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Abstract
The ability of current kinetic models to simulate the phenotypic behaviour of cells is limited since cell metabolism is regulated at different levels 
including enzyme regulation. The small molecule regulation network (SMRN) enables cells to respond rapidly to environmental fluctuations by 
controlling the activity of enzymes in metabolic pathways. However, SMRN is not as well studied relative to metabolic networks. The main 
contributor to the lack of knowledge on this regulatory system is the sparsity of experimental data and the absence of a standard framework 
for representing available information. In this paper, we introduce the KinMod database that encompasses more than 2 million data points on 
the metabolism and metabolic regulation network of 9814 organisms KinMod database employs a hierarchical data structure to: (i) signify rela-
tionships between kinetic information obtained through in-vitro experiments and proteins, with an emphasis on SMRN, (ii) provide a thorough 
insight into available kinetic parameters and missing experimental measurements of this regulatory network and (iii) facilitate machine learn-
ing approaches for parameter estimation and accurate kinetic model construction by providing a homogeneous list of linked omics data. The 
hierarchical ontology of the KinMod database allows flexible exploration of data attributes and investigation of metabolic relationships within- 
and cross-species. Identifying missing experimental values suggests additional experiments required for kinetic parameter estimation. Linking 
multi-omics data and providing data on SMRN encourages the development of novel machine learning techniques for predicting missing kinetic 
parameters and promotes accurate kinetic model construction of cells metabolism by providing a comprehensive list of available kinetic mea-
surements. To illustrate the value of KinMod data, we develop six analyses to visualize associations between data classes belonging to separate 
sections of the metabolism. Through these analyses, we demonstrate that the KinMod database provides a unique framework for biologists and 
engineers to retrieve, evaluate and compare the functional metabolism of species, including the regulatory network, and discover the extent of 
available and missing experimental values of the metabolic regulation.
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Introduction
The main goal of metabolic modelling is to mathematically 
simulate cell metabolism under changing environments and 
utilize this knowledge to optimize bio-products manufac-
turing (1). Metabolism is a complex system of chemical 
reactions regulated at different levels, i.e. transcription and 
translation regulation, inhibition and activation via allosteric 
regulation of enzymes (2, 3). When facing environmental 
fluctuations, cells adapt to the new condition by tuning the 
capacity of enzymes through metabolic regulation (4). This 
small molecule regulatory network acts on a time scale much 
faster than gene regulation (5–7); metabolic regulation has a 
significant role in the metabolic response to fluctuation (8, 9). 
The dynamic behaviour of cells in changing environments has 
been investigated using kinetic modelling; however, available 
models are not able to capture a comprehensive view of the 
metabolism and the metabolic regulation (10, 11). The main 

challenge in developing a complete coarse-grained model of 
metabolism is our incomplete knowledge of multi-omics data 
needed for parameter estimation (9, 10, 12–14).

Multi-omics data is scattered across various biochem-
ical and enzymology databases such as BRENDA (15), 
UniProt/Swiss-Port (16), PubChem (17) and Protein Data 
Bank (PDB) (18). These databases are essential references in 
metabolic engineering, covering information on the proper-
ties of classified enzymes and metabolites, including data on 
the reactions, kinetic parameters, substrates, products and 
small molecule regulators (15, 16). Yet, each of these resources 
partially covers metabolism; thus, exploring possible connec-
tions between an attribute of interest and all other attributes 
is challenging (19). Moreover, each dataset supports a unique 
notation language to represent multi-omics data. Therefore, 
the existence of a standard notation language is lacking in 
multi-source information.
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Here, we present the KinMod database that links the 
kinetic parameters data of 9814 organisms to enable novel 
data analytics opportunities and practical understandings of 
cellular metabolism. In the present work, we aim to cre-
ate a novel hierarchical data model of multi-omics data 
to enable querying structured data that has initially been 
scattered across multiple references. This work collects multi-
source data covering diverse segments of metabolism and 
standardizes the complex relationships and descriptions of 
data into computerized processing and reasoning called ontol-
ogy. The constructed ontology in this paper presents a more 
complete picture of metabolic regulation and enables data 
mining of metabolic rules and interactions across various 
organisms using machine learning approaches. Finally, we 
investigate six types of analysis that can be performed on 
the KinMod database to extract relations within or across 
organisms to find insights into the metabolic regulatory net-
work. To the best of our knowledge, the KinMod database 
is the first bioinformatics tool that investigates the functional 
metabolism of cells, including their regulatory network, on 
a large scale and presents information that enables machine 
learning approaches.

