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Abstract
Protein phosphorylation plays a fundamental role in many cellular processes. Proteins are phosphorylated by kinases, which have been studied 
as drug targets for the treatment of various diseases, particularly cancer. Because kinases have multiple roles in interconnected molecular 
pathways, their specific regulation is required to enhance beneficial and reduce adversarial effects of drugs. Using our previously developed 
platform, we measured phosphorylation profiles of MCF7 and K562 cells treated with 94 clinical drugs. These phosphorylation profiles can 
provide insights into pathway activities and biological functions. Here, we introduce Phosprof, a novel database of drug response based on 
phosphorylation activity. Phosprof is able to present up- or downregulated phosphorylated signature proteins on pathway maps, significant 
pathways on the hierarchal tree in signal transduction and commonly perturbed pathways affected by the selected drugs. It also serves as a 
useful web interface for new or known drug profile search based on their molecular similarity with the 94 drugs. Phosprof can be helpful for 
further investigation of drug responses in terms of phosphorylation by utilizing the various approved drugs whose target phenotypes are known.
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Introduction
Protein kinases play key roles in multiple biological events 
(1). Kinases transduce signals through phosphorylation chain 
reactions via the pathway proteins, leading to appropriate cel-
lular responses to cues from the external environment or from 
cell–cell communications (2). Kinases have been studied as 
drug targets in various diseases, since their dysfunctions are 
associated with pathologies, such as overactivation of kinases 
in cancer (3). Therefore, it is important to evaluate the role 
of kinase activities in the context of biological functions and 
diseases.

Large datasets of protein phosphorylation have been gen-
erated using mass spectrometry (4–6). Mass spectrometry 
measurements can provide information on modified amino 
acids. However, in some cases, quantitative studies face chal-
lenges in measuring labeled peptides or peptides of proteins 
present at varying levels in cells (7). In contrast, protein arrays 
accommodate controlled quantities of synthesized proteins 
and allow comprehensive measurements of protein phospho-
rylation levels by a simple reaction and detection method (8). 
The resultant datasets of phosphorylation levels of the arrayed 

proteins (‘phosphorylation profiles’) are suitable for quantita-
tive studies and analyses (9). Phosphorylation profiles of vari-
ous kinases have been generated to elucidate kinase–substrate 
relationships (10).

We previously developed a novel platform for protein array 
phosphorylation measurement and pathway analysis (11). We 
designed a protein array containing 1373 native proteins of 
376 ‘pathway maps’, which are assigned as ‘signal transduc-
tion’ pathways in the public database Reactome (12). We 
measured phosphorylation activities using this native protein 
array. We examined the performance of our array by detect-
ing kinase–substrate relationships (11). Using the measured 
data (namely ‘phosphorylation profiles’), significant path-
ways were identified in growth-factor-stimulated cells (11) or 
drug-treated clinical cancer cells (13, 14).

In this study, we generated a novel dataset using drug-
treated cells to develop a new database, Phosprof. In this 
database, we illustrate the changes in the phosphorylation 
activities in cells treated with 94 drugs and the results of path-
way analysis. We selected 94 bioactive compounds with a 
wide range of applications in preclinical research of human 
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diseases. We analyzed the obtained data and compared the 
results to examine the relationships between pathways and 
the known functions of these drugs.

Data collection and analysis
Experiments
We generated the phosphorylation profile by applying cell 
lysate to a protein array. As illustrated in Figure 1, cultured 
cells (MCF7; human breast adenocarcinoma cells, ECACC, 
#86012803 and K562; human chronic myelogenous leukemia 
cells, ECACC, #89121407) were treated with 94 drugs from 
the L2400 Pfizer-licensed library (Selleck Inc.). These com-
pounds were developed and validated by Pfizer. They have 
been marketed or clinically proven, and detailed preclinical 
research data and safety information are available from the 
manufacturer. Cells were cultured with each drug at a con-
centration of 10 μM or vehicle control (Dimethyl sulfoxide 
(DMSO) or water) for 2 h and lysed, and the obtained lysate 
was applied to the protein array with additional ATP.

Phosphorylation activity was measured as described pre-
viously (11). Briefly, 1373 signal transduction proteins with 
glutathione S-transferase-tag were synthesized and loaded 
onto a glutathione-coated glass slide. Every protein was spot-
ted (approximately 500 nl per spot) six times (n = 6) per slide 
while ensuring that they were neither denatured nor dried. 
During spotting, humidity was maintained at 40–60%, and 
the wetness of each drop was confirmed by microscopic obser-
vation of the liquid droplets. Cell lysates including 100 μg 
of total protein were applied to an array with additional 
ATP at 30∘C for 3 h. After the termination of the kinase 
reaction, the array was washed with Tris Buffered Saline 
with 0.05% Tween20 (TBST) and stained with the 4G10 
phosphorylated protein-specific antibody (Merck, #05-1050) 

and a secondary fluorescein-conjugated antibody (Thermo, 
#A21235) to detect the phosphorylated tyrosine residues.

