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Abstract
Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every 
stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-
increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress 
in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore 
‘Challenges in Mining Drug Adverse Reactions’. This article is an outgrowth of the panel; each panelist has highlighted specific text mining 
application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications 
only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process 
of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools 
to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for 
the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for 
future challenge evaluations.
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Introduction
The biomedical text mining community has recognized that 
there is a strong need for text mining in the drug develop-
ment pipeline and for pharmacovigilance (PV) in particular. 
Monitoring drug safety is a central concern throughout the 
drug life cycle, from drug discovery, through pre-clinical 
and clinical research, regulatory review and, finally, in post-
market surveillance (see Figure 1). Information about toxicity 
and adverse drug reactions (ADRs) is generated at every 
stage in this life cycle, leading to ever-increasing volumes of 
information. 

Stakeholders have an urgent need for text mining and arti-
ficial intelligence (AI) systems to manage their information 
requirements, to detect signals in noisy domains and to sup-
port human decision-makers in complex data management 
and decision-making tasks.

These stakeholders are a diverse group (see Figure 2). 
Key players are the consumers and patients who con-
sume the drugs, the pharmaceutical companies who develop 
and manufacture the drugs, the healthcare providers and 
researchers who administer and monitor the drugs and, cen-
tral to the process, the regulatory agencies who are responsible 
for overseeing the drug approval process from clinical trials 
through post-market surveillance. Each of these stakehold-
ers provides input to the PV process but in different forms. 
For example, consumers may submit spontaneous reports of 
adverse events (AEs), or they may discuss problems and side 
effects informally on social media (SM). During drug devel-
opment, pharmaceutical companies file toxicology reports, 
information about clinical trials and filings for a new product 
for regulatory approval. For post-market surveillance, phar-
maceutical companies must provide and maintain appropriate 
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Figure 1. Schematic of the drug discovery and development process.

Figure 2. Stakeholders and information sources in the drug development 
process.

drug product labels, and they are required to report adverse 
drug events (ADEs) to the appropriate regulatory agency, 
including reports from the literature. Clinicians and health-
care providers also file reports of AEs through the sponta-
neous reporting system (SRS) and may document observations 
in case reports in the literature. Regulatory agencies oversee 
this process from drug development through post-market 
surveillance. 

The complex process of drug development, approval and 
post-market surveillance present many opportunities for text 
mining of toxicity and ADEs. Possible applications span mul-
tiple disciplines, including pharmacology, clinical medicine, 
toxicology, genomics, proteomics and computational biology. 
The applications also span multiple languages and different 
data sources [electronic health records (EHRs), journal publi-
cations, toxicology reports, patient safety reports, drug labels 
and SM] and may have specific requirements regarding data 
access, privacy, output encoding or detecting rare events.

Recognizing the importance of these applications, the orga-
nizers of BioCreative VII (Critical Assessment of Information 
Extraction in Biology) convened a panel of experts to dis-
cuss opportunities for text mining challenge evaluations in 
this area. BioCreative has a long history of organizing chal-
lenge evaluations (1–4) to promote the development of text 
mining and text processing tools useful to communities of 
researchers, publishers and database curators in the biomed-
ical sciences. Since its inception in 2004, each BioCreative 

workshop has provided challenge evaluation tasks to facili-
tate putting text mining tools into the workflow of end users. 
Previous BioCreative workshops included related evaluations: 
the first chemical entity and drug mention detection track 
took place at BioCreative IV (the CHEMDNER track) (5), 
motivated by the need for more efficient and quality-evaluated 
chemical entity recognition tools for toxicology text mining 
applications in the context of the eTOX project (6). Subse-
quent BioCreative evaluations have continued and extended 
their focus on chemical/drug interactions with the genome and 
proteome (7).