Materials and methods
More than 10 M data points were extracted from biological 
and chemical data references, BRENDA (15), PDB (18), Swiss-
Prot (16) and PubChem (17). Extracted data were related 
to different sections of the metabolism (Figure 1A). Dupli-
cate compounds were identified using the first layer of InCHI. 
Also, redundancy in reactions was omitted using structural

information of reactants and EC numbers (Figure 1B). Then, 
data points were mapped to an ontology of hierarchical 
classes. The final ontology encompasses more than 2M 
curated data points (Figure 1C). The constructed ontology 
enables extracting meaningful relationships within- and cross-
species. An instance of a within-species relationship is the 
percentage of metabolic enzymes of Escherichia coli with at 
least one small molecule regulator compared to those with no 
identified regulatory interactions. An example of the cross-
species relationship is the percentage of organisms in the 
KinMod database that do not have any reaction or regulator 
in the list of the well-known reactions and identified metabolic 
regulators (Figure 1D). In the following sections, we discuss 
each panel in more detail.

Data extraction and cleaning
Kinetic parameters (inhibition, saturation and enzyme 
turnover constants, KI, KM, kcat, and compounds names 
were mined from the BRENDA database. SMILES (20), 
InChIKey (21) and InChI (22) were scrapped from Pub-
Chem for all retrieved compounds. Then, duplicate com-
pounds were purified using the connectivity and proton 
layer of the InChI string. Structural properties belonging to 
other InChI layers, such as stereochemistry, were neglected 
in distinguishing replicated compounds. Also, compounds 
with unknown structures were excluded from the database 
(supporting information, section 1-1). Moreover, reaction 
strings with distinguished reactants were scrapped from the 
BRENDA database. Then, they were annotated with 2D 
structural information of reactants and stoichiometric coeffi-
cients. Incomplete BRENDA reactions with missing substrates 

Figure 1. Visual abstract of the current study. Panel (A): Kinetic data scraped from BRENDA, PDB, PubChem and Swiss-Prot, each focused on separate 
sections of metabolism. Panel (B): Redundancy in compounds and reactions is filtered. Panel (C): Standard representation of multi-source data in 
hierarchical ontologies. Panel (D): The KinMod database enables extracting statistics of within- and cross-species relationships. (Example 1) 59% of 
enzymes in Escherichia coli  have at least one known regulator, an example of the within-species relationship. (Example) 55.5% of organisms have at 
least one established reaction and regulator, an instance of the cross-species relationship.
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Table 1. Hierarchical data relationship, available classes in ontology and a complete list of class attributes available in the KinMod ontology database

Class number Class definition Class attributes Child class(es) Parent class(es) Source

1 Organism —Genus
—Species

Protein – BRENDA (15)

2 Protein —Recommended Name
—Systematic name
—PDB Id
—Swiss-Prot Id
—EC number
—Protein sequence
—Binding site
—Molecular weight
—Gene Ontology (GO)

—Reactions
—Compounds
(regulators)

Organism —BRENDA (15)
—PDB (18)
—Swiss-Port (16)

3 Reaction —Reaction formula
—Reaction Unique String
—Stoichiometric coefficients

—Compounds
(reactants)

Enzyme —BRENDA (15)
—PDB (18)

4 Compound —Name
—PubChem Cid
—Synonyms
—KEGG Id
—Molecular weight
—Chemical formula
—Smiles
—InCHIKey
—InCHI
—Charge
—KI value
—KM value
—kcat value

– Enzyme
reaction

—BRENDA (15)
—PubChem (17)
—KEGG (28)

or products were excluded from the rest of the analyses. 
Duplicate reactions were identified by comparing stoichio-
metric coefficients and 2D structures of reactants. EC num-
bers of proteins and organisms were collected from the 
BRENDA and PDB database. Then, sequences were gener-
ated for each EC number using the PDB database. Further-
more, all active site information for each protein and Gene 
Ontology classification (23) were compiled from the Swiss-
Prot database. Finally, each protein sequence was assigned 
with Swiss-Prot and PDB identifiers. Other features for com-
pounds, enzymes and organisms were collected accordingly
(Table 1). 

