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Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has shifted the focus of research worldwide, and more than 10 000 new articles per month 
have concentrated on COVID-19–related topics. Considering this rapidly growing literature, the efficient and precise extraction of the main 
topics of COVID-19–relevant articles is of great importance. The manual curation of this information for biomedical literature is labor-intensive 
and time-consuming, and as such the procedure is insufficient and difficult to maintain. In response to these complications, the BioCreative 
VII community has proposed a challenging task, LitCovid Track, calling for a global effort to automatically extract semantic topics for COVID-19 
literature. This article describes our work on the BioCreative VII LitCovid Track. We proposed the LitCovid Ensemble Learning (LCEL) method 
for the tasks and integrated multiple biomedical pretrained models to address the COVID-19 multi-label classification problem. Specifically, 
seven different transformer-based pretrained models were ensembled for the initialization and fine-tuning processes independently. To enhance 
the representation abilities of the deep neural models, diverse additional biomedical knowledge was utilized to facilitate the fruitfulness of the 
semantic expressions. Simple yet effective data augmentation was also leveraged to address the learning deficiency during the training phase. In 
addition, given the imbalanced label distribution of the challenging task, a novel asymmetric loss function was applied to the LCEL model, which 
explicitly adjusted the negative–positive importance by assigning different exponential decay factors and helped the model focus on the positive 
samples. After the training phase, an ensemble bagging strategy was adopted to merge the outputs from each model for final predictions. 
The experimental results show the effectiveness of our proposed approach, as LCEL obtains the state-of-the-art performance on the LitCovid 
dataset.
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Introduction
The reality of the pandemic sweeping across the world and the 
challenges it has caused have rapidly accelerated the global 
pace of scientific publications (1, 2). Since more than 10 000 
articles related to COVID-19 have been published monthly 
(3–5), the burden of manual curation and downstream inter-
pretation has increased, making it difficult to access scientific 
analysis, pharmaceutical engineering and public usage.

In response to the rapid growth of COVID-19–related 
information, the LitCovid hub (3, 4), a new, curated 
literature database, has been developed to track up-
to-date published research on COVID-19–related articles 
in PubMed. To facilitate the information retrieval, all 
curated publications in LitCovid are annotated by pre-
defined semantic topics and updated daily. These elabo-
rated semantic topics have been shown to be effective for 
various downstream applications such as citation analy-
sis and knowledge graph generation (11). Currently, the 

annotation of biomedical semantic topics for COVID-19 lit-
erature is completed manually by human experts with specific 
domain knowledge (3, 4). However, the manual annotation 
of the fast-growing COVID-19 literature is labor-intensive 
and time-consuming. In order to assure accuracy, experts 
have to thoroughly examine the entirety of each biomed-
ical article and assign it to a series of suitable predefined 
semantic topics. Moreover, the fact that biomedical litera-
ture often involves multiple topics rather than one single 
topic further aggravates the challenge of manual biocura-
tion. Hence, the automatic curation and the interpretation 
of COVID-19 literature have become a problem of great
importance.

Despite the preliminary efforts (6–10) providing feasi-
ble solutions in various knowledge extraction tasks for the 
biomedical domain, automated identification of COVID-19 
semantic topics remains challenging. In addition, few identi-
fication tools for COVID-19 topics are freely available, and 
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Table 1. Description of the semantic topics of the LitCovid challenge

Topic Description

Treatment Treatment strategies, therapeutic procedures and 
vaccine development for COVID-19

Diagnosis COVID-19 assessment through symptoms, test results 
and radiological features for COVID-19

Prevention Prevention, control, mitigation and management 
strategies

Mechanism Underlying cause(s) of COVID-19 infections and 
transmission and possible drug mechanism of action

Transmission Characteristics and modes of COVID-19
transmissions

Case Report Descriptions of specific patient cases related to 
COVID-19

Epidemic 
Forecasting

Estimation on the trend of COVID-19 spread and 
related modeling approach

there are seldom successful examples of such applications in 
the real world.

In this regard, to tackle the automated topic identifica-
tion for COVID-19, the BioCreative VII community stepped 
out and proposed the LitCovid challenge (11) in 2021. This 
task is regarded as a typical multi-label classification prob-
lem that calls for a global effort to provide practical benefits 
to worldwide biomedical curation. For this task, each partic-
ipant was required to assign one or more semantic topics to 
each biomedical article. Each topic caters to different infor-
mation needs of users and is effective for COVID-19–related 
information retrieval and downstream applications (3, 12). 
Particularly, seven specific COVID-19–related topics are pro-
posed in the challenge, namely Treatment, Diagnosis, Preven-
tion, Mechanism, Transmission, Case Report and Epidemic 
Forecasting. Table 1 presents the detailed descriptions of the 
semantic topics used in the LitCovid challenge. 

In this article, building upon our previous research (13), 
we present the extension work of LitCovid Ensemble Learn-
ing (LCEL) for the challenge of BioCreative VII LitCovid 
Track. Specifically, we thoroughly explored seven different 
advanced pretrained models with heterogeneous architec-
tures for ensemble learning, which guarantees the diversity 
and robustness of the deep neural networks. Moreover, to 
enhance the representation abilities of deep neural models, 
additional biomedical knowledge was proposed to facilitate 
the fruitfulness of the semantic expressions. Simple yet effec-
tive data augmentation was also exploited to address the 
learning deficiency during the training stage. In addition, to 
handle the imbalanced label distribution, a novel Asymmetric 
Loss (ASL) function (14) was introduced to the LCEL model, 
which explicitly adjusted the negative–positive importance by 
assigning different exponential decay factors. Benefiting from 
the usage of ASL, the proposed model was able to dynami-
cally decouple the modulations of the positive and negative 
samples during the training phase and focused more on the 
positive samples while mitigating the contribution of negative 
ones.

The primary goal of this study was to develop a versa-
tile machine learning approach with favorable robustness and 
generalizability to be easily applied to the COVID-19 domain 
and scaled up to other biomedical fields. The experimental 
results on the LitCovid dataset achieved state-of-the-art per-
formance, demonstrating the effectiveness of our proposed 

method. The main contributions of this work are summarized 
as follows:

(i) We propose a novel ensemble learning framework that 
can scale up effectively to the COVID-19 domain. Our 
study shows the superiority of the proposed method, 
which outperforms the current state-of-the-art systems.

(ii) We propose leveraging additional biomedical knowl-
edge as well as data augmentation to enhance the 
semantic representation ability of the ensemble mod-
els. We argue that such kinds of semantic information 
can benefit the COVID-19 topic classification and sup-
plement the development of relevant biomedical text 
mining technologies.

(iii) We introduce a novel loss function, ASL, which explic-
itly adjusts the importance of both positive and nega-
tive training samples. Due to the employment of ASL, 
the model can efficiently mitigate the imbalanced label 
distribution problem.

