: The first classifier (Submission 1) utilized 
the PubMedBERT (full-text) pre-trained model and fine-tuned 
with the BioCreative_TrainTask3.0, BioCreative_TrainTask 
3.1 and their augmented data sets, plus SMM4H’18 data 
set. Data augmentation strategy is the first strategy, which is 
generating n copy of the original data set by replacing true 
entities with randomly chosen medication mentions where 
the medication mention pool is generated from only BioCre-
ative_TrainTask3.0 and 3.1 data sets and n = 1. When n > 1, 
we repeated the process n times to generate n copies of data. 

The second classifier (Submission 2) utilized the PubMed-
BERT (full-text) pre-trained model and fine-tuned with the 
BioCreative_TrainTask3.0, BioCreative_TrainTask 3.1 and 
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Table 6. Performances of submissions for Track 3

 Overlapping  Strict

Submission F1 score Precision Recall F1 score Precision Recall

1 0.764 0.747 0.782 0.738 0.721 0.755
2 0.763 0.712 0.823 0.732 0.682 0.789
3 0.794 0.744 0.85 0.762 0.714 0.816
All participants (mean ± SD) 0.749 ± 0.0596 0.811 0.709 0.696 ± 0.072 0.754 0.658
Baseline 0.773 0.908 0.673 0.758 0.890 0.660
Best 0.838 0.832 0.844 0.804 0.799 0.810

their augmented data sets, plus SMM4H’18 data set. The aug-
mented data sets are generated by two strategies: the first 
one is generating n copies of the original data by replac-
ing true entities with randomly chosen medication mentions 
where the medication mention pool is generated from BioCre-
ative_TrainTask3.0 and 3.1 and SMM4H’18 three data sets 
and n = 10. The second one is generating n copies of the orig-
inal data by dropping a randomly selected word which is not 
or not belong to a true entity, where n = 1.

The third classifier (Submission 3) utilized the PubMed-
BERT (full-text) pre-trained model and fine-tuned with the 
BioCreative_TrainTask3.0, BioCreative_TrainTask 3.1 and 
their augmented data sets, plus SMM4H’18 data set. The 
augmented data sets were generated by two strategies: the 
first one is generating n copies of the original data by replac-
ing true entities with randomly chosen medication mentions 
where the medication mention pool is generated from only 
BioCreative_TrainTask3.0 and 3.1 data sets and n = 3. The 
second one is generating n copies of the original data by drop-
ping a randomly selected word which is not or belong to a true 
entity, where n = 1.

We performed error analysis for three different augmen-
tation strategies we used in this track: (i) dropping a random 
word, which is not a true entity; (ii) replacing a true entity with 
random strings; and (iii) replacing a true entity with another 
word of the same entity type. We found that the third type 
of augmentation strategy performed better in general. When 
replacing a true entity with random strings, sometimes the 
model will predict a non-entity abbreviation as an entity. This 
happens likely because most of the random strings we created 
look like abbreviations. When dropping a random word, the 
model makes errors that correspond to not understanding the 
context of an entity well, likely because we did not generate 
enough variations for the entities to force the model to learn 
the context. But overall, all these three types of augmentation 
suffer from making simple mistakes occasionally, indicating 
that there are still enough room for further improvement. The 
reasons for the simple mistakes are not very clear.

Conclusion and discussion
In this paper, we described the methods we have used in 
BioCreative Challenge VII. As mentioned briefly in Introduc-
tion, we have some key components for achieving good per-
formance in the BioCreative Challenge tasks: (i) pre-trained 
NLP models; (ii) data augmentation and (iii) ensemble mod-
elling. Below we give some detailed discussions on these
components.

First, it is important to test all the available pre-trained 
models. We have found that PubMedBERT worked better 
than other models in our own study.

Second, we have found that data augmentation methods 
are helpful in most of the cases. However, there are many dif-
ferent data augmentation strategies. Data augmentation may 
also introduce some biases or noise in the train data. In ret-
rospect, we did not fully explore this method in our study in 
some tracks. It is worth further investigation in the future, 
especially in cases where only limited data are available.

Third, we have used ensemble models for two of the tracks, 
and they were both helpful. It would be more beneficial if we 
used ensemble models for all the tracks. It may also help if we 
could explore more options in ensemble models. Currently, 
we found that majority voting gave the best performance, 
probably due to its robustness. We expect that training addi-
tional machine learning model may give even better results 
at least for some tasks. In addition to different pre-trained 
models and parameter settings, different random seeds and 
different check points can also generate different models that 
can be used in ensemble. Given all these options, finding the 
best strategy to combine them would be an interesting topic 
for future studies.

It is worth mentioning that some of the above strategies we 
have discussed may be only important for winning competi-
tions or for cases where a small improvement in performance 
may bring large benefits in practice. For cases where small 
improvements are not very important, a good baseline model 
with optimized parameters usually gives quite satisfactory 
results. For many real applications, ensemble models are likely 
not practical due to computational concerns.

One final note we would like to mention is that we have 
tried many different ideas during the whole summer of 2021, 
but most of them failed to improve the baseline models. This 
observation showed, on one hand, that the baseline models 
built from pre-trained models have achieved quite good per-
formance. On the other hand, it indicates that the pre-trained 
models have learned or incorporated a great deal of informa-
tion that we probably do not explicitly know. The additional 
gain we aimed to achieve through the ideas we have tried had 
probably already been achieved by the pre-trained models in 
some implicit ways.
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