Analysis
The difference expression of phosphorylation between the 
vehicle control and experimental samples was analyzed for 
raw and standardized data using the rank product test and 
Pearson’s correlation test using the R program (R Core 
Team, version 4.0.5). Signature proteins with increased and 
decreased phosphorylation levels were projected onto a full 
and simplified pathway map. A total of 376 pathways were 
integrated into four major functional groups—receptor tyro-
sine kinase (RTK) pathways (Group 1), Wnt–Hh pathways 
(Group 2), G-protein-coupled receptor (GPCR) pathways 
(Group 3) and cell death pathways (Group 4)—to precisely 
visualize pathways among the entire network of pathways 
that were perturbed by treatment with each drug. For legi-
bility, we provide two types of pathway maps: full pathways 
containing all the 1373 proteins as pathway nodes and sim-
ple pathways with integrated nodes of complex proteins or 
protein groups.

Signature proteins based on the rank product were used to 
calculate the hypergeometric distribution of the 376 pathways 
as enrichment analysis to determine the significant pathways. 
We performed sequence analysis of the 1373 proteins on the 
array using IUPred for disorder prediction (15).

Web interface
All the metadata in Phosprof are managed by the SQLite 
database. The website is implemented in Django, which is 
a high-level Python framework. The upregulated and down-
regulated phosphorylated proteins were projected onto the 

Figure 1. Scheme of the data collection and analysis for Phosprof. (Left) A drug from the Selleck L2400 Library was added to the cell culture media 2 h 
prior to the harvest of the cell lysate, which was then applied to a protein array with ATP. The tyrosine residues of the proteins on the array are 
phosphorylated by the cell lysate and detected using 4G10 antibody. (Right) The resultant ‘phosphorylation profiles’ were then analyzed to identify the 
significant pathways. The collected data can be browsed using various pathway analysis tools.
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pathway using our own developed program in ‘signature pro-
tein’ on the web. The pathway hierarchy of Reactome (12) 
in ‘pathway’ is visualized using graphviz. The Venn diagrams 
of ‘compare pathway’ for multiple-drug analysis are drawn 
using D3.js (Data-Driven Documents; https://d3js.org/). Open 
Babel is used to obtain Tanimoto coefficients between a sim-
plified molecular input line entry system (SMILES) string 
and 94 representative clinical drugs in ‘Drug Search’. Sig-
nificant molecules or pathways can be browsed, compared, 
and linked to further detailed information in the Protein Data 
Bank archive (PDB) (16) or Reactome (12). The detailed 
instructions for Phosprof are provided in the UserGuide (Sup-
plementary Material).

Database features and applications
Signature protein
Cultured cells (MCF7 and K562) were treated with each of 
the 94 drugs and lysed, and the lysates were subjected to 
phosphorylation activity measurements using protein arrays. 
Phosphorylation of the array proteins was detected using 
staining with the 4G10 antibody, and the measured data 

were stored in the Phosprof database. We monitored tyrosine 
phosphorylation using the 4G10 antibody, which exhibits 
high sensitivity. Using this strategy, we successfully assessed 
the activity of signal transduction pathways associated with 
the functional cellular states (11). The differences between the 
vehicle control (treated with DMSO or water) and experimen-
tal samples (treated with a drug) were analyzed for stored raw 
or standardized data using the rank product test and Pearson’s 
correlation. These results are summarized in the ‘Signature 
Protein’ section. The signature proteins whose phosphoryla-
tion levels were changed significantly by the drug treatment 
can be browsed in Phosprof by selecting the drug of interest on 
the top page (Figure 2A). To overview the changes in the phos-
phorylation activity in the pathway network, the signature 
proteins are highlighted in the pathway maps. The signature 
proteins with increased (up) or decreased (down) phospho-
rylation levels are colored in orange or blue, respectively. 
Pathway maps for four functional pathway groups (g1–4) are 
provided, which include 376 ‘signal transduction’ pathway 
maps (Figure 2B).