(iv) We make the related codes and materials of the pro-
posed method publicly available to the research commu-
nity. Our work is capable of offering new insights and 
building essential foundations for researchers in support 
of the ongoing fight against COVID-19.

Related work
In previous decades, biomedical topic identification was 
regarded as the multi-label classification problem, and a series 
of automated approaches (15–19) were developed to improve 
the time-consuming and labor-intensive curation process.

The National Library of Medicine (NLM) developed the 
most famous biomedical topic identification system, Medical 
Text Indexing (MTI) (15), which has been aiding the NLM 
human curators since 2002. The main purpose of MTI is to 
apply a rank-based approach to model the topic identifica-
tion problem, where the top-ranked topics are recommended 
as true labels. Recently, with the comprehensive success of 
deep neural networks, deep learning–based approaches have 
brought remarkable breakthroughs in various biomedical 
topic identification tasks (16–19). FullMeSH (16) proposed a 
hybrid architecture integrating both deep neural networks and 
traditional machine learning methods to improve the topic 
identification performance. Specifically, it took advantage of 
Support Vector Machine, K-Nearest Neighbors algorithm and 
an attention-based convolution neural network to generate 
semantic evidence for the topic recommendation. Its atten-
tion mechanism exhibited remarkable potential by providing 
automatic feature representations without manual interfer-
ence. AttentionMeSH (17) is another effective model based 
on attention mechanisms for biomedical topic identification. 
It utilized the architecture of a bidirectional recurrent neu-
ral network (RNN) with an attention mechanism to classify 
semantic topics for biomedical articles. Due to its deep repre-
sentation capability, AttentionMeSH enabled the model to as-
sociate more textual evidence with candidate labels for better 
prediction results. MeSHProbeNet (18) and MeSHProbeNet-
P (19) were two homogeneous deep learning methods that 
incorporated RNN and attention mechanisms simultaneously. 
By leveraging multiple semantic probes through an attention-
based enhancement, MeSHProbeNet and MeSHProbeNet-
P were able to acquire much deeper semantic insights 
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into biomedical knowledge than the original documental
contexts.

Despite preliminary efforts (15–19) that have provided 
feasible solutions and remarkable signs of progress over 
automatic topic identification, there is still an apparent gap 
between these automated methods and their applications to 
the COVID-19 domain. On the one hand, the above-described 
topic classification systems mainly concentrate on the topics 
of Medical Subject Headings (MeSH) (20, 21), which is a 
relatively large yet general set of biomedical concepts. Nev-
ertheless, confronting the current pandemic crisis, there is 
a severe lack of such specialized topic collections targeting 
the evolving biomedical knowledge of COVID-19. On the 
other hand, lacking such a standard corpus for the COVID-19 
domain drastically restricts the development of data min-
ing techniques for identifying COVID-19–related semantic
topics.

In light of these concerns, the BioCreative VII commu-
nity proposed the challenging task of the LitCovid Track 
(11), which targets assigning multiple topic labels to COVID-
19–relevant literature. This task is regarded as a typical multi-
label classification problem that calls for a worldwide effort to 
provide practical benefits to COVID-19 biocuration. For this 
task, 19 teams participated and submitted a total of 80 valid 
predictions during the online competition. Pretraining meth-
ods dominated the challenging task and exhibited the best 
performance amid the online evaluation. Specifically, DUT914 
(22) merged feature representations originating from differ-
ent pretrained models to address the LitCovid multi-label 
classification problem. Likewise, DonutNLP (23) utilized a 
voting-based method integrating multiple pretrained models 
to enhance the representation ability for the final prediction. 
Our previous work, PolyU_CBSNLP (13), proposed to make 
full use of the homogeneous and heterogeneous structures of 
different pretrained models and achieved a promising perfor-
mance during the online competition. Apart from the tech-
niques of pretrained models, Bioformer (24) also exploited a 
large amount of external biomedical articles for further fine-
tuning in the training phase, which helped the model achieve 
the best performance during the competition.

In view of multi-label classification, the characteristic is the 
inherent imbalanced positive–negative label distribution. This 
kind of task usually contains a relatively small portion of pos-
sible labels, implying that the number of positive samples per 
category will be, on average, much lower than that of nega-
tive ones. To address this issue, resampling-based methods are 
usually applied to balance the background positive–negative 
label distribution (25). However, such resampling methods
are not always suitable for multi-label classification tasks, 
as the tasks contain multiple labels, while resampling can-
not change the distribution of the specific label. A prominent 
solution for multi-label imbalance is to adopt the focal loss 
(26), which decays the loss as the label confidence increases. 
Focal loss helps the model focus on the hard samples while 
downweighting the easy ones, which demonstrates outstand-
ing results in various object detection tasks. However, treating 
the positive and negative samples equally, as proposed by focal 
loss, is sometimes suboptimal, as it results in the accumulation 
of more loss gradients from negative samples while underem-
phasizing the importance of the rare positive ones. To this 
end, on the basis of focal loss (26), a novel ASL (14) emerges 
to operate differently on positive and negative samples. ASL 

Table 2. The metadata statistics of the LitCovid corpus

Metadata Train Development Test

Title 24 960 6239 2500
Abstract 24 900 6219 2485
Journal name 24 960 6239 2500
Keywords 18 968 4754 2056
PMID 24 960 6239 2500
Authors 24 859 6212 2499
DOI 24 406 6100 2474
Publication type 24 960 6239 2500

enables deep neural models to dynamically downweight and 
hard threshold the easy negative samples, whereas the possibly 
mislabeled samples will be discarded. With the help of ASL, 
deep neural models achieved state-of-the-art performance on 
multiple popular image classification tasks (14). As there is 
a lack of such distinct research investigating the label imbal-
ance for the COVID-19 domain, we propose introducing ASL 
to existing achievements to assist the research of COVID-19 
topic identification.

Inspired by previous works, this article is devoted to the 
COVID-19 topic identification problem. We aim to provide 
a publicly available benchmark system with robust and flex-
ible inherence for the COVID-19 domain, thus filling the 
important gap in previous research.

Dataset
In this section, we first present a brief introduction to the Lit-
Covid corpus and then systematically depict the statistics of 
the corpus.

The LitCovid corpus developed by the BioCreative VII 
community originates from a large-scale curated litera-
ture hub, whose curated data are updated daily with 
the latest COVID-19–relevant articles; it is also publicly 
available for research purposes and industrial applications 
(3, 4). The BioCreative VII organizers collected more than 
30 000 COVID-19–related articles from the literature hub 
(11), which were further split into three subsets of train-
ing, development and test datasets, respectively. Dur-
ing the competition phase, the organizers first released 
the training dataset as well as the development dataset 
in Comma-Separated Values format. Later, they released
the test dataset following the same data schema except for 
the ground-truth labels, which were supposed to be predicted 
by the participants.