For the panel, the BioCreative VII organizers invited five 
experts with experience in applications related to drug dis-
covery and PV to discuss ‘Challenges in Mining Drug Adverse 
Reactions’. Each of the five panelists has contributed a section 
highlighting an aspect of text mining related to toxicity or 
ADRs, based on their research and their experience with text 
mining challenge evaluations. The contributions below do not 
attempt to cover the whole of this complex drug life cycle. 
Rather, each section provides a snapshot of an opportunity 
where text mining for ADRs could contribute to a specific 
aspect, often in combination with other AI and text mining 
technologies.

Each contribution discusses a specific extraction task in 
the drug life cycle and provides a sampling of the multiple 
dimensions of the problem space, including:

• Type of input: biomedical literature, toxicology reports, 
EHRs, drug product labels and SM reports;

• Application for ADR extraction for different stages of 
the drug discovery, approval and post-market surveil-
lance pipeline, from pre-clinical studies to post-market 
surveillance;

• Target output formats and terminologies/ontologies, 
including Medical Subject Headings (MeSH), Medical 
Dictionary for Regulatory Activities (MedDRA) and 
RxNorm;

• Technical challenges, including sparse mentions of drug 
events (e.g. in SM or medical records); use of formal vs 
informal names or distinguishing ADEs from other medi-
cal information, such as patient history or indications for 
a medical condition;

• Access barriers, such as paywalls for literature or privacy 
issues in accessing patient safety reports.

In the final section, we review the landscape for future chal-
lenge evaluations that would help to drive the field forward, 
including potential sources of data, gold standard annotations 
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needed for evaluation and the need to create resources to 
handle additional languages.

Opportunities for applying text mining to drug 
safety surveillance
PV systems are designed to detect ADRs that were 
not identified during a medicine’s pre-approval clinical 
development program and to further characterize a product’s 
known risks. For Food and Drug Administration’s (FDA) Cen-
ter for Drug Evaluation and Research, routine surveillance 
activities include screening of multiple sources, including AE 
reports, the published literature and periodic safety reports 
submitted by the pharmaceutical industry (8). Safety concerns 
may also arise from other data sources such as post-marketing 
studies, exchanges between regulators, inspectional data and 
SM. After the identification of a signal, preliminary knowl-
edge on the causal relationship between the product and the 
safety concern and potential public health impact are used 
for signal triage and prioritization. The signals that represent 
new potential risks are then formally evaluated by multidis-
ciplinary teams that consider all available data. Based on 
the evaluation, the agency will take an action, which may 
include further assessment, communication or other risk min-
imization actions in accordance with the importance of any 
identified risks.

Text mining applications can help improve the efficiency 
of PV activities throughout signal management. This includes 
the extraction and organization of AEs from various clinical 
texts, but also identifying and classifying important attributes 
connected to those AEs. Examples of text mining applica-
tions with various data sources related to PV are described
below.

Individual case safety reports
For decades, individual case safety reports (ICSRs) housed in 
various drug manufacturer safety databases and in surveil-
lance systems such as the FDA’s Adverse Event Report-
ing System (FAERS), European Medicines Agency’s (EMA) 
EudraVigilance and the World Health Organization’s VigiBase 
have been the main sources of post-marketing ADR informa-
tion (9, 10). These systems rely on healthcare professionals, 
patients and others to report AEs voluntarily either to the 
product’s manufacturer, which will subsequently report them 
to health authorities or directly to authorities. Over 23 mil-
lion ICSRs are currently in FAERS, with >2 million reports 
received annually since 2018. FAERS adheres to the interna-
tional safety reporting guidance issued by the International 
Council on Harmonisation and utilizes the MedDRA for cod-
ing AEs (11). ICSRs contain both structured and unstructured 
data fields, including an AE narrative. The narratives often 
contain information that may not be well represented by 
coded fields; thus, an assessment of case narratives is necessary 
to further characterize the AE and assess causal relation-
ships. Consequently, natural language processing (NLP) tools 
coupled with machine learning (ML) techniques are increas-
ingly explored to extract key information from the ICSR’s 
free text narrative. The accurate extraction and organization 
into structured data fields can support deduplication of cases, 
data mining algorithms, identification of relevant cases and 
efficient narrative evaluations (12–17).

