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Abstract
Breast cancer is the most commonly diagnosed cancer and registers the highest number of deaths for women. Advances in diagnostic activities 
combined with large-scale screening policies have significantly lowered the mortality rates for breast cancer patients. However, the manual 
inspection of tissue slides by pathologists is cumbersome, time-consuming and is subject to significant inter- and intra-observer variability. 
Recently, the advent of whole-slide scanning systems has empowered the rapid digitization of pathology slides and enabled the development 
of Artificial Intelligence (AI)-assisted digital workflows. However, AI techniques, especially Deep Learning, require a large amount of high-quality 
annotated data to learn from. Constructing such task-specific datasets poses several challenges, such as data-acquisition level constraints, time-
consuming and expensive annotations and anonymization of patient information. In this paper, we introduce the BReAst Carcinoma Subtyping 
(BRACS) dataset, a large cohort of annotated Hematoxylin and Eosin (H&E)-stained images to advance AI development in the automatic char-
acterization of breast lesions. BRACS contains 547 Whole-Slide Images (WSIs) and 4539 Regions Of Interest (ROIs) extracted from the WSIs. 
Each WSI and respective ROIs are annotated by the consensus of three board-certified pathologists into different lesion categories. Specifically, 
BRACS includes three lesion types, i.e., benign, malignant and atypical, which are further subtyped into seven categories. It is, to the best of our 
knowledge, the largest annotated dataset for breast cancer subtyping both at WSI and ROI levels. Furthermore, by including the understudied 
atypical lesions, BRACS offers a unique opportunity for leveraging AI to better understand their characteristics. We encourage AI practitioners 
to develop and evaluate novel algorithms on the BRACS dataset to further breast cancer diagnosis and patient care.
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© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the 
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
Histology images contain both complex and ambiguous infor-
mation, thus challenging pathologists to perform a robust, 
reproducible and efficient analysis. Furthermore, histology 
images are very large, which makes their analysis cum-
bersome and time-consuming. With advances in Computer-
Aided-Diagnosis (CAD), Artificial Intelligence (AI) tech-
niques, especially Machine Learning (ML) and Deep Learn-
ing (DL), have the potential to address the aforementioned

bottlenecks (1–4). Recent advancements in DL have demon-
strated superior capabilities compared to classical ML 
approaches for CAD (5–11). The crucial advantage of DL 
approaches is their ability to learn task-specific salient features 
directly from the training data. These techniques can iden-
tify discriminative morphological patterns from large datasets 
to diagnose histology images in a standardized and objec-
tive manner. However, this superiority comes at the cost of 
acquiring large, high-quality, variable and unbiased annotated 
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Key Points 

• This dataset provides a large and heterogeneous set of 
realistic breast histology images both at WSI and ROI levels.

• The provided ROIs range over variable dimensions by 
entirely including the diagnostic lesion, thus avoiding the 
loss of diagnostically relevant information.

• The images are acquired from a large number of patients 
encompassing large variability.

• Seven different subtypes of lesions are included, two of 
them representing atypical lesions, also known as precan-
cerous lesions.

training datasets. Indeed, there exist several challenges in 
adopting such techniques in digital pathology (12), such as 
(i) the requirement of large annotated datasets, (ii) the need 
for sufficiently variable data to set up cross-patient experi-
ments, (iii) the inclusion of diagnostically challenging lesions, 
that are generally difficult and expensive to acquire, (iv) 
the utilization of sub-region annotations to delineate Region 
Of Interest (ROI) of the Whole-Slide Images (WSIs), (v) the 
coverage of diagnostic spectrum and (vi) coping with data 
leakage and noisy annotations. Although several datasets for 
diagnosing breast histology images exist (13–17), they do 
not meet all the aforementioned criteria. For instance, some 
datasets focus on specific diseases that include only binary 
classes (13, 14), as they aim to categorize lesions only into 
benign and malignant classes, which do not depict a suffi-
ciently large spectrum of subtypes in breast cancer diagnosis. 
On the other hand, datasets handling multiple classes (15, 16) 
include only a small number of training samples (both at WSI 
and ROI levels) collected from a few patients, thus limiting the 
dataset variability. Many of these datasets contain standard-
ized images without clinical artifacts, e.g., staining anomalies, 
ink marks, tissue folding, blurred regions, tears, etc. Con-
sequently, these datasets do not comprehensively represent 
real-world breast cancer diagnosis, since many of the clinical 
artifacts do not prevent pathologists from making a diagnosis. 
Thus, it is necessary to collect a breast cancer dataset consist-
ing of heterogeneous images across the diagnostic spectrum 
which is comparable to real-world diagnosis performed by the 
pathologists.