Since the LitCovid Track targeted the multi-label classifica-
tion for COVID-19 semantic topics, seven specific topic labels 
were annotated in the corpus, namely Treatment, Diagno-
sis, Prevention, Mechanism, Transmission, Case Report and 
Epidemic Forecasting. Out of the semantic topics annotated 
for each article, the organizers also provided various kinds 
of metadata retrieved from PubMed, enhancing the fruitful-
ness of the dataset. More detailed information on the LitCovid 
corpus is shown in Tables 2 and 3. 

Table 2 summarizes the basic statistical information of 
the LitCovid corpus. As shown in Table 2, there are 33 699 
COVID-19–related biomedical articles in the corpus, with a 
training set of 24 960 articles, a development set of 6239 
articles and a test set of 2500 articles. Most of the articles 
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Table 3. The label distribution of the LitCovid corpus

Label Train Development Test

Treatment 8718 2207 1035
Diagnosis 6193 1546 722
Prevention 11 102 2750 926
Mechanism 4439 1073 567
Transmission 1088 256 128
Epidemic Forecasting 645 192 41
Case Report 2063 482 197
Total 34 248 8506 3616

are filled with valid attributes of titles, abstracts, journal 
names, PubMed Identifiers (PMIDs), author names, Digi-
tal Object Identifiers (DOIs) as well as publication types. 
These abundant attributes guarantee the indispensable infor-
mation which assures comprehensive coverage for research 
on COVID-19 topics and downstream applications. How-
ever, it is worth noting that despite the organizers trying 
their best to fill the metadata attributes, around 25% of key-
words are still missing due to the incompleteness of the online
information.

Table 3 depicts the label distribution of the LitCovid cor-
pus. As shown in Table 3, it is observed that the frequency 
of different labels varies significantly. Among all topic labels, 
the labels of Prevention and Treatment dominate the entire 
corpus with relatively higher frequency, while the label of 
Epidemic Forecasting barely occurs, indicating an extremely 
imbalanced label distribution in the corpus, which makes the 
LitCovid challenge even harder, as most topic labels may never 
be observed in an article.

Methods
In this section, the LCEL paradigm is proposed for the 
COVID-19 multi-label classification problem. Figure 1 illus-
trates the architecture of the proposed method, which is 
a universal ensemble learning framework integrating multi-
ple classifiers generated from different powerful pretrained 
models.

As known in the ensemble learning theory, every single 
model is taken as a weak learner or classifier due to its bias 
and variance in the feature representation (27). On this basis, 
the LCEL model is to train multiple weak classifiers sepa-
rately through an ensemble manner and aggregate these weak 
classifiers into a stronger one to acquire better results. Specif-
ically, we take advantage of multiple advanced pretrained 
models with different transformer-based structures for the ini-
tialization of LCEL (13). The hypothesis is that when weak 
classifiers aggregate appropriately, the system is able to effi-
ciently narrow down the bias and variance of such weak 
learners to create a stronger learner, achieving a more accurate 
and robust performance.

In Figure 1, the overall framework of LCEL is shown. 
To begin, each classifier of the pretrained neural models is 
fine-tuned independently during the training process, and 
then all the outputs of these classifiers are merged through 
an ensemble bagging strategy to obtain the final topic pre-
diction. Moreover, in order to improve the representation 
diversity and robustness of ensemble learning, the pretrained 
models with different architectural implementations are taken 

Figure 1. The overall framework of LCEL.

into consideration. Particularly, seven powerful pretrained 
transformers are elaborated in LCEL, i.e. PubMedBERT 
(28), CovidBERT (29), BioBERT-Large (30), BioBERT-Base 
(30), BioM-ELECTRA (31), BioELECTRA (32) and BioMed-
RoBERTa (33). It is worth noticing that among these pre-
trained models, there are four variants of BERT (34), two 
variants of ELECTRA (35) and one edition of RoBERTa (36), 
respectively. We refer to the models with the same underlying 
architecture as homogeneous models; otherwise, the models 
are referred to as heterogeneous ones. These homogeneous 
and heterogeneous model groups ensure the effectiveness and 
stability of the proposed ensemble learning method.

Figure 2 depicts the holistic structure of each pretrained 
classifier ensembled in LCEL. As shown in Figure 2, each 
classifier consists of two main modules, namely Feature Rep-
resentation and Multi-label Classification. In this figure, the 
Feature Representation module takes the multiple textual 
components as the inputs and considers diverse semantic 
aspects for each input article. These textual inputs are then 
encoded by transformer-like encoders to generate further 
feature representations.

After the Feature Representation stage, a linear classifier is 
adopted to take the extracted features from different semantic 
aspects to perform the final topic classification. For each can-
didate topic, the model is able to predict a probability score. In 
addition, to handle the imbalanced label distribution problem, 
a novel loss function, i.e., ASL, (14) is proposed in LCEL to 
dynamically adjust the learning weights between positive and 
negative instances during the training phase. More detailed 
information is described in the following subsections.

Feature representation
Since the titles and abstracts of biomedical literature con-
vey rich contextual information that offers both explicit 
and implicit cues for determining topics, such contexts are 
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Figure 2. The structure of the transformer-based multi-label classifier.

regarded as the textual inputs for LCEL. However, despite 
the meaningful contexts of the biomedical literature, sur-
face textual expressions are still less informative for semantic 
representation due to the deficiency of necessary knowledge 
comprehension.

Following our previous work (13), we argue that the addi-
tional biomedical knowledge, such as keywords, MeSH terms 
and journal names, is beneficial for the problem of COVID-19 
topic identification. The main idea behind taking these kinds 
of additional biomedical knowledge is that they carry a large 
amount of manually refined semantic meanings that have been 
carefully reviewed by the authors and curators. Therefore, as 
shown at the bottom of Figure 2, before the training stage, 
the input sequence of each article needs to be constructed 
by concatenating all texts of keywords, MeSH terms, jour-
nal names, as well as titles and abstracts. Note that since the 
MeSH terms are not available in the official LitCovid cor-
pus, we thus crawled these crucial materials as supplements 
from PubMed in terms of the corresponding identifier PMID 
of each target article.

After concatenating the above-mentioned contexts
and knowledge-based semantic information, a powerful 

transformer encoder is further applied to the texts for higher-
quality feature representation, which has shown promising 
results in various natural language processing (NLP) tasks 
(34, 37). As the transformer encoder makes use of both 
explicit and implicit textual correlations between the adja-
cent tokens, each word in the input sequence is accordingly 
represented by its hidden state, generated as follows: 

where wi is the input word at position i, θ represents the 
encoder parameters of the transformer, d stands for the hid-
den size and hi means the encoded hidden state for the i-th 
word. The entire textual input is then accordingly represented 
by the sequence of the encoded hidden states, which is denoted 
as follows: 

where L is the length of the input sequence, H ∈ ℝL×d is a L × d 
matrix concatenating all hidden states of the input words.

