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Abstract

Proteins are the structural, functional and evolutionary units of cells. On their surface, proteins are shaped into numerous depressions and
protrusions that provide unique microenvironments for ligand binding and catalysis. The dynamics, size and chemical properties of these cavities
are essential for a mechanistic understanding of protein function. Here, we present CaviDB, a novel database of cavities and their features in
known protein structures. It integrates the results of commonly used cavity detection software with protein features derived from sequence,
structural and functional analyses. Each protein in CaviDB is linked to its corresponding conformers, which also facilitates the study of conforma-
tional changes in cavities. Our initial release includes ~927 773 distinct proteins, as well as the characterization of 36 136 869 cavities, of which
1147 034 were predicted to be drug targets. The structural focus of CaviDB provides the ability to compare cavities and their properties from
different conformational states of the protein. CaviDB not only aims to provide a comprehensive database that can be used for various aspects
of drug design and discovery but also contributes to a better understanding of the fundamentals of protein structure—function relationships. With
its unigue approach, CaviDB represents an indispensable resource for the large community of bioinformaticians in particular and biologists in

general.

Database URL: https://www.cavidb.org

Introduction

Proteins are the functional, structural and evolutionary units
of cells. They consist of chains of amino acids that inter-
act in complex and highly interconnected networks. On their
surface, proteins are shaped into numerous cavities and pro-
trusions that provide unique microenvironments for ligand
binding or catalysis (1). The dynamic of these cavities are fun-
damental for understanding protein function, and their vari-
ations can explain changes in protein activity (2-5). Protein
movements, even the smallest, can affect cavity architecture
(6, 7). On different time scales, the movements are required
not only to bind the substrate or determine its affinity con-
stant but also to allow ligand transit from the surface to the
active site (8).

The size and geometry of the cavities, as well as their
accessibility, have proven useful in making predictions about
protein—protein interactions, protein pharmacology and bind-
ing specificity (9-11). For example, physicochemical prop-
erties of the cavities such as their charge or hydrophobicity
can also be used to predict the binding probability of specific
ligands (12, 13). Residues are known to shift their pK, val-
ues based on various structural and environmental features
(14, 15), which favors various biological activities (16, 17).

In addition, it has been shown that the shape and location
of cavities in proximity to each other can determine their
relative flexibility and influence their catalytic and binding
promiscuity (4, 11, 18).

Functional cavities are generally located within protein
domains, which are evolutionarily conserved protein regions
with specific stability, function and dynamics. The biological
activity of individual cavities is not always correlated with
domain function, and the conservation of cavities may exceed
that of a particular domain family. Therefore, knowledge of
domain activity is not sufficient to fully understand protein
function, and the integrative characterization of all domains
and their cavities may be a better approach (19).

Here, we present CaviDB (https://www.cavidb.org/), an
interactive online database that integrates the results of com-
monly used cavity detection software with protein features
retrieved from sequence, structural and functional analy-
ses. CaviDB implements established cavity detection methods
(20, 21) that allow local structural characterization but is
also useful to understand protein anatomy and function on
a global scale (22). Our database allows users to explore
protein dynamics through an easy-to-use interface that facili-
tates the comparison of the properties of protein conformers
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and their predicted cavities. CaviDB provides structural data
on every known protein structure available in the Protein
Data Bank (23) and on the protein structure predictions
of entire proteomes from model organisms available in the
AlphaFold database (24). Our goal is to provide a comprehen-
sive resource for use in various biotechnological applications,
such as drug development and discovery, but also for a bet-
ter understanding of the fundamentals of the relationship
between protein structure and function.

Materials and methods
Cavity prediction and categorization

CaviDB provides users with structural and sequential fea-
tures to characterize protein cavities. Cavity predictions were
performed using the widely used Fpocket software (25) with
default settings for all entries in the Protein Data Bank (26, 27)
and all the AlphaFold database entries (28). We retrieved and
annotated all properties (Supplementary Table S1) associated
with each cavity and all its lining residues. The cavity was con-
sidered to be druggable if it had an affectability value >0.5, as
suggested in previous work (20).

Cavities features’ calculation

To provide users with information on possible activated cavi-
ties, we estimated the pK, values (at pH = 7) of the ionizable
residues and their shifts (pK, predicted - pK, expected) using
PROPKA (29). The net pK, shift values per cavity were cal-
culated as the sum of all absolute pK, shifts of each ionizable
residue belonging to a cavity.

Using PROPKA, we also retrieved data on inter-residue
contacts per site to annotate the contacts of the cavities as
side-chain hydrogen bonds, backbone hydrogen bonds and
coulombic bonds. We created a network of cavities that have
at least one contact between the same sites, which can be dis-
played as an interactive diagram. The binding energy heat
maps show the contacts between cavities by calculating the
sum of the absolute binding energies between the residues
that make contact in the corresponding pair of cavities and
rendering colored squares.