We introduce BReAst Carcinoma Subtyping (BRACS), a 
large cohort of Hematoxylin and Eosin (H&E)-stained images 
to advance CAD of breast lesions. BRACS presents the follow-
ing advantages over the extant breast cancer image datasets: 
(i) it includes a large and heterogeneous set of realistic breast 
histology images (both at WSI and ROI levels), (ii) ROIs range 
over variable dimensions by entirely including the diagnostic 
lesion, thus avoiding the loss of diagnostically relevant infor-
mation, (iii) the images are acquired from a large number 
of patients encompassing large variability and (iv) two atypi-
cal lesion categories, also known as precancerous lesions, are 
included along with other categories. In particular, we con-
sider the following lesion types, Normal (N), Pathological 
Benign (PB), Usual Ductal Hyperplasia (UDH), Flat Epithe-
lial Atypia (FEA), Atypical Ductal Hyperplasia (ADH), Ductal 
Carcinoma in Situ (DCIS) and Invasive Carcinoma (IC). Thus, 
BRACS represents a more realistic benchmark for breast can-
cer automatic diagnosis by including several types of typical 

and atypical tissue samples over a wide variety of WSIs and 
ROIs extracted from a large number of patients.

Methods
The BRACS dataset is created to support the develop-
ment of breast cancer diagnostic methods through the auto-
matic analysis of histology images. The dataset was built 
through the collaboration of the National Cancer Institute—
Scientific Institute for Research, Hospitalization and Health-
care (IRCCS) ‘Fondazione G. Pascale’, the Institute for 
High Performance Computing and Networking (ICAR) of 
National Research Council (CNR) and International Business 
Machines (IBM) Research—Zurich. The dataset was acquired 
from patients between 2019 and 2020, by board-certified clin-
icians of the Department of Pathology at the National Cancer 
Institute—IRCCS ‘Fondazione G. Pascale’ in Naples (Italy). 
The samples were generated from H&E-stained breast tissue 
biopsy slides and were selected based on the diagnostic reports 
of the patients. The age of the patients range from 16 to 86 
years old, with about 61% of patients in the range of 40–60 
and only a few patients of aged <20 or >80.

As the introduction of AI in medical applications has 
opened up a wide debate on the ethical problems that this 
practice can raise, it is mandatory to find the right trade-off 
between the use of medical data and the protection of patient 
privacy. In the specific case of BRACS, the purpose is not to 
study the disease over time, but to improve the accuracy of 
still images analysis algorithms. Thus, all confidential data as 
well as the label from the slide images and the patient code in 
the corresponding files have been completely eliminated.

Dealing with rich and comprehensively annotated his-
tology images is a complex and time-consuming task and 
involves a large number of experts in very different fields. In 
the specific case, the experts involved are the biologists who 
select and scan the slides, the pathologists who make the anno-
tations of the slides and the computer scientists who guide and 
support the annotation process (18). Indeed, the interaction 
between the various experts brings out critical issues to be 
addressed with motivated decisions to make the image acqui-
sition and annotation process feasible and at the same time 
useful for possible experimentation (19).