Ontology development
An ontology database is a systematic description of knowl-
edge as a set of classes and relationships between them and 
has been widely used to analyse biological and chemical infor-
mation (24–27). We specify biological data into classes and 
define a hierarchical relationship between them to enable 
this description. In the KinMod ontology database, each 
data class is characterized by a proper set of attributes and 
is linked to parent or child classes. Organisms are catego-
rized with data class number 1. Each organism contains a 
set of proteins defined with data class number 2. Impor-
tant protein properties such as amino acid sequences and 
EC nomenclature are associated with this class. The pro-
tein class is linked to appropriate reactions (class three) and 
compounds (class four) regulating the enzyme activity with 
associated KI parameters. Moreover, compounds are also 
child class of reactions in the form of substrates and products; 
the kinetics of enzyme saturation (KM values) and enzyme 
turnover rate (kcat values) were associated with each substrate
(Table 1).

Data availability
KinMod database files and supporting information on how to 
query the SQL database can be found at: https://github.com/
LMSE/KinMod.

Database overview
Data content
The KinMod database contains omics data on 9814 organ-
isms, 67 651 proteins, 18 558 biochemical reactions and 
166 969 compounds. The KinMod database also includes 
41 967 protein sequences generated from the PDB database 
on 14 250 proteins with 3369 unique EC numbers (Figure 2). 
Moreover, 26 854 proteins are assigned with a total of 91 020 
binding sites data from the Swiss-Prot database. In addition, 
20 971 proteins are linked with proper regulator molecules 
and 15 932 experimentally measured KI values are avail-
able for 3923 of these proteins. Finally, 37 103 KM val-
ues are available for 7762 chemical reactions. In total, the 
KinMod database encompasses more than 2 million data 
points. The hierarchical data structure in the database enables 
the investigation of relationships and attributes of interests. 
Below, we discuss five types of analysis that can be accom-
plished using the KinMod database: analysis of available 
organism models, EC numbers, regulator molecules, kinetic 
parameters and the cross-species similarity of functional
metabolism.

A comparison of available models
Figure 3 illustrates a classification of available organism mod-
els in the KinMod database based on the number of associ-
ated regulators and proteins. The yellow class contains the 
Homo sapiens and Rattus norvegicus models with the most 
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Figure 2. Data overview of the KinMod database.

Figure 3. Classification of organisms based on their number of proteins 
(x -axis) and regulators (y -axis) into three classes (brown, yellow and 
black). The brown class represents intensively studied organisms with 
more than 10K regulators and 1K proteins, whereas the black category 
denotes moderately researched models with less than 2K effectors and 
500 proteins.

connected kinetic data points. Several models, including E. 
coli and Saccharomyces cerevisiae, are classified in the black 
category with the second highest number of available omics 
data. Although kinetic models of core metabolism of E. coli
and S. cerevisiae have been constructed in previous years, 
large-scale kinetic models of organisms in the yellow and 
black categories are still lacking. The main contributor to this 
lack of models is likely the absence of a tool to combine exist-
ing omics data in a standard structure for the input of kinetic 
models. The KinMod database aims to address this require-
ment, however, it should be noted that further development 
of KinMod is required to address coding variation, since the 
parameters are currently not linked to specific strains, and 
take a pangenomic approach for data organization. Finally, 
Figure 3 suggests that the brown category lacks sufficient 
experimental data points compared to the other classes.