Different physicochemical properties per site were calcu-
lated using Classification of Intrinsically Disordered Ensem-
ble Regions (30), modlAMP (31) and Biopython (32) and
assigned to each cavity as the mean values of the properties
of its residues.

Global protein features’ calculation and annotation

Global protein features were calculated as described in the
previous section. Each Protein Data Bank entry (PDB) chain
or AlphaFold model was annotated via Structure Integration
with Function, Taxonomy and Sequence (33) with identifiers
of relevant biological databases such as CATH (34) and Pfam
(35) to facilitate subsequent analysis by users.

Conformational comparisons

For the conformers’ cavities comparisons, we used the
PDBSWS—PDB/UniProt Mapping (36). This database maps
PDB residues to residues in UniProtKB (Swiss-Prot and
TrEMBL) entries (37), consequently allowing the precise com-
parison between cavities of different entries.
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Web application overview

A responsive web interface was developed to display the data
stored in a non-relational database, allowing easier navigation
and visualization of the database contents on different devices.
The web application was implemented in HTML, CSS, Ruby
(on Rails) and JavaScript (using Node]S).

The first step for running CaviDB is to provide a valid PDB
or UniProt ID. The web server automatically loads all chains
related to the search, as well as their general data, includ-
ing their length, the number of predicted cavities and relevant
cross-reference identifiers (Figure 1A and B). The search can
be filtered using the AlphaFold selector if the user is only
interested in these sorts of entries. The features obtained for
each entry are organized into two main sections describing
the general cavity descriptors, including an interactive display
for visualizing the cavities, a network representation of the
interactions and cavities including activated residues with pK,
shifts and the global protein descriptors (Figure 1D).

CaviDB allows users to explore the conformational diver-
sity of proteins and its impact on cavity dynamics by providing
a conformational comparator (Figure 1B) that displays a com-
parison page with the listed cavities for each chain and, when
selected, their properties and residues.

Results and Test cases
Globular protein test case

Promiscuous proteins are a breaking point in the “structure—
function” paradigm and the concept of biological specificity
(38, 39). Promiscuous protein behavior presents both chal-
lenges and opportunities for drug discovery programs and has
been explored as a strategy for drug repurposing (40-42).

Human serum albumin (HSA) is the major protein in
plasma, binds multiple ligands (43) and has recently emerged
as a very important drug carrier (44, 45). It has several high-
affinity binding sites, but most drugs and ligands bind to the
so-called sites I (from Met 1 to Asn 111) and II (from Gln
196 to Pro 303) (46). HSA has previously been described not
only as a transport protein but also as a promiscuous enzyme
possibly related to salicylic acid metabolism and side effects
(18,47-50).

It has been proposed that the basis for the great ability of
albumins to catalyze various reactions lies in the existence of
activated amino acids with abnormal pK, in the hydrophobic
cavity of the AIl binding site, which creates a microenviron-
ment favorable for catalysis (18, 51). As shown by the per-site
solvent accessibility plot (ASA) generated by CaviDB for the
1AO6A:0 entry, there is a local minimum around Lys199
and Arg222 (see Figure 2B), a region described as impor-
tant for catalysis (50, 52). These important catalytic residues
are located in the AIl binding site identified by CaviDB as
the largest cavity (Cavity 1) in the entry’s star plot with the
highest relative length parameter (equal to 1), also showing
a large number of contacts between cavities and the pres-
ence of activating residues. Residues Lys199 and Arg222 show
essential pK, shift in order to sustain the catalytic activity,
showing abnormally acidic properties (Lys, 199, ~7.51 and
Arg, 222, ~9.49 (18). Using the information deposited in the
CoDNasS database (53), we found the pair of HSA conform-
ers showing the maximum conformational diversity (pairs
3LU6_A and 109X_A with an Root-mean-square deviation
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Figure 1. Overview of the CaviDB web application. (A) CaviDB search allows users to search for a specific PDB or UniProt identifier. A selector is also
provided to focus the search on AlphaFold models. (B, C) Cavity dynamics can be explored using the comparison tool provided by CaviDB, where
predicted cavities and their features can be selected and displayed for different protein conformations simultaneously. (D) Schematic example of chain
feature display. The information of each entry is divided into two main sections, one containing the general cavity descriptors (top) and the other

containing the global protein descriptors (bottom).

=6.27 A). Using this information and the comparison capabil-
ity of conformers in CaviDB, it is also possible to compare the
change in some cavity features. It is then possible to observe
differences in the acid-base properties of Cavity 1, such as in
the mean pK, of Cavity 1 (Figure 2E) and changes in charge
and hydrophobicity (Figure 2F).