The WSIs have been obtained by scanning slides that were 
selected by a biologist of the pathological anatomy depart-
ment. This selection was performed on the basis of the pathol-
ogy reports obtained from clinical routine. Each report is 
associated with a set of slides containing small tissue parts 
extracted from the primary sample and processed with the 
H&E staining method. A pathology report also includes the 
final diagnosis performed by pathologists on the most signifi-
cant lesion subtype detected through the analysis of associated 
slides. Clearly the subtype associated with the report can 
appear in one or more slides, but not necessarily in all of them. 
In order to take into account ethical issues, all WSIs were de-
identified before making them available to the pathologists. 
Image quality was also examined, and WSIs for which pathol-
ogists were not able to make a decision due to dramatic aber-
rations (i.e. out-of-focus and too-high staining irregularity) 
were eliminated from the image dataset. Conversely, images 
with low quality but of a sufficient standard to guarantee the 
AI downstream have been kept in the dataset (20).

A WSI typically includes several lesions of different sub-
types. Moreover, the inclusion of atypical breast lesions at 
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both WSI and ROI levels significantly increases the complexity 
of the annotation task and makes it prone to observer vari-
ability. In order to ensure a high reliability of the annotations, 
three expert pathologists have been involved to annotate 
both WSIs and ROIs. To support pathologists in the image 
annotation, the QuPath software (21) was provided, as it 
allows zooming, scrolling and marking. In a first step, WSIs 
have been inspected by each pathologist, who assigned the 
corresponding label according to the most aggressive tumor 
subtype she/he has detected in the image. In a second step, 
all annotations were collectively checked by three patholo-
gists, and those with disagreement were further discussed 
and re-annotated when consensus was reached or discarded 
otherwise. The number of disagreements was relatively low, 
and the consensus was found by observing together the most 
significant regions.

A subset of the annotated WSIs was split into three disjoint 
subsets, each of which was assigned to one of the patholo-
gists. Each pathologist extracted a set of ROIs from her/his 

subset, being careful that at least one ROI with the same sub-
type of the WSI was selected and that the set of the extracted 
ROIs might keep the dataset balanced with respect to the 
classes. Each extracted ROI corresponds to a unique category 
and can include single or multiple glandular structures (22). 
Consequently, ROIs have variable size. By using the QuPath 
software, the ROI is marked with an appropriate color encod-
ing the corresponding label. Figure 1 presents the annotation 
procedure for a sample WSI and its corresponding ROIs.

The number of extracted ROIs per WSI ranges from 0 to 
119, with an average of 11 ROIs per WSI, selected across 
all WSIs to collectively encompass the lesion heterogeneity. 
This aspect is crucial for representing pathogenesis and dis-
ease progression and consequently allowing for the inclusion 
of sufficiently variable data for DL model training. In par-
ticular, for the annotation of ROIs, the interaction between 
the pathology and Information Technology (IT) teams was 
very high to guarantee the inclusion of information-rich exam-
ples, inter-class balancing and noise-free annotations. Also for 

Figure 1. Example of a WSI and its associated ROIs. A fixed palette is used to mark the tumor subtype of the lesion.

Figure 2. Annotation process of WSIs and ROIs.
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ROIs, a second step to reach the consensus on the final annota-
tion has been performed. Indeed, for some ROIs, pathologists 
were in difficulty on deciding among different lesion classes, 
as different subtypes of lesions have similar morphological 
features (e.g. ADH and DCIS) and cannot be easily classi-
fied disregarding the WSI-level context. Thus, the pathologists 
examined together the corresponding WSI, to jointly assign a 
final label to the ROI. Figure 2 summarizes the annotation 
process of both WSIs and ROIs.