A comparison of EC numbers
A total of 67 651 proteins in the KinMod database are rep-
resented with 6181 distinct EC numbers with well-defined 
four layers, among which 24 149 proteins corresponding to 
4345 EC numbers are linked to at least one clearly stated 
regulator molecule. Figure 4 investigates data spread for 
seven EC classes by considering the number of regulator 
molecules interacting with them and the number of distinct 
species inheriting them in metabolism. In total, oxidore-
ductase EC(1) documents the highest number of regulated 
enzymes, followed by transferases EC(2) and hydrolases 
EC(3). Tyrosinase (EC 1.14.18.1), belonging to oxidoreduc-
tases EC(1), is the most regulated enzyme with 1447 different 
regulator molecules, appearing in the metabolism of 166 
individual species. Tyrosinase is a promiscuous enzyme abun-
dantly found in a wide variety of eukaryote and prokaryote 
cells (29, 30) and plays a crucial role in the metabolism of 
xenobiotics and drugs, resulting in a decrease in drug con-
centration and efficiency (31). Also, it dramatically regulates 
melanogenesis within melanocytes and determines the skin 
colour (32). Recently, this enzyme has been the focus of 
many computational studies (33), as its inhibition assists sci-
entists in maintaining a high concentration of drugs when 
treating severe diseases such as melanoma. The supporting 
information, Table 1, lists key enzymes that interact with more 
than 600 regulator molecules. Hence, providing a comprehen-
sive kinetic database facilitates simulating regulatory mech-
anisms of crucial enzymes such as tyrosinase and studying 
downstream metabolic changes.

A comparison of regulator molecules
In the KinMod database, 166 969 compounds can participate 
in a similar biochemical reaction or regulatory interactions 
across species. Thus, only 21 496 unique molecular structures 
can be identified among 166 969 KinMod compounds. Out of 
21 496 molecules, 15 320 show regulatory effects in the form 
of inhibition, activation or both. A total of 13 035 regulator 
molecules exhibit only inhibition, 542 act solely as activators 
and the remaining 1743 exhibit both inhibitory and activat-
ing effects. The remaining 6176 molecules only participate in 
biochemical reactions as substrates or products.

Figure 5 categorizes regulator molecules based on their 
regulatory effect (inhibitors, activators or both) and visual-
izes data on molecular weight and the number of interacting 
enzymes. Molecules with many interacting enzymes are usu-
ally natural cofactors, metal ions or synthetic drug molecules 
(supporting information Figure S5). Cofactors and metal ions 
are frequently associated with metabolic regulations across 
organisms. Metal ions such as Ca2+, Cu2+ and Zn2+ are 
important signalling molecules involved in many regulatory 
interactions with cellular functions (34). Also, cofactors such 
as NADH/NAD+ are fundamental regulators of various bio-
logical processes, such as energy metabolism, calcium home-
ostasis, mitochondrial functions, gene expression, antioxida-
tion/generation of oxidative stress, immunological functions 
and cell death (35). Moreover, heavy regulators with many 
interactions with enzymes are complex structures with mul-
tiple reaction sites. These molecules are an example of non-
specific inhibitors that drastically influence metabolism due to 
interacting with numerous metabolic enzymes. For instance, 
aprotinin is a broad-spectrum inhibitor for serine protease 
with a molecular weight of 6512 Da. It was initially isolated 
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Figure 4. Visualization of seven EC classes based on the number of regulators interacting with each EC number and the number of specific organisms 
that inherit them in metabolism. EC(1) represents the highest number of regulated enzymes among the seven categories.

from the cow’s pancreas in 1930 and widely used as an antifib-
rinolytic agent in cardiac surgery to reduce blood loss. It 
was used until 2007 when this molecule’s acute kidney injury 
properties were discovered, and this drug was withdrawn 
from the market (36).