Nonetheless, although transformers-based methods have 
gained prominence in various NLP tasks (34, 37), their per-
formance still highly relies on the quantity and diversity of the 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac103/6846687 by guest on 25 April 2024



6 Database , Vol. 00, Article ID baac103

training data and usually suffers from the challenges of inad-
equate training samples. Moreover, deep neural models are 
also prone to overfit on small datasets due to their massive 
number of trainable parameters. In light of these concerns, 
when confronting the COVID-19 topic identification prob-
lem, a simple yet effective data augmentation approach is also 
introduced to LCEL for further performance improvement. 
Specifically, a large number of additional 96 804 COVID-
19–relevant articles (including titles, abstracts, labels, etc.) 
are incorporated from the online hub (11) to enrich the 
representation capability of LCEL.

Multi-label classification
Benefiting from the superior representation ability of trans-
formers, the first hidden state vector r ∈ ℝh out of H is 
considered the final feature representation for the input article 
and is further fed into a linear projection layer with a Sigmoid 
activation function for the topic classification. The final out-
put ̂y ∈ ℝm is consisted of the predicted probabilities of the 
corresponding labels for each input article: 

where W ∈ ℝm×h is the linear transformation matrix, b ∈ ℝm

is the bias and σ stands for the Sigmoid activation function. 
The value m equals the number of the target topics for the 
final classification, and each output can be interpreted as the 
confidence score of the corresponding topic recommendation.

Since the COVID-19 topic identification task is regarded as 
a multi-label classification problem, a high negative–positive 
label imbalance issue is inevitably encountered during the 
training phase. Therefore, how to tackle the extremely imbal-
anced label distribution is essential to the overall system 
performance. In previous decades, the conventional loss func-
tion of binary cross-entropy (BCE) has dominated various 
challenging NLP tasks and similarly exhibited remarkable 
success in numerous biomedical fields (16–19). However, the 
aggressive essence of BCE treats all candidate labels equally 
without distinguishing the different importance between pos-
itive and negative samples. This disadvantage usually leads 
to suboptimal performance (14, 26), as it results in the accu-
mulation of more loss gradients from negative samples while 
downweighting the importance of the rare positive ones.

To address the aforementioned drawbacks of BCE, a novel 
loss function, i.e., ASL, (14) is proposed in the LCEL model to 
address the label imbalance problem via a dynamical weight 
adjustment in negative and positive samples. The idea behind 
leveraging the ASL is that ASL reviews the different contri-
butions of both positive and negative samples and encourages 
the model to pay more attention to the most difficult examples 
for better performance. Specifically, given K different topic 
labels, the neural network outputs one logit per label, zk and 
each logit are independently activated by a Sigmoid function 
σ. For example, if we denote k as the ground truth for class 
k, then the total classification loss, ℒall, is then obtained by 
summing up all binary losses from K labels: 

ℒall=
K

∑
k=1

ℒ(𝜎(zk),yk) (4)

where yk ∈ [0,1] is the ground-truth label of the k-th label; 
yk = 1 means the k-th label is manually annotated to the input 

article; otherwise, yk is assigned with 0. Consequently, a more 
general form of the binary loss per label, ℒ, is formulated as: 

where y is the ground-truth label, ℒ+ and ℒ− are the positive 
and negative loss components, respectively. On this basis, the 
unified form of ASL is defined as follows: 

where p = σ(z) is the confidence probability predicted by the 
network, pm is the shifted probability and γ+ and γ- are 
the asymmetric focusing weights decaying the contribution of 
both positive and negative samples, respectively. The proba-
bility margin m ≥ 0 is a tunable hyper-parameter that controls 
the acceptance of the negative predictions.

It is observed that ASL decouples the focusing levels of pos-
itive and negative samples through different decay rates γ+
and γ-. When dealing with multi-label training, higher values 
of decay rates are able to sufficiently downweight the contri-
bution from easy samples (14). Specifically, since the number 
of negative samples is much larger than the positive ones in 
the corpus, by setting γ− > 0 in Equation (6), the contribution 
of easy negatives (with low probability, p ≪ 0.5) to the accu-
mulated loss can be significantly downweighted, enabling the 
model to focus more on the harder samples during training. 
Moreover, the additional asymmetric mechanism of proba-
bility shifting also performs hard thresholding for the easy 
negative samples, i.e. it will fully discard the negative sam-
ples via a flexible probability margin m when their predicted 
confidence is very low. In short, through asymmetric focusing 
and probability shifting, ASL is able to obtain better control 
over the contributions of positive and negative samples to the 
loss function and help the model to learn meaningful features 
from positive samples despite their less frequent occurrences.

It is worth noting that when γ+ = γ- = pm = 0, ASL degen-
erates to the classic BCE loss. Since we are more interested 
in highlighting the contribution of positive samples, we set 
γ− > γ+ for experimentation. It can be convenient to set γ+ = 0 
so that the positive samples will incur the same cross-entropy 
loss; meanwhile, the model only needs to control the level of 
the asymmetrically negative part via the hyper-parameter γ−. 
In other words, the model is able to focus on learning features 
from difficult samples while de-emphasizing the features from 
the easy ones.

Benefiting from the effectiveness of ASL, the issue of imbal-
anced label distribution is lessened and the entire framework 
of LCEL is trained in an end-to-end fashion by a gradient-
based optimization algorithm that minimizes the total loss of 
ℒall.

Results
In this section, we first introduce the evaluation metrics and 
the experimental settings for the LitCovid multi-label clas-
sification problem; we then systematically evaluate the per-
formance of our approach and compare it with the relevant 
state-of-the-art systems. Finally, the error analysis is carried 
out at the end of this section.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac103/6846687 by guest on 25 April 2024



Database, Vol. 00, Article ID baac103 7

Evaluation metrics
Amid the LitCovid online competition, all submissions were 
evaluated from the label-based perspective and the instance-
based perspective, both of which are widely utilized for 
multi-label classification. Specifically, nine different measures 
at three different levels are applied, i.e. example-based pre-
cision (EBP), example-based recall (EBR), example-based F1 
(EBF), macro-precision (MaP), macro-recall (MaR), macro-
F1 (MaF), micro-precision (MiP), micro-recall (MiR) and 
micro-F1 (MiF).

Let K denote the total number of all topic labels, and N
denote the number of the input instances (i.e. biomedical arti-
cles). yi and ̂y

i
∈ {0,1}K are the true and predicted labels for 

instance i, respectively. The foregoing evaluation metrics are 
further defined as follows:

(i) EBF:

EBF is utilized to evaluate the system performance at the 
instance level, and it can be computed by the harmonic mean 
of EBP and EBR, as follows: 

where 

where

Note that EBP and EBR are calculated by summing EBPi
and EBRi over all instances, respectively.