Product labeling
Product labeling plays an important role in signal identifica-
tion. A product’s approved labeling is used to determine the 
expectedness of an AE during signal identification (i.e. has 
the AE been previously observed—that is, mentioned explic-
itly in the product’s labeling?) (8). However, drug labels are 
complex free text, frequently updated; AEs are not required 
to be described in MedDRA terminology in product label-
ing by FDA. Manually extracting AE terms from labeling for 
thousands of FDA-approved products would be very resource 
intensive and require frequent revisions, as hundreds of safety-
related labeling changes occur annually. Integrating the label-
ing status of each drug product’s AEs into safety databases can 
increase the efficiency of case review and aggregate analyses. 
Consequently, the use of a semi- or fully automated process 
for extracting labeled AEs from prescribing information and 
mapping them to MedDRA has been evaluated (18, 19). Most 
recently, the MITRE Corporation and the FDA organized a 
shared task to evaluate the performance of existing automat-
able techniques for identifying AEs in labeling (20). Although 
the evaluated tools did not perform at levels that would allow 
use without human intervention, they performed well enough 
to consider implementing in decision-support workflows.

Sentinel system
Within FDA’s Sentinel Initiative, the Active Risk Identifica-
tion and Analysis (ARIA) system uses standardized claims 
and claims linked with EHR data to monitor the safety of 
medicines. A barrier to the evaluation of safety issues in the 
ARIA system is the ability to identify the health outcomes 
of interest (HOI) with an acceptable positive predictive value 
(21, 22). To address this limitation, proof of concept work 
has demonstrated that the use of NLP on unstructured EHR 
data may improve the classification accuracy of HOIs like ana-
phylaxis (23). The Sentinel Innovation Center has recently 
initiated several projects to build on this work that aims to 
develop and validate algorithms for the identification of HOIs 
using NLP tools combined with ML approaches (24).

Mining ADRs in the pharmaceutical industry
PV of marketed drugs is a basic function in the pharmaceu-
tical industry and part of its legal obligations (25). While 
regulatory authorities, such as the EMA and the FDA, can 
directly collect PV reports, it is pharmaceutical companies that 
gather the largest share or about 95% in the USA (26). PV 
data are collected and reviewed following a schedule based 
on company-internal and regulatory guidance (27). Addition-
ally, pharmaceutical companies address PV-related questions 
and inspections from regulatory agencies worldwide (which 
can be requested on short notice) and from business partners.

Source heterogeneity
Pharmaceutical companies are confronted with a broad range 
of content source types that are relevant for PV (26) and 
include several that are amenable to NLP, such as reports 
from patients, consumers and healthcare professionals as well 
as clinical trial and scientific literature reports. Additionally, 
EHRs are starting to be considered for the purpose of PV 
(28, 29).
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Pharmaceutical companies apply different strategies for 
each type of source. Clinical trial reports and the scientific 
literature can be mined with the help of various databases. 
Spontaneous reports can be received through phone calls, 
emails, face-to-face communications, SM messages, etc. Each 
of these media requires its own monitoring procedures and 
infrastructure, leading to the creation of individual reports 
that can be tractable with NLP. The content on which such 
reports are based is naturally multilingual and can contain 
both lay language from patients and medical language from 
healthcare professionals.