An important characteristic of BRACS is the inclusion of 
atypical lesions, ADH and FEA. While ignored in other pub-
lic datasets, these categories remain important as they might 
be indicators of either (i) the presence of abnormalities in the 
neighboring breast tissue that could go undetected, e.g., due 
to the extraction of small tissue samples, or (ii) a high risk 
of onset of future carcinoma, i.e., development of DCIS and 
IC. In addition, these lesions cannot be detected by mam-
mography or other breast imaging techniques nor can they 
be felt during a clinical breast examination. When detected 
in a core biopsy, more frequent imaging follow-up and often 
surgical excision are recommended (23). BRACS also includes 
lesion subtypes belonging to benign and malignant types. In 
particular, benign lesions are subtyped as either noncancer-
ous lesions (PB) or inflammatory responses (UDH). Malignant 
lesions are categorized as either DCIS or IC. Finally, histology 
images representing normal tissue sample are classified in the 
N category.

In order to clarify the description of the different tissue 
subtypes, a brief description of the mammary gland should 
be considered. The breast is a modified apocrine sweat gland, 
made up of 15–25 independent glandular units called lobes, 
each of which is formed by a compound tubulo-acinar gland. 
The lobes are composed of adipose tissue and divided by con-
nective tissue septa. Inside each lobe, the main ducts branch 
into terminal ducts, each of which leads to a lobule that is 
made up of many berries to form the ductulo-lobular terminal 
unit. Detailed information on lesions included in BRACS can 
be found in (24). The specific features of the different sample 
tissue subtypes are briefly summarized in the following, and a 
representative example for each of them is shown in Figure 3.

Normal Tissue
In normal mammary glandular tissue, there are two types of 
epithelial cells (the luminal layer and the basal myoepithelial 
layer) and two types of stromal cells (interlobular stroma and 
intralobular stroma). Differently from PB, the ratio between 
epithelial component and stroma is preserved.

Pathological Benign
Benign breast lesions can be grouped according to the risk 
of developing invasive carcinoma and include several groups 
of histological entities classified in relation to morphology. In 
our study, because of differential diagnosis, in the PB category 
we included both non-proliferative lesions and proliferative 
lesions with the exception of UDH, FEA and ADH, which 
were considered as three independent subtypes. Therefore, 
PB includes cyst, apocrine metaplasia, ductal ectasia, squa-
mous metaplasia, atrophy, stromal fibrosis, mastitis, scleros-
ing adenosis, papilloma, radial scar and simple and complex 
fibroadenoma.

Usual Ductal Hyperplasia
UDH has a rate of occurrence of 20% (25) and is charac-
terized by an increase in the epithelial layers. It is a cohesive 
proliferation of disorderly distributed but oriented cells. It can 
have different architectural aspects (solid pattern, fenestrated 
pattern and micropapillary pattern). Even if UDH shares some 
architectural features with ADH and DCIS, it does not show 
atypia.

Flat Epithelial Atypia
FEA represents the 3.8–10% of core needle biopsy samples 
(25) and is a proliferative lesion characterized by low-grade 
cytological atypia, cell monomorphism, loss of polarity and 
orientation with respect to the basement membrane, pres-
ence of apical snout, endoluminal secretion and frequent 
calcifications.

Atypical Ductal Hyperplasia
ADH is a proliferation of monomorphic cells, which only 
partially fill the ductal spaces. Architectural aspects include a 
solid pattern, a cribriform pattern and a papillary pattern. The 
cytologic atypia is similar to that of low-grade DCIS, but the 
lesion spans no more than 2 mm or has an insufficient archi-
tectural atypia involving only partially ducts and/or lobules. 
Studies suggest that 5–20% of core needle biopsies are ADH 
and 10–20% of them generally upgrade to DCIS or IC (25).

Ductal Carcinoma in Situ
In situ carcinoma is a malignant proliferation of epithelial cells 
that fills the entire duct, without evidence of stroma invasion. 
Typically it involves multiple adjacent ductal spaces. It can 
have cribriform, solid, papillary and micropapillary patterns.

Invasive Carcinoma
IC is characterized by the invasion of tumor cells infiltrating 
the breast stroma with loss of peripheral myoepithelial cells. 
The presence of the myoepithelial cell layer is an important 
distinction of DCIS from IC.