A second cavity (Cavity 2) containing residues Arg410 and
Tyr411, previously described as part of the catalytic active
site, was also identified (47) (Figure 2). In addition, Cav-
ity 2 contains tyrosine 411 and arginine 410 (belonging to
Cavity 4), two residues that have been shown to be important
for the esterase-like activity of the protein (52) and that inter-
act with each other through coulombic forces (Figure 2C). In
this way, CaviDB gathers important information that provides
a mechanistic explanation for the promiscuous behavior of
HSA as described previously (18, 54).

Using AlphaFold models for better predictions

The recent breakthrough of AlphaFold in predicting 3D
models provides new opportunities for exploring protein—
structure relationships. In CaviDB, we have included
1029746 AlphaFold models, but we plan to include all
recently released models in future upgrades (https://alphafold.
ebi.ac.uk/). Recently, AlphaFold models were found to cor-
rectly predict some of the native conformations of protein

ensembles (55). In some cases, high-quality models could
help to assess the functional implications of cavities. Pyri-
doxal 5’-phosphate (PLP) synthase (PLPS) is a biosynthetic
pathway enzyme that produces PLP from glutamine, ribose 5-
phosphate and glyceraldehyde 3-phosphate. The native state
of PLP synthase consists of 12 synthase and 12 glutaminase
subunits, and its chemical mechanism has already been
described (56). The active site contains active Lys81 and
Asp24 (57, 58). In some conformers of the enzyme, this active
site is open, which is due to the presence of a disordered region
over the binding site (residues 49-56) (58). When known PLPS
conformers are tested for the presence of cavities in CaviDB
(using UniProt ID QS5L3Y2 or PDBs 4wy0 and 4wxz), no cav-
ities containing biologically active residues are found. This is
likely due to the fact that the binding site is open in these
experimental structures. However, when AlphaFold models
of PLPs are considered, a new cavity is discovered that con-
tains the biologically relevant residues (Figure 3.) In this sense,
the use of high-quality AlphaFold models could help in the
estimation of cavities and their potential biological role.

The advantages of CaviDB over existing services

CaviDB has a total count of 927773 distinct proteins, with
740 140 conformers from the PDB and 1029 746 from the
AlphaFold database. It annotates proteins from 14 871 species
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271 n mn 2712 273 273 274 274 . 275
LEUy;; | GLYy; | GLYys | ALAy,  METys

Figure 3. Comparison of the presence of cavities in PLP synthase conformers (UniProt ID Q5L3Y2). Using the expression
AF-Q5L3Y2-F1-MODEL_V3A:1]4WXYA:0 to search in CaviDB allows comparing the presence of cavities in both selected conformers. It can be seen that
the AlphaFold model contains a biologically relevant cavity (Cavity 1) that contains the key residues described in the bibliography (56). This cavity is

absent in other conformers due to the presence of disordered regions.

representing 10 181 Pfam families. With the number of entries
in our first release, we were able to characterize a total of
36136 869 cavities, of which 1147034 are druggable. Since
CaviDB provides gene IDs and Ensembl IDs, the data of
each entry can be easily linked to metabolic pathways and
evolutionary information in which each protein might be
involved. Moreover, CaviDB is the first repository of infor-
mation regarding protein cavities that explicitly considers the
state-of-the-art AlphaFold models as targets for cavity discov-
ery. Of AlphaFold models in CaviDB, 8042% are above a
pLDDT score of 70, offering in this way a substantial amount
of 3D models with a considerable level of predicted quality.

Furthermore, this is also especially interesting for intrinsi-
cally disordered proteins or proteins with flexible regions,
in which much of the structural information of biologi-
cal relevance is not observable to experimental techniques
such as X-ray crystallography. There are many tools focused
on protein structural characterization and cavity prediction
(59, 60), such as CavitySpace, a library focused on cavities
in human proteins predicted by AlphaFold, or CavityPlus, a
web server for cavity detection. In addition, the number of
predicted 3D models is growing very rapidly, characterizing
almost the entire known sequence space (https://alphafold.ebi.
ac.uk/) (24) and providing unprecedented opportunities to
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study the structure—function relationship of proteins. How-
ever, as we have shown, CaviDB is not only a tool for deter-
mining the properties of protein cavities and their dynamics
in a large number of different species and proteins but also
provides a simple and accessible way to analyze structural
data.

Discussion

Identification of binding cavities is critical for understanding
the relationship between protein structure and function and is
a crucial step for drug design (13, 59, 61, 62). Since confor-
mational diversity is a key concept for understanding protein
biology, CaviDB provides not only a freely accessible, com-
prehensive database of features of proteins and their cavities
but also a simple and user-friendly tool for analyzing the data
with a dynamic perspective at multiple levels.
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Supplementary material is available at Database online.
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