Access to licensed or restricted content and regulatory 
expectations are important factors in restricting the scope 
of sources used in PV activities. Ideally, any existing doc-
ument describing a drug’s effects should be in scope of PV 
activities. However, unequal and changing access to dif-
ferent content types, for instance for licensed content not 
available to companies with smaller budgets, limits the 
scope of sources that are commonly used. For example, 
the complex and costly licensing landscape involved in the 
text mining of the full-text scientific literature prevents its 
establishment as a reference source. On the other hand, 
abstract databases such as MEDLINE (https://www.nlm.nih.
gov/medline/medline_overview.html) and EMBASE (https://
www.embase.com/) are well established and mentioned by 
regulatory authorities. The fact that these, and similar, 
databases are mainstays in PV practice highlights the impor-
tance of regulatory expectations, which are determined not 
only by the regulatory framework but also by past experience. 
Any changes in PV practice bring the increased scrutiny that 
can only be addressed with sound validation practices (30).

Opportunities for text mining
Because of the costly nature of PV monitoring, which cur-
rently involves extensive manual work, and benefits from 
economies of scale, many of the required activities are out-
sourced to specialized companies that provide extensive man-
ual support. This approach may not scale up on short notice, 
as seen with the rollout of the Corona virus disease 2019 
(COVID-19) vaccines, which was associated with a high num-
ber of spontaneous reports (31). To address this and other 
challenges, computational approaches to PV (32–35) have the 
potential to reduce costs, address demand surges and even lead 
to insourcing of some activities.

Some important computational challenges for PV from the 
point of view of pharmaceutical companies are:

• Extracting ADRs from the scientific literature (36–38);
• Linking existing PV databases to incoming PV reports;
• Extracting, highlighting and/or summarizing key facts 

from PV-related documents to lighten the work of the 
safety experts that review them (33, 34, 39);

• Collecting relevant information or documents to address 
ad hoc regulatory requests on specific known or suspected 
ADRs;

• Establishing whether incoming ADRs merit further study 
as safety signals.

Pharmaceutical companies have already used internally 
gathered spontaneous reports for computational PV research 

(33, 34, 39), but their use in an open computational chal-
lenge would require careful anonymization and legal clear-
ance. Otherwise, open data, such as literature reports from 
FAERS or drug labeling from SIDER (Side Effect Resource) 
database (http://sideeffects.embl.de/), can still be used in such 
challenges.

Overall, technological, validation and content-access lim-
itations represent an obstacle to more efficient and effective 
PV processes in the pharmaceutical environment.

ADRs from a toxicology perspective
The importance of text mining and information extraction 
applications is not limited to data directly associated with 
observations found in patients. In fact, before carrying out 
drug safety studies in humans during clinical trials, exten-
sive in vitro testing as well as toxicology in vivo studies 
using animal models is carried out (6). In the case of in 
vitro studies, they generate valuable results to better under-
stand and characterize candidate drug molecular targets as 
well as potential off-target interactions that could lead to 
undesired adverse reactions. Text mining strategies to extract 
automatically from the literature drug–target interactions as 
well as drug-metabolism and drug-induced gene expression 
alterations have been addressed by the recent BioCreative 
DrugProt track (40). Moreover, pre-clinical in vivo animal 
studies represent a key step toward further safety testing in 
humans, required for subsequent regulatory approval. Pre-
clinical safety studies provide a wealth of data and informa-
tion sources for the design and analysis of human clinical trial 
studies. They are key to determine if a candidate drug has 
a low incidence of adverse side effects (41) or whether there 
might be some safety concern for clinical trials.

During pre-clinical studies, animal models are used to char-
acterize experimentally in detail potential toxic effects of the 
administered chemicals under different conditions, typically 
including different dosages and treatment durations among 
other aspects. Pre-clinical animal studies serve to characterize 
duration and dosage-dependent toxicological outcomes at the 
organ level, providing, for instance, insights into patholog-
ical and molecular alterations leading to drug-induced liver 
injuries or cardio- or nephrotoxicity. Attempts have been 
made to use text mining strategies to be more systematic in 
the extraction of chemically induced adverse reactions from 
scientific literature, patents, pharma company legacy reports 
as well as other data sources (6, 41). The systematic extraction 
of associations between chemicals and organ-level toxicities 
is critical to generate large-scale data repositories that can be 
exploited by cheminformatics modeling systems. These char-
acterize the associations between certain chemical structures 
or substructures and toxic AEs, which in turn can be used to 
guide the molecular drug design by modifying drugs in a way 
that the unwanted potential toxicity can be reduced. Under 
such application scenarios, the implemented text mining solu-
tions require not only the detection of chemical entity men-
tions from a variety of free text but also their normalization 
to their corresponding chemical structure representations.