Detecting certain subtypes is particularly challenging as 
some morphological patterns can be shared by several classes. 
For instance, ADH shares morphological similarities with 
DCIS. In certain cases, it even includes all the features of 
DCIS, but is simply limited in size. Also, UDH, ADH and 
DCIS are all characterized by an intraductal growth pattern, 
which makes these classes difficult to classify and differentiate 
in H&E-stained sections.

BRACS dataset characteristics
The BRACS dataset contains 547 WSIs related to 189 differ-
ent patients. It also includes 4539 ROIs extracted from 387 
WSIs collected on 151 patients. All slides were scanned with 
an Aperio AT2 scanner at 0.25 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙 using a magnifica-
tion factor of 40 ×. Table 1 and Table 2 report the number 
of WSIs (with and without ROIs) and ROIs according to the 
lesion type and subtypes, respectively.

In recent years, several datasets have been proposed, with 
more and more samples and classes (26–31). Table 3 details 
existing public datasets of histology images for breast lesion 
classification. This table also includes information about 
BRACS dataset for comparison. Datasets that are either 
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Figure 3. Examples of different tissue samples: (a) N, (b) PB, (c) UDH, (d) FEA, (e) ADH, (f) DCIS and (g) IC.

Table 1. BRACS data distribution according to lesion type.

Data Benign Atypical Malignant Total

WSIs with ROIs 149 75 163 387
WSIs without ROIs 116 14 30 160
WSIs 265 89 193 547
ROIs 1837 1263 1439 4539

(i) no longer accessible (27), (ii) subsets of already men-
tioned datasets (28) or (iii) targeting specific tasks, e.g., 
lesion proliferation scores prediction (30) and pN-stage pre-
diction (31), are not mentioned in Table 3. 

The IDC (13) and Camelyon16 (29) datasets focus on 
the detection of the presence of a given lesion. In particular, 
IDC provides ROIs at small spatial resolution (50 × 50 pix-
els) extracted from large areas of Invasive Ductal Carcinoma. 

Table 2. BRACS data distribution according to lesion subtype.

Data N PB UDH FEA ADH DCIS IC

WSIs with ROIs 17 77 55 34 41 51 112
WSIs without ROIs 27 70 19 7 7 10 20
WSIs 44 147 74 41 48 61 132
ROIs 484 836 517 756 507 790 649

We emphasize that even if the number of ROIs in BRACS is 
lower than in IDC, BRACS ROIs are on average much larger 
allowing the inclusion of whole glandular areas. A subset of 
Camelyon16 WSIs is also provided with annotations of metas-
tases. However, BRACS includes a larger number of WSIs 
than Camelyon16 and more subtypes. BreakHis (32) and 
Breast Cancer Histology (BACH)  (26) datasets are devoted 
to multi-classification tasks, but remain significantly smaller
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Table 3. Popular publicly available breast histopathology image datasets and BRACS dataset.

 Lesion classes

Dataset, Year Benign Atypical Malignant
Data type size 
(Magnification) n. Pat.

Resolution in 
pixels

IDC (13), 2014 IDC negative – IDC positive ROI
277.524 (40 ×)

162 50 × 50

BreakHis (15), 
2015

Adenoid
fibroadenoma
Phyllodes tumor
Tubular adenoma

– Carcinoma
Lobular carcinoma
Mucinous carcinoma
Papillary carcinoma

ROI
1.995 (40 ×)
2.081 (100 ×)
2.013 (200 ×)
1.820 (400 ×)

82 700 ×460

Camelyon16 (29), 
2016

Lymph nodes
metastatic negative

– Lymph nodes
metastatic positive

WSI
400 (20 × and 40 ×)

400 Variable size

BACH (26), 2018 Normal
Benign

– In situ carcinoma
Invasive carcinoma

ROI
400 (200 ×)
WSI
10 (20 ×)