For example, the signature proteins for the Proto-oncogene 
tyrosine-protein kinase (SRC)/Abl kinase inhibitor bosutinib 

Figure 2. ‘Signature Protein’ section. (A) Phosprof top page. Proteins with significant change in phosphorylation level can be browsed by choosing the 
tested cell type (MCF7 or K562) and treated drug. (B) Signature proteins are highlighted on a pathway map. The 376 analyzed pathways were divided 
into four functional groups (g1: RTK pathway; g2: Wnt–Hh pathway; g3: GPCR pathway and g4: Cell Death pathway), according to the Reactome 
classification. (C) Signature proteins of K562 cells under treatment with the SRC inhibitor bosutinib. Data type (Std: standardized data or Raw: raw data), 
analysis type (RP: rank products or Pearson) and thresholds (Top 50/100/150/200 or P -value) can be selected. (D) Enlarged view after searching for SRC 
on the pathway map. (E) The nodes of the pathway map are linked to the ‘details of the protein’ page. Detailed information includes the gene symbols, 
amino acid sequences and the disorder scores. This page is also connected to the PDB web site and the protein tertiary structures.
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(17, 18) can be browsed in the RTK pathway group. This 
pathway group includes SRC, the target of bosutinib, and 
the related signaling molecules (Figure 2C and D). In K562 
cells, eight known tyrosine substrates of SRC (annotated in 
PhosphositePlus) were included in the top 50 signature pro-
teins downregulated by bosutinib. Each node in a pathway 
map represents a signaling molecule. A list of significant path-
ways that include the protein of interest can be visualized by 
hovering the cursor over the node. The nodes are directed to 
the ‘Details of Protein’ page (Figure 2E). Detailed informa-
tion includes their gene symbols, amino acid sequences and 
the disorder scores obtained using IUPred (15). This page is 
also connected to the PDB web site via UNIPROT ID and 
links to the protein tertiary structures with PDB IDs to guide 
the sequence–structure relationship in the proteins. The ter-
tiary structure of the PDB ENTITY with the longest sequence 
was selected and visualized using Mol* viewer web applica-
tion (19). Tyrosine residues in the structure are displayed as a 
ball-and-stick model (Section 2.4 Supplementary Material).

Pathway
Based on the distribution of the signature proteins, we esti-
mated the significance of the 376 pathways by enrichment 
analysis. Significant pathways are colored on the hierarchi-
cal tree in the ‘Pathway’ section (Figure 3A) and provide 
means to review the analysis results in the interconnected 
pathways. The pathway hierarchy was constructed according 

to Reactome, and each pathway node is linked to the orig-
inal Reactome site to provide more detailed information. In 
the pathway hierarchy, significant pathways with upregulated 
(Up), downregulated (Down) or both (UpDown) signatures 
are colored in orange, blue or both, respectively. The pathways 
of the higher stratum of the significant pathways are displayed 
in a paler shade of their respective color.

For example, significant pathways of the cells treated with 
sunitinib malate, a multi-targeted RTK inhibitor of Vascular 
endothelial growth factor receptor 2 (VEGFR2), Platelet-
derived growth factor receptor beta (PDGFRβ) and Tyrosine-
protein kinase Kit (KIT) (20), are shown in pathway hierarchy 
tree in the ‘Pathway’ section (Figure 3A). We confirmed that 
their known target-related pathways (signaling by Stem cell 
factor (SCF)-KIT, Platelet-derived growth factor (PDGF), and 
Vascular endothelial growth factor (VEGF)) are shown to 
be downregulated under the pathway node of ‘Signaling by 
Receptor Tyrosine Kinase (RTK)’ on the hierarchal tree, when 
the significant pathways with downregulated signatures are 
selected (Figure 3B, blue arrowhead).

Pathway comparison
To examine the functional similarities and differences of the 
94 drugs, significant pathways of selected drugs were com-
pared and displayed in a Venn diagram in the ‘Compare 
Pathway’ section. Here, significant pathways among five or 

Figure 3. ‘Pathway’ section. (A) Significant pathways with Up, Down or both (UpDown) signatures are displayed in the tree form, according to the 
pathway ontology classification of Reactome. The number of signature proteins for pathway analysis can be selected (top 50/100/150/200 or 
P -value < 0.05). (B) The multi-targeted RTK inhibitor sunitinib malate downregulates the ‘Signaling by Receptor Tyrosine Kinases’ pathways, including the 
drug target-related pathways (arrowhead).
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Figure 4. ‘Compare Pathway’ section. Five inhibitory drugs of the protein tyrosine kinase pathway were selected. (A) In the higher pathway hierarchy 
(pathway stratum = 2), five drugs commonly downregulated the ‘Signaling by Receptor Tyrosine Kinases’. (B) At lower pathway hierarchy, five drugs 
showed various specificities for pathway activities. (C) The drug information and common pathway results are summarized.