Medical chemistry and toxicology experts require text min-
ing solutions that not only support chemical named-entity 
recognition and text query searches but also enable chemical 
compound structure search capabilities that require sophis-
ticated name-to-structure conversion components, optical 
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Figure 3. Examples of entities and relations from toxicology text mining.

chemical structure recognition tools as well as chemical data 
integration and harmonization strategies (42).

Moreover, chemically induced AEs are described in the 
scientific literature in terms of traditional drug safety and tox-
icology studies; these are also a valuable information source 
for experimentally induced toxicity studies trying to examine 
the protective effect of certain substances, for instance with 
respect to hepatotoxicity (43).

AEs caused by chemical compounds and drugs observed in 
pre-clinical toxicology studies have been harmonized through 
controlled terminologies such as MedDRA, although some 
examinations from animal necropsies and pathology observa-
tions cannot easily be harmonized to current standard vocab-
ularies due to lack of granularity or coverage. Organ-level AEs 
observed in pre-clinical, but also clinical studies, may also be 
reported in the form of changes (e.g. increase or decrease) of 
certain measurable observable entities like biochemical mark-
ers, lab test results or cell counts. For instance, liver toxicity 
is often studied by measuring changes in biochemical markers 
like bilirubin or enzymes (ASAT or ALAT). Figure 3 provides 
examples of different entity types and relations of relevance 
for toxicology text mining applications. 

Challenges of evaluating ADE extraction from 
clinical narratives
Clinical narratives document the details of patient condi-
tion, providing a valuable resource that can complement the 
structured data for clinical care, outcomes prediction, clinical 
research (44) and other applications. These narratives detail 
the observations of the caregivers on the patient state, dis-
cuss the pertinent medical history of the patient, explain the 
rationale for the actions taken in response to the findings and 
diagnoses and even provide details on the patient’s response 
to treatments (45). ADEs (46) are among the information 
documented in the narratives.

NLP methods can extract the salient information discussed 
in clinical narratives. The extracted information can then be 
put into a structured format for use by downstream computer-
ized applications (47, 48), including PV applications, as noted 
in earlier sections (23, 28, 29). Information from clinical nar-
rative is drawn from a much wider range of patients than 
clinical trial data, so these data are particularly valuable for 
pharmacogenomics studies (49) or for detecting hypersensi-
tivity reactions (50).

Discharge summaries are particularly rich in narrative 
descriptions of the patient state. However, they contain few 
instances of ADEs. The relative infrequency of ADEs in 
these notes limits the sample sizes for NLP system devel-
opment for their automatic extraction. Additionally, their 
infrequency presents challenges for data set creation, gold 
standard generation and evaluation of NLP methods. In this 
section, we review the challenges of ADE extraction, from the 
perspective of evaluating NLP methods in clinical records. We 
also present a discussion of some possible ways of overcoming 
these challenges.

Since 2017, there have been multiple efforts on evaluating 
ADE extraction from clinical narratives (51, 52), drug labels 
(18, 20) and even SM (53, 54). The observations here are 
based on the 2018 n2c2 shared task in ADE extraction (51), 
which focused on discharge summaries from the MIMIC III 
data set (55). This shared task aimed to evaluate NLP systems 
for their ability to extract spans and relations of drugs and 
their strengths, dosages, forms, routes, frequencies, durations, 
reasons for administration and ADEs.