3910 2048×1536 
Variable size

TCGA-BRCA 
(33), 2016

Normal
Benign

– Invasive ductal carcinoma
Invasive lobular carcinoma
Special histologies
Mixed histologies

WSI
1978 (20× and 40×)

1093 Variable size

CPTAC-BRCA 
(34), 2020

Normal
Benign

– Invasive ductal carcinoma
Invasive lobular carcinoma
Special histologies
Mixed histologies

WSI
642 (20× and 40×)

134 Variable size

BRACS (35), 
2021

Normal
Benign
UDH

FEA
ADH

In situ carcinoma
Invasive carcinoma

ROI
4537 (40×)
WSI
547 (40×)

151 189 Variable size 
Variable size

Table 4. WSI-level split according to the lesion type.

Benign Atypical Malignant Total WSIs
Total 
patients

Train 203 52 140 395 133
Validation 30 14 21 67 25
Test 32 23 32 85 31

Table 5. WSI-level split according to the lesion subtype.

N PB UDH FEA ADH DCIS IC

Train 27 120 56 24 28 40 100
Validation 10 11 9 6 8 9 12
Test 7 16 9 11 12 12 20

than BRACS, both in terms of image size and number of 
samples, and include less subtypes than BRACS.

Moreover, BreakHis and BACH include fixed-size ROIs, 
while BRACS images are of arbitrary size. Assuming fixed-size 
tumor regions is a strong assumption that does not apply in 
real-life scenarios. Limiting the size of ROIs requires either (i) 
partially cutting the lesion, hence producing a loss of infor-
mation that could be pivotal for a correct diagnosis or (ii) 
manually curating ROIs such that they all have similar sizes, 
which does not encompass tumor heterogeneity. By proposing 
samples of varying sizes, BRACS promotes the development 
of DL algorithms that need to be able to operate on inputs of 
different dimensionality. BRACS and BACH share the same 
malignant lesion subtypes, while BreakHis refines this class by 
partitioning it into four specific subtypes. All the benign lesion 
subtypes defined in BACH and BreakHis are also included in 
BRACS (normal and benign). In addition, BRACS includes 

Table 6. ROI-level split according to the lesion type.

Benign Atypical Malignant Total ROIs
Total 
patients

Train 1460 1011 1186 3657 106
Validation 135 90 87 312 15
Test 242 162 166 570 30

Table 7. ROI-level split according to the lesion subtype.

N PB UDH FEA ADH DCIS IC

Train 357 714 389 624 387 665 521
Validation 46 43 46 49 41 40 47
Test 81 79 82 83 79 85 81

the UDH lesion subtype that is not considered in BACH and 
BreakHis.

The Cancer Genome Atlas (TCGA) -Breast cancer (BRCA) 
dataset (33) includes a very large number of WSI images. 
However, it was not acquired specifically for image-based 
tumor classification, as it also includes clinical data and was 
mainly designed to facilitate studies on tumor classification 
algorithms based on multiple data sources. Indeed, in litera-
ture, TCGA-BRCA is mainly used to validate such kinds of 
algorithms. As regards its use for tumor classification only 
based on WSIs, the main drawback is that a partitioning 
of images in training/validation/testing sets is not provided, 
so limiting reproducibility of the experiments and compari-
son of the results with the state of the art. Secondly, many 
WSIs are labeled as mixed pathology, so researchers who use 
TCGA-BRCA for image classification either consider only a 
partial subset or submit the WSIs to their expert pathologists 
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Figure 4. The organization of BRACS dataset folders.

to get a more refined set of tumor subtypes. The Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC) -BRCA 
(34) also contains both WSIs and clinical data. In particu-
lar, it includes a subset of images from TCGA-BRCA, for 
which it considers a much higher number of protein fea-
tures. However, some of the WSIs are not provided with 

the corresponding label. Like TCGA-BRCA, CPTAC-BRCA 
is designed to evaluate tumor classification algorithms based 
on multiple data sources and shows the same limits in its 
applicability to evaluate image-based tumor classification 
methods. Moreover, neither TCGA-BRCA nor CPTAC-BRCA 
include annotations for ROIs, unlike BRACS, which instead 
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provides a large number of annotated ROIs for each tumor
subtype.