A comparison of kinetic parameters
Finally, the hierarchical data structure in the database 
can provide the user with experimentally measured kinetic 
parameters for each protein and reaction. Due to the complex-
ity of in vivo measurements, experimental data on KI, kcat and 
KM values are not fully discovered yet. The KinMod database 

can be used to visualize missing kinetic data to assist experi-
ment designs for estimating unknown parameters. Moreover, 
the KinMod database can provide kinetic data distribution for 
given enzymes across organisms on which appropriate statisti-
cal analyses are applicable. As an instance, Figure 6 illustrates 
a heatmap of available KI measurements for all the regulators 
of EC 1.14.18.1 across organisms KI values of this enzyme 
are mostly less than 0.5 𝜇𝑀 (top heatmap); greater values can 
be seen across organisms (bottom heatmap). As the value of 
KI parameters decrease the inhibition power increases. Thus, 
the top heatmap visualizes more potent regulator molecules 
than the bottom chart. The skewed distribution of KI mea-
surements is visualized in supporting information Figure S4. 
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Figure 5. Visualization of compound categories, inhibitors, activators and molecules that are both inhibitors and activators, based on the number of 
interacting enzymes and their molecular weight.

Figure 6. A heatmap of EC 1.14.18.1 KI values of regulator molecules (x -axis) seen in particular organisms (y -axis). As the distribution of KI is highly 
skewed, data is visualized in two heatmaps (the first heatmap presents a heatmap of values less than 0.5 and the second figure represents a heatmap 
of parameters greater than 0.5). Lower values of KI parameters are associated with higher inhibition effects.

Although measured kinetic parameters for EC 1.14.18.1 num-
ber are mainly in the same order of magnitude within organ-
isms, a significant difference is observable across species. 
Moreover, similar regulatory molecules are reported across 
organisms. However, it is unclear if missing values are due to 
a lack of regulatory interaction with proteins in other species 
or if these are due to missing experiments to measure them. 
A similar pattern is observable for KM values of metabolic 
reactions catalysed by EC 1.14.18.1 in Figure 7. Although, 
the order of magnitude of KM changes dramatically across 
organisms and missing values are noticeable, variations of 
KM values are negligible within organisms and missing val-
ues can be replaced with appropriate statistical measurements 
such as mean or median. Here, we propose that the KinMod 
database can be used to visualize available knowledge on the 

kinetic parameters and thus facilitate kinetic parametrization 
for reactions and proteins. 

Cross-species similarity of functional metabolism
Calculating similarity between genomes of different organ-
isms using tools such as BLAST (37) does not fully account 
for the functional relation of species (38, 39) as genes with 
unassigned functionality can encode up to 50% of genomes 
(38, 40). Thus, unanswered questions on the regulatory net-
work and metabolism adaptation cannot be investigated by 
considering gene sequence only (41). Here, we present an anal-
ysis for clustering species based on enzymatic activities associ-
ated with their metabolism. As previously suggested (42, 43), 
we consider only EC numbers for representing metabolic 
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Figure 7. A heatmap of KM values for all the reactions catalysed by 1.14.18.1 (x -axis) seen in particular organisms (y -axis).

enzymes to allow the mapping of functions between organ-
isms. In this analysis, we queried 317 organisms from the 
KinMod database, whose metabolism was annotated with at 
least 1% of four-level EC numbers with known regulators 
(see supporting information for MySQL query). Then, we ran-
domly sampled 174 organisms (sample size is calculated for 
a confidence interval of 95%) and analysed the similarity of 
their metabolism based on available regulated EC numbers in 
each organism to perform a statistical comparison (Figure 8).

Figure 8 illustrates distinct species clusters with the func-
tional relationship between metabolisms across species. As an 
instance, red box A contains species belonging to Fabaceae, 
Caryophyllales, Solanales and Poales orders. These orders 
belong to the class of Magnoliopsida (flowering plants) and 
include families of bean, tomato, spinach and rice. Accord-
ingly, the metabolic behaviour of these species and their 
regulatory network are significantly related. To the best of 
our knowledge, no metabolic similarity analysis has been 
performed on these species to validate this framework.

As another example, red box B contains mammalians 
(Homo sapiens and rodents such as R. norvegicus) and an 
actinopteri species, Danio rerio (zebrafish). According to 
this analysis, actinopteri and Homo sapiens are likely to 
be metabolically related, although evolutionarily distinct. 