(ii) MaF

MaF is utilized to evaluate the system performance at the 
macro level of labels. In MaF, all the labels are treated equally 
regardless of their distribution. MaF can be computed by the 
harmonic mean of MaP and MaR, as follows: 

The MaP and MaR are obtained by computing the preci-
sion and recall for each label separately and then averaging 
them over all labels, as follows:

where

(iii) MiF

MiF is utilized to evaluate the system performance at the 
micro level of labels. In MiF, the distribution of each label is 
taken into consideration; the labels with larger counts exert 
more influence on the final results during the calculation. MiF 
can be computed by the harmonic mean of MiP and MiR, as 
follows: 

where

Experimental settings
In our experiments, all texts of articles and additional biomed-
ical knowledge are converted into lower cases before being 
fed into the downstream deep neural networks. In case some 
article texts might exceed the length limitations of pretrained 
models, the overlong texts of biomedical articles are truncated 
to substitute the original ones. In our experiments, the max-
imum length of input texts is fixed to 512, and the training 
batch size is set to 50. As multiple state-of-the-art pretrained 
models are explored in LCEL, all parameters follow their 
default settings during the model initialization. In the train-
ing phase, the AdamW optimizer (38) is adopted to minimize 
the training loss, and the learning rates are kept identically for 
all models with the value of 2e-5.

Regarding the loss function of ASL, since we are more 
interested in emphasizing the contributions of positive sam-
ples, we empirically set γ− > γ+ to explicitly minimize the 
weights of negative samples. In particular, γ− and γ+ are 
separately assigned to 1 and 0. To simplify the experimen-
tations, the hyper-parameter of the probability margin m
follows the default settings as mentioned in the study by 
Ben-Baruch et al. (14), which equals 0.05. In terms of data 
augmentation, an additional 96 804 COVID-19 relevant arti-
cles are collected from the online hub (11) on 25 January 
2022, excluding the overlaps with the original LitCovid
dataset.

The total number of fine-tuning steps for each pre-
trained model is set to 16 000, and each checkpoint 
per 500 training steps is reserved for further evaluation 
and integration. The best-performed checkpoints of each 
pretrained model will be ensembled for the final topic
prediction.

System performance on the development dataset
Our experimental results on the LitCovid development 
dataset are presented in the following order:

(i) Evaluation with different biomedical knowledge on the 
LitCovid development dataset.

(ii) Evaluation with ASL and the performance comparison 
with BCE loss.

(iii) Evaluation with data augmentation and the overall 
comparison with different training policies.
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Table 4. The knowledge combination experiments on the development dataset

Additional biomedical knowledge MaP (%) MaR (%) MaF (%) MiP (%) MiR (%) MiF (%) EBP (%) EBR (%) EBF (%)

Text + Keywords + MeSH + Journal 
name

84.71 87.25 85.93 89.24 90.96 90.09 92.02 93.20 92.61

Text + Keywords + MeSH 85.73 86.34 86.02 90.19 90.12 90.16 92.37 92.58 92.47
Text + Keywords 85.80 85.79 85.76 90.34 89.69 90.01 92.37 92.26 92.31
Text 85.14 84.17 84.60 90.10 89.22 89.66 92.09 91.83 91.96

System performance with different knowledge features
Following the previous work (13), three distinctive kinds of 
additional biomedical knowledge are proposed to enhance the 
feature representations for LCEL. To investigate the impor-
tance of the proposed biomedical knowledge, a detailed 
feature combination study is performed on the LitCovid devel-
opment dataset, trying to reveal their different influences. 
Since seven advanced pretrained models are proposed for the 
ensemble learning of LCEL, the naive yet effective pretrained 
model of PubMedBERT (28) is selected to simplify the exper-
imental comparison. The feature combination study follows 
the same training scenario described in the study by Gu et al. 
(13), i.e. it only utilizes the default LitCovid training dataset 
as well as BCE loss for fine-tuning. Table 4 depicts the details 
of the knowledge combination experiments, in which the best 
scores are highlighted in boldface. It is worth mentioning that 
all experiments rely on the fundamental texts (i.e. titles and 
abstracts) of the input articles, which are available for all 
kinds of trials. 

It is observed from Table 4 that, by merely using the contex-
tual information of titles and abstracts, PubMedBERT (28) is 
able to achieve an MaF as high as 84.60%, an MiF as high as 
89.66% and an EBF as high as 91.96%, respectively. This indi-
cates that the contextual information of titles and abstracts 
inherently contains crucial clues for COVID-19 multi-label 
classification, and the pretrained model can effectively cap-
ture and represent such useful information. When successively 
combing the contexts with the biomedical knowledge of key-
words and MeSH terms, the performance is further improved 
and reaches an MaF of 86.02%, an MiF of 90.16% and an 
EBF of 92.47%, respectively. This suggests that these distinc-
tive kinds of biomedical knowledge can significantly provide 
supplementary semantic information for COVID-19–relevant 
topics, which have been manually refined and interpreted by 
authors and curators. Interestingly, with further combing of 
the knowledge of journal names, the model is able to obtain 
the highest EBF of 92.61%, while losing slight performance in 
MaF and MiF. This indicates that the journal name does bring 
certain background knowledge to the pretrained model; how-
ever, such biomedical knowledge is too general to help the 
model improve overall. Although there are some slight losses 
in MaF and MiF, the knowledge of journal names still helps 
the model perform consistently better than the one that exclu-
sively uses the contexts of titles and abstracts. In this regard, 
we take all biomedical knowledge of keywords, MeSH terms 
and journal names as the default features for all pretrained 
models during our experimentation.

System performance with ASL
As ASL is proposed for better control of the contributions 
from both positive and negative samples, a fair comparison 

between ASL and BCE is conducted to better understand the 
difference and to demonstrate the influence of the asymmet-
ric focusing mechanism. Similar to the aforementioned feature 
combination, the single model of PubMedBERT (28) on the 
LitCovid development dataset is evaluated to simplify the 
experimental comparison. Table 5 reports the detailed perfor-
mance of each label and their averaged results in micro, macro 
and example-based measures, respectively. 

In Table 5, it is noticeable that when adopting the con-
ventional BCE loss, the best performance of PubMedBERT 
(28), on average, achieves an MaF of 85.93%, an MiF of 
90.09% and an EBF of 92.61%. This indicates that the con-
ventional BCE loss is universal and robust enough to handle 
the multi-label classification problem, due to its equivalent 
weight estimation over different label distributions. In con-
trast, when using ASL, the performance surpasses the model 
with BCE loss by improvements of 0.38 units in MiF and 
0.32 units in EBF. This suggests that ASL enables the model to 
decouple the modulations of positive and negative samples, 
and the asymmetric focusing mechanism helps the model to 
understand positive samples better. However, when applying 
ASL, the model suffers from a slight decline in MaF with 0.03 
units lower than the one with BCE. This implies that, although 
the asymmetric focusing mechanism concentrates more on 
the low-distributional positive samples, the aggressive adjust-
ments of the weight manipulation might harm the importance 
of certain labels.