Challenges of data set creation for ADE extraction
Data set creation for infrequent events, such as ADEs, requires 
identification of samples that sufficiently represent the event, 
so that annotation resources and system development efforts 
can focus on those samples. Possible methods for data set 
creation include utilizing existing information such as Inter-
national Classification of Diseases (ICD) codes to filter out the 
abundant irrelevant samples and to focus on the relevant sam-
ples, pre-screening the data or pre-annotating the data with 
existing NLP methods. Often, structured information such as 
ICD codes provides a good starting point for identifying nar-
ratives with ADE information. However, not all notes with 
ADE-related ICD codes will have mentions of ADEs, and con-
versely, some notes that do not have such ICD codes will have 
mentions of ADEs. The more promising approach of man-
ually pre-screening the notes to identify samples with ADEs 
remains intractable in terms of the labor it requires. The third 
possible approach of utilizing existing automated methods to 
pre-annotate ADEs introduces biases of the utilized methods 
into the data set. As a result, data set creation efforts may 
combine these approaches, so that they can balance out the 
need for identifying a good, representative data set with the 
biases and labor that come with each approach.
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Challenges of gold standard generation
Generating gold standard annotations for tasks such as ADE 
extraction can be challenging. The ADEs and the informa-
tion related to them, such as drugs, their strengths, dosages, 
forms, routes, frequencies, durations and reasons, present 
a complex web of relations that must be carefully consid-
ered and interpreted. When the sought-after information is 
so complex, annotation errors are common and can lead to 
low inter-annotator agreement. Pre-annotation with existing 
systems can help with managing the cognitive overload that 
comes with the task complexity; however, it comes with its 
own downsides: the bias introduced by the system and com-
plexity of correcting any pre-annotations to fit into the desired 
annotation schema.

In addition to task complexity, the sheer semantics of ADEs 
make them challenging to annotate. In particular, ADEs and 
reasons for medication administration are ambiguous and can 
be confused with each other, since both are medical prob-
lems and differ from each other only in the way they relate to 
the drug. Differentiating and disambiguating them correctly 
requires careful consideration of the context in which they are 
discussed and often requires domain knowledge.

Challenges of automatic ADE extraction
Systems for automatic ADE extraction face two challenges: 
the complexity of the task especially with regards to ambi-
guity of ADEs vs. reasons for medication administration, 
and the infrequency of ADEs. The NLP systems in the 2018 
n2c2 evaluation had an average F-measure of 0.84 across 
all tasks (extracting drugs, their strengths, dosages, forms, 
routes, frequencies, durations, reasons and ADEs); how-
ever, the best performance on ADEs was under 0.60, and 
the best performance on reasons was under 0.8. Unsurpris-
ingly, most of the system errors on ADE extraction result 
from incorrect disambiguation from reasons for medication
administration.

Mining ADRs from SM
Application and end uses/end users—why do it?
SRSs like the FAERS are at the core of current post-marketing 
medication surveillance (PV). Although mining SRS data has 
proven useful for identifying safety signals of serious effects 
(56), the weaknesses of SRSs are well-documented, including, 
among others, significant reporting bias (57) and incomplete-
ness of the reports (58).

Reporting bias refers to the fact that healthcare providers 
report to the SRSs what they deem important, such that seri-
ous events are over-represented, while bothersome side effects 
that may be of great importance to patients and lead to non-
adherence and non-persistence are under-represented (59). 
When patients are asked to list and score AEs on how both-
ersome they were, experiencing at least one AE perceived as 
‘extremely’ bothersome more than doubled the odds of com-
plete non-adherence (60, 61). Perceived weight gain and diffi-
culty thinking or concentrating attributed to medication cause 
high distress to patients and are also leading causes of non-
adherence to antipsychotic medications (62, 63). High levels 
of medication adherence have been shown to decrease hos-
pitalization risk and lower overall medical costs for patients 
(64, 65). However, about 50% of medications are not taken 

or not taken as prescribed, leading to increased morbidity and 
mortality and at an estimated cost of $100–$239 billion per 
annum to the US healthcare system (66).