Many studies (44, 45) suggest that zebrafish can be used 
in gene knockout studies as 70% of human genes have 
shown similar properties and functionality to the zebrafish 
genome, compared to 80% of human genes to the rodents 
genes (44, 46). Here, we propose that zebrafish’s functional 
metabolism and regulatory network are also comparable to 
Homo sapiens, with a similarity score of 59.3%. At the 
same time, mammalian cell similarity scores to Homo sapiens
vary between 51.8% in Mesocricetus auratus and 68.9% in 
R. norvegicus. Due to these metabolic similarities, new find-
ings (45–47) have utilized zebrafish for drug discovery and 
investigating the effects of xenobiotics on metabolic path-
ways. Similarly, other clusters in Figure 8 can be interpreted 
and functional metabolism can be compared.

Discussion
Currently, the application of kinetic models is limited due to 
a lack of a standard platform for presenting multi-omics data 
across organisms. Current kinetic models focus only on E. coli
core metabolism and neglect most regulatory interactions in 
metabolism. Nevertheless, the accuracy of such models has 
significantly improved over the years, and they continue to 
include more data points on the E. coli model. The KinMod 
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Figure 8. A cluster map of a random sample of 174 models based on their similarity in functional metabolism. Red box A contains species belonging to 
Magnoliopsida (flowering plants) class. Box B include species of class Mammalia and Actinopteri.

database can facilitate kinetic model construction by provid-
ing standardized data points on the metabolism, especially the 
regulatory network.

The KinMod database is a unique platform that com-
bines scattered data across multiple sources to build value in 
large-scale assessments of metabolism. It uses 2D structural 
data of compounds to reduce redundancy among omics 
data. It focuses on the interpretation of attributes and rela-
tionships between metabolic regulatory networks and thus 
complements existing regulation data. It has a very low bar-
rier to use because it follows a hierarchical data model, and 
all data points are fully defined with a proper set of attributes. 
Although the current version of the database only includes 
data from BRENDA, PDB, Swiss-Port and PubChem, it can be 
easily expanded to include more references in systems biology. 

Finally, as the experimental data on kinetics accumulate in 
the KinMod database, the accuracy, range and variety of 
mentioned analyses increases.

This platform is still limited to the availability of exper-
imental data points and in vivo measurements of kinetic 
parameters. The hierarchical data structure of this database 
allows the user to identify missing measurements and design 
appropriate experiments to fill in the missing data. The ratio-
nal design of experiments with the aim of finding at least 
one kinetic data point for each protein is required to address 
the complexity and sparsity of multi-omics data. Further-
more, in order to extensively meet the objective of supporting 
kinetic model construction, it should be noted that the Kin-
Mod database does not fully capture complex enzyme and 
regulator relationships that might be required to build kinetic 
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models. For example, protomer formulas for enzymes as well 
as other details of regulatory mechanisms are not included 
in KinMod. Although KinMod currently has inhibitor and 
activator tags for regulatory relationships between molecules 
and enzymes, it would be preferred that more of the afore-
mentioned parameters be added to the database to allow for 
more accurate development of kinetic models. Finally, the 
KinMod database currently classifies reactions using indepen-
dently built reaction strings that utilize structural components 
of substrates and products. In order to allow for connection 
between the reactions in KinMod and other commonly used 
databases such as SEED and BioCyc, it would be necessary 
to sort through the reactions using structural identifiers of the 
substrates, products or proteins. It would be beneficial to fur-
ther develop this database by adding reaction mechanisms and 
possible identifiers to KinMod, but it is currently limited by 
BRENDA’s representation of reactions.

In summary, our unique multi-omics database integrates 
information on genomics, experimentally obtained metabo-
lite kinetic data, small molecular metabolic regulation and 
enzyme kinetics and is a comprehensive resource for devel-
oping machine learning methods for parameter estimation 
based on sequence information and for developing large-scale 
kinetic models of metabolism.

Supplementary data
Supplementary data are available at Database Online.
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