Specifically, by adopting BCE, the prediction of Prevention 
achieves the highest F1 score of 94.58%. The performance 
scores of Treatment, Diagnosis, Mechanism and Case Report 
are relatively close. Compared to the above-mentioned labels, 
predictions of Epidemic Forecasting and Transmission per-
form the worst. This is likely due to the label imbalance 
described in Section Dataset, which implies that with fewer 
class examples, the model faces more difficulties during pre-
diction. Benefiting from the asymmetric focusing mechanism, 
ASL successfully helps the model pay more attention to the 
labels of Diagnosis, Prevention, Mechanism and Epidemic 
Forecasting, gaining better performance in the multi-label 
classification.

To understand the impacts of the exponential decay fac-
tors in the asymmetric focusing mechanism, we combine γ+
and γ− with different values to verify their influences. Note 
that for each pair of decay factors, we fine-tune the pre-
trained model and save multiple checkpoints for evaluation as 
described in the Section Experimental Settings. Figure 3 illus-
trates the boxplots of the standardized five-number summary 
for all checkpoints of pretrained models when using different 
settings of γ+ and γ−. Specifically, the minimum, the maxi-
mum, the sample median and the first and third quartiles are 
depicted in Figure 3. During the comparison, we set γ+ with 
the range from 0 to 2 and γ− with the range from 0 to 3, 
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Table 5. The comparison of different loss functions

Loss Labels P (%) R (%) F1 (%) Count

BCE Treatment 89.74 90.76 90.25 2207
Diagnosis 85.27 90.62 87.86 1546
Prevention 94.06 95.09 94.58 2750
Mechanism 88.86 86.21 87.51 1073
Transmission 70.22 74.61 72.35 256
Epidemic Forecasting 74.16 80.73 77.31 192
Case Report 90.67 92.74 91.69 482
macro avg 84.71 87.25 85.93 8506
micro avg 89.24 90.96 90.09 8506
example avg 92.02 93.20 92.61 6239

ASL Treatment 89.08 91.30 90.18 2207
Diagnosis 87.94 90.56 89.23 1546
Prevention 93.92 96.11 95.00 2750
Mechanism 88.39 87.23 87.80 1073
Transmission 70.00 68.36 69.17 256
Epidemic Forecasting 76.88 79.69 78.26 192
Case Report 92.23 91.08 91.65 482
macro avg 85.49 86.33 85.90 8506
micro avg 89.70 91.24 90.47 8506
example avg 92.43 93.43 92.93 6239

respectively. When tuning γ+ and γ-, all other parameters of 
pretrained models remain the same.

It is observed from Figure 3 that in all experimental tri-
als, the best-performing checkpoint is gained when adopting 
the combination of the decay factors with γ+ = 0 and γ- = 1 
(i.e. ASL_0_1). This can be explained by the advantages of the 
asymmetric focusing mechanism, which focuses more on the 
positive samples while attenuating the importance of negative 
ones. Interestingly, when simply applying γ+ = 0 and γ- = 0 
(i.e. ASL_0_0), the best checkpoint of the model also exhibits 
comparable performance, which implies that the equal treat-
ment of both positive and negative samples is as effective as 
the inherent assumption of BCE.

However, when γ+ is fixed to 0 and γ- is above 1, the 
pretrained models perform much worse. This is likely due to 
excessive downweighting of γ-, which may lead to too much 
disregard for negative samples, losing the necessary semantic 
information for the models. It is also noticeable that as the 
asymmetric decay weight γ- becomes higher, the prediction 
variance of the model also increases. This may further support 
the importance of keeping modest magnitudes of the contri-
butions from both positive and negative samples. Moreover, 
allowing γ+ > 0, all the pretrained models achieve suboptimal 
performance, demonstrating that too much attenuation on the 
positive samples cannot provide more meaningful clues for 
further improvement.

System performance with data augmentation
Likewise, data augmentation is another approach proposed 
in LCEL that aims at benefiting the representation capabilities 
of pretrained models. To investigate the importance of corre-
sponding contributions of data augmentation, we experiment 
with different training policies and compare their results, as 
seen in Table 6. One of the key claims is that data augmenta-
tion is able to provide meaningful background information 
that is crucial for COVID-19 multi-label classification. To 
verify the assumption, Table 6 exhibits the details of the 
experiments with different training policies. 

In Table 6, Train_Def stands for the models trained only 
using the LitCovid training dataset, while Train_Aug means 
the models trained with data augmentation. It is worth notic-
ing that the training policy of ‘Train_Def + BCE’ is identical 
to the previous work (13), which was one of the top-ranked 
systems during the LitCovid online competition. In contrast, 
‘Train_Aug + ASL’ stands for the training policy proposed for 
LCEL.

As is shown in Table 6, for the training policy of ‘Train_Def 
+ BCE’, it can be observed that all models have com-
petitive performances with only slight differences due to 
their powerful feature representation abilities. This indicates 
that all pretrained models with biomedical knowledge can 
provide robust COVID-19–specific feature representations, 
which benefit the ultimate multi-label classification perfor-
mance. In particular, PubMedBERT (28) acquires the highest 
MaF of 85.93%, while BioMed_RoBERTa (33) reports the 
best performance with an MiF of 90.19% and an EBF of 
92.65%.

Moreover, compared with ‘Train_Def + BCE’, the train-
ing policy of ‘Train_Def + ASL’ consistently improves the 
performance of BioBERT-Base (30), BioM-ELECTRA (31), 
BioELECTRA (32) and BioMed-RoBERTa (33). This sug-
gests that the ASL enables the models to decouple the 
impacts of positive and negative samples and helps the models 
focus more on the positive ones, which benefits the over-
all multi-label classification. Although there are some slight 
declines in the MaF of PubMedBERT (28) and CovidBERT 
(29), and the MiF of BioBERT-Large (30), the other F-
measures of these pretrained models are still boosted due
to ASL.

In contrast, when adopting data augmentation, the per-
formance of the training policies based on Train_Aug sig-
nificantly outperforms Train_Def. This indicates that inad-
equate training data make it difficult to learn the essential 
semantic representations, while data augmentation addresses 
the training deficiency effectively, which enables an overall 
improvement of the models. Regarding ‘Train_Aug + BCE’ 
and ‘Train_Aug + ASL’, both policies rival each other and 
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Figure 3. The comparison of ASL with different hyper-parameters.

exhibit competitive performance. This implies that a large 
number of external training data guarantee abundant priori 
semantic information, which provides a solid foundation for 
learning capability. Once adapted to the COVID-19 domain, 
the additional semantic information can help the pretrained 
models understand COVID-19–relevant topics better. After 
integrating all the fine-tuned pretrained models under the 
policy of ‘Train_Aug + ASL’, LCEL is able to obtain con-
sistent superiority in all label-level and instance-based level 
F-measures, resulting in the highest MaF of 87.40%, MiF of 
91.75% and EBF of 93.91%. In a word, the experimental 
results show the effectiveness of the proposed LCEL method, 
due to the efficient aggregation of multiple classifiers and ASL 
function.