In summary, BRACS characteristics are unique, as they 
allow for multi-class classification task of breast cancer 
lesions, including challenging atypical lesions. In terms of the 
number of patients, WSIs and ROIs is also the largest dataset 
of histology images providing a standardized benchmark to 
evaluate tumor classification algorithms.

Dataset organization
To foster reproducibility and following ML best practices, 
we provide pre-defined WSI- and ROI-level splits in train-
ing, validation and test sets. Data split was generated such 
that all the WSIs extracted from a patient belong to the 
same set. Similarly, all the ROIs extracted in a given WSI are 
assigned to the same split. By following this approach, we 
avoid that different sets being including in correlated patient- 
and slide-level information, which could lead to overly opti-
mistic prediction results (36). Table 4 and Table 5 present 
the number of WSIs included in the train, validation and test 
splits. Information about the number of patients in each set 
is provided in Table 4. Equivalent information for ROIs is 
shown in Table 6 and Table 7. At ROI level, the ratio between 
the most common subtype (PB with 714 samples) and the 
least common one (N with 357) is around two. At WSI level, 
the most common subtype is PB with 120 samples and the 
least common one is FEA with 24 samples, hence the ratio is 
approximately 4. Considering the constraint of patient- and 
WSI-level split and the fact that atypical lesions are more 
rare than malignant ones, BRACS offers a rather balanced 
set that can directly be used for training DL systems. The 
class imbalance across sets is due to the following aspects. 
First of all, the extraction of an equal number of WSIs (ROIs) 
for each lesion subtype was quite difficult to plan a priori. 
Secondly, not all WSIs of a patient have the same label, and 
the number of WSIs for each patient could not be defined a 
priori. Moreover, atypical lesions barely appear as the most 
severe lesion in the WSIs. Similar limitations hold for the 
ROIs, but in this case, the variability of the number of ROIs 
into a WSI make the set-balancing task even more difficult. 
Finally, to ensure having a wide variability of data for the 
training DL models, the number of samples selected for the 
training set is higher than that considered for the validation 
and test sets. The trade-off between balancing data and the 
absence of contamination in the reference sets has been exten-
sively evaluated. We opted to avoid the sharing of indirect 
information between the reference sets instead of obtain-
ing more balanced sets, by considering that the balancing 
problem can be mitigated by employing data augmentation
(e.g. by affine transformations).

The BRACS dataset can be publicly accessed and down-
loaded via the BRACS website (35). Anyone registering and 
agreeing with the terms of use (Creative Commons CC0 
license) can freely download it. Once registered, the user can 
access via File Transfer Protocol (FTP) to the server containing 
all the data.

The data are organized as follows. The WSIs are stored 
in the ‘Whole Slide Image Set’ folder, that includes the train, 
validation and test data. Each data split folder is further 
partitioned in Benign (BT), Atypical (AT) and Malignant 
(MT) folders, each of which includes folders corresponding 
to lesion subtypes. The WSIs are stored as svs files. All the 

Table 8. Results at WSI level for 3-class classification task.

Benign Atypical Malignant Total

F-measure 74.4 57.2 78.0 69.8
Precision 75.6 51.5 86.5 71.2
Recall 72.5 65.2 71.9 69.9
Accuracy – – – 70.3

Table 9. Results at ROI level for 7-class classification task.