Incompleteness refers to the fact that SRSs often lack 
crucial information such as pre-existing behaviors and med-
ical conditions (e.g. allergies, pregnancy, smoking, alcohol 
use and hepatic/kidney renal insufficiency) and concomitant 
treatments. These problems greatly reduce the value of SRS 
data for many PV goals, such as identifying events in patients 
with characteristics not encoded in discrete fields, e.g. preg-
nancy, or evaluating rates and sources of intolerability that 
lead to non-adherence and non-persistence, which are major 
clinical and public health problems that increase healthcare 
costs (67).

The limitations of SRSs have prompted researchers and 
regulatory agencies in charge of drug safety to explore addi-
tional data sources for more effective ADE monitoring, such 
as EHRs, claims data and, relatively recently, SM. SM, which 
is the focus of this section, may be particularly useful for iden-
tifying adverse effects that are sources of intolerability and 
lead to non-adherence/persistence but may not be reported by 
physicians because they are not serious or unexpected. Indeed, 
a recent systematic review by Golder et al. (68) concluded 
that mild and symptom-related effects are over-represented in 
SM as compared to other data sources, making it an ideal 
complement to balance reporting bias in SRSs. SM may also 
include other important health information and health behav-
iors not often available through SRSs (and thus, addressing 
incompleteness) as it is a rich source of self-reports on health 
behaviors (69).

Existing approaches (what is being done now?)
In general, for the direct application of SM as a source 
of signal for the detection of AEs, after collecting patient-
generated data from SM that mention a medication, it is 
necessary to solve three problems: (i) determining whether 
such mention includes the mention of an AE, (ii) the span 
of the mention and (iii) determining which AE is mentioned 
(specific to a given standard vocabulary, such as MedDRA). 
These three problems are usually referred to as classifica-
tion, extraction and normalization of AEs. A recent pub-
lication (70) discusses the state of the art for these three 
problems; a detailed discussion is beyond the scope of this
overview.

Data sources and annotated gold standards
Data and comments about medications directly from the 
patient are abundant. There are multiple potential data 
sources that can bring the patient’s voice directly, each with 
different advantages and limitations. In general, usable data 
specific to medication intake and adverse effects can be found 
in specialized health forums for a specific condition, as well 
as generic health forums (such as WebMD, DailyStrength or 
Drugs.com), or on Reddit and Twitter. The use of health 
forum data is more limited, with terms of use that gen-
erally prohibit their use by commercial entities and might 
even restrict any use of the data. The use of Reddit and 
Twitter data is more open, with no restrictions placed on 
its use, as long as the specific terms of use for sharing are
followed.
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Table 1. Table of sample applications and insertion points for text mining in drug discovery and PV

Application Input source Stakeholder
Drug discovery 
cycle Challenges for NLP Access barriers

Evaluations or 
resource

Drug 
mechanism

Literature Academic and 
pharma

Discovery and 
repurposing

Drug interaction w 
gene/protein

Literature paywalls 
and competitive 
intelligence

DrugProt 
(BioCreative 
VII)

Toxicity 
studies

Literature and 
toxicology 
reports

Pharma Pre-clinical Chemical-organ interac-
tions; vocabulary for 
animal studies

Literature paywalls 
and competitive 
intelligence

eTOX

Clinical 
trials

Clinical trial 
data and EHR

Pharma and 
regulatory 
agencies

Clinical trial Finding relevant occur-
rences in EHR; distin-
guishing AEs from other 
medical conditions

Privacy and local 
language access

n2c2, MADE 1.0

Marketing 
intelligence

Patent filings Pharma Marketing Drug interaction w 
gene/protein

Multilingual CHEMD-
NER Patents 
BioCreative V 
(2015)