System performance on the test dataset
In the following section, a comprehensive comparison 
between the state-of-the-art systems (13, 22–24, 39) and 
LCEL is performed on the BioCreative VII LitCovid test 
dataset. Since there were up to 80 different valid predictions 
submitted to the challenge (11) during the online competition, 
for a fair comparison, the organizers implemented an offi-
cial baseline system that utilized a shallow embedding-based 
machine learning approach, namely ML-Net (39). Table 7 
reports the official statistics of all submissions as well as the 

overall system comparison. The highest scores of F-measures 
are boldfaced in Table 7. 

As shown in Table 7, the official baseline system ML-Net 
(39) reaches decent achievements with an MaF of 76.55%, 
an MiF of 84.37% and an EBF of 86.78%. The baseline 
performance is quite close to the Q1 statistics for all three 
F-measures, suggesting that ∼75% of the team submissions 
have more promising results than the official baseline method. 
In contrast, the average MaF, MiF and EBF of all submissions 
are as high as 81.91%, 87.78% and 89.31%, respectively, 
all of which are better than the baseline scores. However, 
although most submissions outperform the baseline system, 
there are still relatively large standard deviations among the 
submissions, with 7.01% to MaF, 4.82% to MiF and 4.60% 
to EBF, respectively.

Note that all four of the top-performing systems developed 
during the online competition, i.e. Bioformer (24), DonutNLP 
(23), DUT914 (22) and PolyU_CBSNLP (13), consistently 
achieved top-ranked performance in all three F-measures. 
Interestingly, all state-of-the-art systems (13, 22–24), more or 
less, adopted ensemble learning technologies. Specifically, Bio-
former (24) investigated multiple pretrained models includ-
ing PubMedBERT (28) and BioBERT (30) for the LitCovid 
multi-label classification problem. To enhance the represen-
tation abilities, Bioformer (24) further proposed to exploit a 
larger external dataset to fine-tune the pretrained models and 
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Table 6. The overall comparison of data augmentation with different loss functions

Policy Model MaP (%) MaR (%) MaF (%) MiP (%) MiR (%) MiF (%) EBP (%) EBR (%) EBF (%)

Train_Def + BCE PubMedBERT 84.71 87.25 85.93 89.24 90.96 90.09 92.02 93.20 92.61
CovidBERT 84.65 85.23 84.86 88.51 90.45 89.47 91.30 92.68 91.98
BioBERT-Large 85.20 78.01 80.71 88.39 87.54 87.96 90.34 90.23 90.28
BioBERT-Base 84.12 82.09 82.71 88.56 88.28 88.42 91.02 90.87 90.94
BioM-ELECTRA 86.45 83.76 85.02 89.68 90.04 89.86 92.32 92.60 92.46
BioELECTRA 83.34 85.77 84.48 88.59 90.81 89.68 91.68 93.09 92.38
BioMed_RoBERTa 85.18 85.48 85.32 89.52 90.87 90.19 92.19 93.12 92.65

Train_Def + ASL PubMedBERT 85.49 86.33 85.90 89.70 91.24 90.47 92.43 93.43 92.93
CovidBERT 84.57 85.17 84.83 88.95 90.50 89.72 91.59 92.81 92.20
BioBERT-Large 82.63 81.58 82.06 88.11 87.64 87.88 90.54 90.61 90.57
BioBERT-Base 85.87 86.32 86.07 90.27 90.62 90.44 92.65 93.04 92.84
BioM-ELECTRA 83.73 87.06 85.34 88.92 91.89 90.38 91.95 93.92 92.92
BioELECTRA 83.67 87.43 85.47 88.61 91.49 90.03 91.70 93.50 92.59
BioMed_RoBERTa 84.32 87.27 85.75 88.75 91.68 90.19 91.76 93.69 92.71

Train _Aug + BCE PubMedBERT 86.47 86.62 86.51 90.38 91.58 90.98 92.88 93.74 93.31
CovidBERT 85.26 86.62 85.62 89.74 91.36 90.54 92.45 93.48 92.96
BioBERT-Large 85.88 81.02 83.33 90.54 87.56 89.03 92.13 90.64 91.38
BioBERT-Base 88.16 85.14 86.45 90.98 91.46 91.22 93.04 93.49 93.26
BioM-ELECTRA 87.94 85.39 86.52 90.70 91.24 90.97 92.88 93.43 93.15
BioELECTRA 84.73 89.24 86.83 89.70 92.05 90.86 92.21 94.04 93.12
BioMed_RoBERTa 89.10 83.62 86.11 91.76 90.21 90.98 93.40 92.54 92.97

Train _Aug + ASL PubMedBERT 84.86 87.93 86.36 89.75 92.45 91.08 92.54 94.34 93.43
CovidBERT 84.98 87.10 86.01 89.68 91.74 90.70 92.41 93.79 93.09
BioBERT-Large 82.59 86.73 84.52 87.27 91.24 89.21 90.58 93.28 91.91
BioBERT-Base 85.02 88.11 86.51 89.69 92.24 90.95 92.50 94.13 93.31
BioM-ELECTRA 84.90 88.56 86.55 89.80 92.36 91.06 92.62 94.16 93.38
BioELECTRA 84.92 87.88 86.36 89.22 92.65 90.90 92.12 94.45 93.27
BioMed_RoBERTa 84.36 89.25 86.67 87.90 93.82 90.76 91.52 95.31 93.38

LCEL¬ (Train 
_Aug + ASL)

Ensembled 86.37 88.45 87.40 90.53 93.00 91.75 93.08 94.76 93.91

Table 7. The comparison of system performance on the test dataset

Team submission stats MaP (%) MaR (%) MaF (%) MiP (%) MiR (%) MiF (%) EBP (%) EBR (%) EBF (%)