fewer drugs of interest can be compared with variable thresh-
olds. For example, the significant pathways of five RTK 
inhibitors (axitinib, sunitinib malate, orantinib, CP673451 
and dacomitinib) (20–24) were compared (Figure 4). A Venn 
diagram of the significant pathways with upregulated and/or 
downregulated signatures is provided. Of the 16 pathways 
of the higher pathway stratum (pathway stratum = 2), the 
‘Signaling by Receptor Tyrosine Kinases’ pathway was com-
monly downregulated in K562 cells by all of those five drugs 
(Figure 4A). In the lower pathway stratum (pathway stra-
tum = 3), ‘Signaling by VEGF’ was commonly downregulated 
by axitinib, sunitinib malate and orantinib, and ‘Signaling by 
PDGF’ was downregulated by sunitinib malate, orantinib and 
CP673451, which is consistent with the known drug func-
tions (Figure 4B). PDGFR is a target molecule of axitinib, 
but ‘Signaling by PDGF’ was not observed to be significant in 
these analysis conditions. This may be because axitinib is more 
specific for VEGFRs (The half maximal inhibitory concentra-
tion (IC50) = 0.1–0.3 nM) than for PDGFRB (1.6 nM) (21). 
Similarly, cellular responses to different drugs can be com-
pared in the context of pathways at various levels of pathway 
hierarchy.

Drug search
All the 94 drugs examined in Phosprof are listed in the ‘Drug 
List’ section with detailed information, including the formu-
las, Chemical Abstracts Service Registry Numbers (CAS) and 
SMILES, and are linked to the PubChem site (25). Other 
compounds can be searched for the phosphorylation pro-
file of drugs with molecular similarity in the ‘Drug Search’ 
section. By entering the SMILES or Structure Data File 
(SDF) of a compound of interest, similarity indexes with the 

94 drugs are provided as Tanimoto coefficient scores. For 
example, compounds similar to gamma-aminobutyric acid 
(GABA) were searched using its SMILES form. GABA is an 
inhibitory neurotransmitter whose proper regulation is nec-
essary for normal neural functions (26). Using GABA as a 
query, gabapentin and gabapentin HCl were identified to 
have relatively high Tanimoto coefficient scores (Figure 5A). 
Gabapentin is a GABA analog used to treat seizures and 
neuropathic pain (27, 28). The ‘Product name’ is linked to 
the ‘Signature Protein’ section for the corresponding drug 
(Figure 5B).

Discussion
We measured phosphorylation profiles of drug-treated cells 
using protein arrays and visualized the results of their path-
way analysis. Pathway analysis of signal transduction has 
been extensively performed using microarrays or sequenc-
ing data (29, 30). Because signal transduction usually occurs 
through interconnected pathways that have multiple paths for 
various signals (31), it becomes challenging to precisely define 
pathways responsible by analyzing gene expression data, 
which are the final output of signal transduction processes. 
Pathway analysis using phosphorylation profiles is beneficial 
to examine the molecular bases of signal transduction from a 
different viewpoint.

In this study, we presented a new database involving a 
new dataset of cells treated with 94 drugs whose major target 
molecules or pathways are known. In the ‘Signature Protein’ 
section, we provided our analyzed results on pathway maps, 
and we showed that the phosphorylation level of the target 
protein SRC was significantly downregulated upon treatment 
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Figure 5. ‘Drug Search’ tool. (A) Similarity search for GABA (SMILES: C(CC(=O)O)CN). Product names of similar drugs in Phosprof are listed with the 
Tanimoto coefficient score. (B) Product Name in the list (A) is linked to the Signature Protein section.

with the SRC/Abl kinase inhibitor bosutinib. Based on the dis-
tribution of these signature proteins, we performed pathway 
analysis and showed the results in the ‘Pathway’ section. In 
this section, we confirmed that the pathways related to the 
known target of the multi-targeted RTK inhibitor sunitinib 
malate are downregulated under the RTK pathway node on 
the hierarchal tree.

Comparison of significant pathways between different 
drugs allowed the investigation of common and unique path-
ways affected under the corresponding drug response. Given 
that the pathways are interconnected and functionally related, 
we compared the list of significant pathways for different 
drugs in various levels of pathway hierarchy. We visualized 
the results using a Venn diagram in the ‘Compare Path-
way’ section. We validated that the resultant common or 
unique pathways of the selected RTK inhibitors are associ-
ated with the known functional similarities or differences of 
these drugs. This would be helpful to examine the relation-
ships of the input (drug) and output (functional or adverse 
effects) of signal transduction processes in future studies. In 
the ‘Drug Search’ section, one can search for predicted phos-
phorylation profiles based on drug similarity and use the 
information for functional analysis of analog-based designed
drugs.

Collectively, Phosprof provides drug response profiles 
by analyzing the signal transduction activity at the path-
way level. It is expected to help better understand differ-
ent drug responses by providing additional insights into 
multi-omics data studies. We present a unique measure-
ment and analysis strategy that differs from proteomics 
with mass spectrometry and aims for ‘fine omics’ in phos-
phorylation, keeping comprehensiveness in mind to fill 
the knowledge gap among the conventional omics analysis
layers.

Supplementary data
Supplementary data are available at Database Online.
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