PV Spontaneous 
reports

Pharma, regula-
tory agencies, 
clinicians and 
consumers

Clinical tri-
als and 
post-market 
surveillance

Completeness of reports, 
duplicate reports and 
timeline of drug admin-
istration and adverse 
reaction

Privacy and local 
language access

PV Drug product 
inserts

Regulatory 
agencies and 
consumers

Post-market 
surveillance

Distinguishing AEs from 
other medical conditions

XML labels 
available @ 
DailyMed

NIST TAC 
(2017) ADR; 
ADE Eval

PV Literature (case 
reports)

Pharma, regula-
tory agencies 
and clinicians

Clinical tri-
als and 
post-market 
surveillance

Handling article full text; 
finding relevant case stud-
ies; temporal and causal 
relation between drug 
administration and AE

Literature paywalls

PV SM Regulatory 
agencies, clin-
icians and 
consumers

Post-market 
surveillance

Finding relevant tweets; use 
of informal language

Identifying useful 
samples; access to 
feeds

SMM4H (2017, 
2018, 2019, 
2021)

Conclusion
The preceding sections provide examples of opportunities for 
text mining to aid in the complex process of drug discov-
ery, testing, marketing and post-market surveillance. These 
are summarized in Table 1. While the specific applications 
described above have focused on English language sources 
and resources, many of the relevant types of input are written 
in languages other than English. Therefore, there is growing 
activity to develop capabilities in multiple languages to cap-
ture information in medical records, clinical trials, SRSs and 
SM (71). The requirements include not only language-specific 
text mining tools but also appropriate language-specific 
resources and nomenclatures, e.g. MeSH or MedDRA.

From an information extraction perspective, it is worth 
noting that different applications need to capture different 
concepts and relations, depending on the types of input and 
the application. When extracting information from EHRs or 
case reports for purposes of detecting possible ADRs, it is 
important to capture specifics about all the patient’s medica-
tions (and dosing information), as well as signs, symptoms, lab 
values and medical conditions—and the timeline that connects 
these, since a patient may be on multiple medications for dif-
ferent medical conditions. Therefore, the extraction of ADEs 
may be best framed as capture of a relation between drug and 
AE or, alternatively, as an attribute on the drug or the medi-
cal condition. In other contexts such as drug product labels, 
where the label concerns a specific drug and certain sections of 
the drug product label are devoted to listing adverse reactions, 
extraction of ADRs can be treated more simply as a concept 

extraction problem—although there is still potential ambigu-
ity between other medical conditions such as indications or 
pre-existing conditions. In still other sources, such as SM or 
reports from SRSs, it is often challenging even to identify what 
drug or medication is being discussed, given issues of informal 
language and telegraphic text.

The stakeholders are eager to embrace NLP and AI tools 
to help in this process, provided that these tools can be 
demonstrated to add value to stakeholder workflows. In 
the pharmaceutical industry, the push toward digitalization 
of healthcare is putting the focus on more computationally 
driven data analysis, of which text mining approaches to PV 
are part. Advances in NLP/AI keep the momentum behind 
the exploration of applications that had not been considered 
before due to uncertainty of their regulatory acceptance. Vali-
dation, both retrospective and prospective, within a changing 
scientific environment remains the ultimate hurdle for the 
establishment of productive pipelines.

Regulatory agencies have also shown interest in experi-
menting with the application of these technologies across a 
range of input types (72). This creates an opportunity for 
the BioCreative community to work in partnership with reg-
ulatory agencies, pharma and the text mining community to 
identify next steps for future challenge evaluations.

Disclaimer
This report includes an account of work sponsored by an 
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nor any agency thereof, nor any of their employees, makes 
any warranty, express or implied or assumes any legal lia-
bility or responsibility for the accuracy, completeness or 
usefulness of any information, apparatus, product or pro-
cess disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific com-
mercial product, process or service by trade name, trade-
mark, manufacturer or otherwise does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring 
by the US Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily 
state or reflect those of the US Government or any agency
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