Mean 86.70 80.12 81.91 89.67 86.24 87.78 89.85 88.87 89.31
Std 6.09 7.94 7.01 5.41 4.82 4.29 5.21 4.51 4.60
Q1 84.63 75.45 76.51 88.03 84.52 85.41 86.99 86.19 86.68
Median 88.35 83.83 85.27 91.08 88.43 89.25 91.88 90.97 91.32
Q3 90.79 85.55 86.70 92.51 89.64 90.83 93.53 91.92 92.54
Baseline (ML-Net) 83.64 73.09 76.55 87.56 81.42 84.37 88.49 85.14 86.78
Bioformer 90.38 88.23 88.75 93.67 90.02 91.81 94.14 92.56 93.34
DUT914 87.78 88.30 87.60 91.34 92.17 91.75 93.50 94.38 93.94
DonutNLP 91.52 85.66 87.54 93.43 90.10 91.74 94.40 92.54 93.46
PolyU_CBSNLP 91.39 85.34 87.49 92.52 90.29 91.39 93.78 92.64 93.21
LCEL 89.79 92.53 90.94 91.38 94.75 93.03 93.49 96.09 94.77

achieved the best performance on MaF and MiF with scores 
of 88.75% and 91.81%, respectively. Similarly, DUT914 (22) 
proposed to merge the multiple feature representations from 
different pretrained models of CovidBERT (29) and BioBERT 
(30) to capture the crucial semantic clues for the LitCovid 
Track. Due to the feature enrichment, DUT914 (22) obtained 
the best EBF of 93.94%, surpassing Bioformer (24) by 0.6 
units. DonutNLP (23) was another top-ranked system dur-
ing the online competition, which utilized a voting-based 
ensemble learning method to integrate multiple BioBERT (30) 
models. Although DonutNLP (23) did not achieve a perfor-
mance as high as Bioformer (24) and DUT914 (22), it still 
acquired a comparable performance of MaF, MiF and EBF, 
with scores of 87.54%, 91.74% and 93.46%, respectively. 
Likewise, our previous work PolyU_CBSNLP (13) also pro-
posed to ensemble multiple pretrained models to tackle the 

challenging task. However, different from DonutNLP (23), 
the pretrained models with heterogeneous architectures were 
mainly taken into consideration in PolyU_CBSNLP (13), and 
in total, seven advanced pretrained models were adopted 
accordingly. Although our previous work (13) did not outper-
form the top systems, it still rivaled these systems and reached 
promising results with an MaF of 87.49%, an MiF of 91.39% 
and an EBF of 93.21%.

For the LCEL model, since there were seven different 
transformer-like pretrained models to be ensembled, during 
the training phase, only the models that performed the best 
on the development dataset were reserved for further inte-
gration. Compared with the above-mentioned state-of-the-art 
systems (13, 22–24, 39), LCEL consistently exhibits an over-
whelming superiority in all F-measures, resulting in an MaF 
of 90.94, an MiF of 93.03 and an EBF of 94.77, respectively. 
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Despite slightly lower precision, LCEL significantly improves 
the performance in all recall-based measures. This suggests 
the effectiveness of our proposed ensemble learning method. 
On the one hand, by adopting additional biomedical knowl-
edge and data augmentation, LCEL is able to capture the 
supplementary semantic aspects related to COVID-19. On the 
other hand, benefiting from ASL, LCEL efficiently addresses 
the imbalanced label distribution, emphasizing more contri-
butions to the positive samples. The experimental results illus-
trate the efficacy of the proposed ensemble learning method, 
which might lay the preliminary foundation for research in 
the COVID-19 domain.

Error analysis
To investigate the challenging issues in practice and provide 
insights for future work, we analyzed the errors in detail and 
grouped the main possible reasons as follows:

Implicit language expression
The proposed LCEL model aims to grasp critical semantic 
clues from literature contexts; however, in some cases, if 
there is a lack of such explicit evidence clearly expressed in 
the input texts, it would be difficult for LCEL to determine 
the final topics. For instance, in the article PMID:34202160, 
our LCEL cannot recognize the true topic of ‘Treatment’as 
there are no such explicit semantic clues to support that
topic.

Contextual misunderstandings
Since the topic prediction of our proposed ensemble learn-
ing method largely relies on the contextual information 
provided by the input literature, sometimes, certain mean-
ingful and remarkable words or phrases will result in 
misunderstandings of LCEL. For instance, in the article 
PMID:34291812, the main content of the literature describes 
treatments related to a COVID-19 infection; however, as the 
remarkably indicative word ‘prevention’ explicitly occurs in 
the title, our LCEL still outputs the label of ‘Prevention’
incorrectly.

Information deficiency
As pretrained models always impose constraints on the length 
of input texts, the overlong articles will be truncated before 
being fed into the downstream deep neural networks. How-
ever, some information would be inevitably discarded during 
this aggressive preprocessing. This in turn could cause unex-
pected difficulties for the LCEL model to recommend labels. 
In this study, around 17.8% of articles were truncated and 
15.1% of the informative text is inevitably lost during the pro-
cess due to the fixed sequence length of 512. For instance, dur-
ing the preprocessing, the text of the article PMID:34227364 
is shortened and some crucial information is dropped in the 
process, leading to the failure of recognizing the correct topic 
of ‘Mechanism’.

Predicting bias
Despite applying ASL to tackle the imbalanced label distribu-
tion problem, LCEL is still prone to pay more attention to 
the dominant topics aggressively while disregarding the tail 
ones conservatively. For instance, the article PMID:34205856 
carries relatively short texts with no more than 30 words in 

its title and abstract. In this article, even though there is no 
such sign of ‘Treatment’, our LCEL model still recommends 
that topic, incorrectly.

Inconsistent annotation
In our experiments, some results show that parts of the false-
positive COVID-19 topics identified by LCEL might be true 
and perhaps should be annotated in the LitCovid corpus. 
Taking the articles PMID:34338124 and PMID:34208057 
into consideration, our LCEL model recommends the topic 
of ‘Case Report’ for both of them; however, even if some 
strongly indicative words (e.g. case, report, etc.) occur mul-
tiple times in the titles and the abstracts, the label is not anno-
tated as the ground-truth answer. This is probably because 
of the inherent annotation disagreements of the LitCovid
biocuration.

Conclusion and future work
This research proposed a novel ensemble learning of LCEL 
for COVID-19 multi-label classification, which integrated 
multiple powerful biomedical pretrained models. Specifically, 
seven advanced pretrained models with heterogeneous archi-
tectures were selected for ensemble learning. To enhance 
the representation abilities of deep neural models, additional 
biomedical knowledge and data augmentation strategies were 
exploited to fully utilize the semantic expressions. In light 
of the imbalanced label distribution, a novel ASL function 
was introduced to the LCEL model, which explicitly adjusted 
the negative–positive importance by assigning different expo-
nential decay factors. Benefiting from ASL, the proposed 
model was able to dynamically decouple the modulations of 
the positive and negative samples during the training phase 
and focused more on the positive samples, while decreas-
ing the contribution of negative ones. The experimental 
results on the LitCovid dataset achieved state-of-the-art per-
formance, demonstrating the effectiveness of our proposed
method.

Our research on the LitCovid dataset has exhibited 
promising results for the COVID-19 multi-label classification 
research. In future work, we will develop more advanced deep 
neural models with richer semantic features and sophisticated 
ensemble techniques to improve the current system for better 
performance.
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