N PB UDH FEA ADH DCIS IC TOT

F-measure 73.5 45.0 34.3 64.0 24.0 58.3 81.0 54.3
Precision 71.8 43.0 41.4 58.6 32.6 50.9 80.5 54.1
Recall 75.3 46.8 29.3 69.9 19.0 68.2 81.5 56.0
Accuracy – – – – – – – 55.9

files follow the same naming convention. For instance, the file 
‘BRACS_1238.svs’ refers to the slide ID 1238, whose label is 
defined by the name of the folder that contains it. The ROIs 
are stored in the ‘Region of Interest Set’ folder, which fol-
lows the same structure as the WSI set. The files are stored in 
png format, where the file ‘BRACS_1238_PB_32.png’ refers 
to the ROI number 32, extracted from the WSI named 
‘BRACS_1238.svs’ and labeled as Pathological Benign. The 
folder also includes a ‘previous_versions’ archive that contains 
a zip file with data that have been used in a series of pub-
lications during the dataset collection process, e.g.,  (37–40). 
The WSI annotations are stored in the ‘The Whole Slide Image 
Annotations’ folder, which follows the same structure as the 
WSI set. It includes annotation files in qpdata format (based 
on QuPath (21)) for visualizing the ROIs inside their cor-
responding WSI. Finally, a summary file is provided as an 
xlsx file, which reports for each WSI, its label, reference set 
(training/validation/test), corresponding patient ID and the 
number of associated ROIs, if any. Figure 4 highlights the 
folder organization of BRACS. 

Results and discussion
In order to show the potential utility of this dataset, we 
performed two DL-based multi-classification experiments on 
the BRACS dataset that can be considered as a baseline for 
researchers. As the BRACS dataset is particularly unbalanced, 
especially considering the atypical lesions, the performance 
was evaluated in terms of the F-measure. 

Already during the construction of the BRACS dataset, its 
utility for DL was evaluated on the 7-class (i.e. N, PB, UDH, 
ADH, FEA, DCIS and Invasive) classification of ROIs using 
the data available in version 1 of the folder structure described 
in Figure 4. This approach exploits graph representations of 
tissue and Graph Neural Network (GNN) to predict the class 
at ROI level (37). The obtained weighted F-measure is 61.5%
with a standard deviation of 0.9.

WSI-level classification was performed on 3-class
(i.e. Benign, Atypical and Malignant) classification of WSIs 
exploiting the network architecture presented in (41) on 
the latest version of the dataset. The Convolutional Neu-
ral Network (CNN) structure consists of a compress-
ing path and a learning path. In the compressing path, 
the gigapixel image is packed into a grid-based feature 
map by using a residual network devoted to the feature 
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extraction of each patch into which the image has been
divided. In the learning path, attention modules are applied to 
the grid-based feature map, taking into account spatial corre-
lations of neighboring patch features to find ROIs, which are 
then used for the final whole-slide analysis. Due to computa-
tional limits, 10 × magnification WSIs have been considered. 
WSIs were normalized by using the method proposed in (42). 
For the augmentation, in addition to affine transformations, 
the normalized WSIs at 5 × and 2.5 × magnification were also 
used. The obtained results in terms of F-measure, precision, 
recall and total accuracy are shown in Table 8.

The code for replicating the results at WSI level can 
be found at http://github.com/nadiabrancati/ABNN-WSI-
Classification.

The CNN architecture implemented for the WSIs was also 
tested on the ROIs, but with a 7-class classification protocol. 
The results of this experiment are shown in Table 9.

Conclusion
In this paper we have presented a new dataset, namely 
BRACS, of histological images of breast cancer, which present 
a subdivision of the images in seven subtypes. It includes two 
classes of atypical subtypes, namely FEA and ADH. More-
over, it provides both WSIs and ROIs in far greater numbers 
than other existing databases. Particular attention was paid 
to the distribution of WSIs and ROIs with respect to the dif-
ferent subtypes, so as to make the dataset as balanced as 
possible. This makes the dataset particularly useful for auto-
matic benchmarking in breast cancer diagnosis. We also tested 
a CNN architecture (41), which can be considered as a base-
line for future comparisons. A further extension of this dataset 
is currently underway, in order to make it suitable for carrying 
out large-scale experiments and international challenges.
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