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Abstract
Scientific literature is published at a rate that makes manual data extraction a highly time-consuming task. The Comprehensive Antibiotic Resis-
tance Database (CARD) utilizes literature to curate information on antimicrobial resistance genes and to enable time-efficient triage of publications 
we have developed a classification algorithm for identifying publications describing first reports of new resistance genes. Trained on publications 
contained in the CARD, CARD*Shark downloads, processes and identifies publications recently added to PubMed that should be reviewed by 
biocurators. With CARD*Shark, we can minimize the monthly scope of articles a biocurator reviews from hundreds of articles to a few dozen, 
drastically improving the speed of curation while ensuring no relevant publications are overlooked.
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Introduction
Antimicrobial resistance (AMR) is a health-care crisis esti-
mated to cause the death of 10 million individuals and cost 
$100 trillion worldwide by 2050 (1). Antimicrobial misuse 
in both clinical and agricultural settings has undermined the 
effectiveness of molecules responsible for an otherwise mira-
cle of modern medicine (2), i.e. our ability to control infection 
by bacterial pathogens since the early 20th century. Yet even 
as bacteria evolve mechanisms to resist current antimicro-
bials, the discovery pipeline for new candidate molecules has 
become moribund (3, 4). With this dire background, phe-
notypic and genotypic surveillance of AMR is increasingly 
important at regional, national and international levels to 
assess risk and inform policy, while new machine learning 
approaches hold promise for personalized medicine based 
on pathogen genome sequencing to guide treatment of indi-
viduals while favoring stewardship of antimicrobials for the 
broader community (5–8).

Understanding the mechanisms underlying AMR is of great 
importance for the targeted treatment of bacterial infections 
and for community risk assessment. With an understand-
ing of the suite of AMR genes (ARGs) found in a pathogen 
together with the antibiotics they confer resistance toward, 
we come closer to predicting the phenotypic antibiogram of 
a pathogen (9). As such, sequencing of pathogen genomes 
from individual infections, among communities, and in dif-
ferent environments is in increasing use in research, public 
health and industry. With this increased effort in sequencing 

of bacterial pathogens comes the need for accurate annotation 
of ARGs within these genome sequences and an increasing 
number of tools and databases exist for this annotation effort. 
While many are specialized to specific pathogens, drug classes 
or mechanisms of resistance, several databases and associ-
ated tools attempt to annotate the entire catalog of known 
ARGs for genome assemblies or metagenomic reads, foremost 
among these being the Comprehensive Antibiotic Resistance 
Database (CARD) (10), ResFinder (11) and the National 
Center for Biotechnology Information Pathogen Detection 
Reference Gene Catalog (12). Yet, AMR is a unique cura-
tion challenge as the antimicrobial resistome spans numerous 
environments, and the misuse of antimicrobials can create 
selective pressure upon new targets, leading to new resis-
tance ARGs and mechanisms. Furthermore, ARGs are often 
associated with mobile genetic elements such as plasmids, 
allowing ARGs emerging in environmental settings to move 
into agricultural settings and follow the farm-to-fork route 
to clinical settings. Novel ARGs are quickly being discov-
ered with the expansion of next-generation sequencing efforts, 
and it has become difficult for teams of biocurators to effi-
ciently identify the subset of literature discussing novel ARGs 
or mutations within the corpus of the AMR literature (∼8000 
new publications per year).

CARD is an ontological-driven database of ARGs and indi-
vidual mutations conferring resistance in a broad range of 
bacterial species, including those found in clinical, agricul-
tural and environmental settings (10). Powered by the Antibi-
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otic Resistance Ontology (ARO), CARD seeks to catalog 
all known ARGs, their products and associated phenotypes 
within both an ontological context (i.e. connecting ARGs 
to antibiotics, AMR mechanisms, and evolution from drug 
targets) and bioinformatic context (i.e. collating reference 
sequences and mapped mutations in the context of bioinfor-
matic parameters for their accurate prediction in new genomic 
data). Upon this knowledge base, CARD layers software tools 
for genome or metagenome annotation, design of bait capture 
platforms, and annotation of >100 000 genomes, plasmids 
or shotgun assemblies to provide comprehensive resistome, 
variants, and prevalence information. Yet, at its base CARD 
relies heavily on manual, expert curation of ARGs (10, 13). 
In particular, curators seek to ensure CARD and the ARO 
have information on all ARGs upon their first description 
and that ‘to be included in CARD an AMR determinant 
must be described in a peer-reviewed scientific publication, 
with its DNA sequence available in GenBank, including clear 
experimental evidence of elevated minimum inhibitory con-
centration (MIC) over controls’ (10). Given the high pace of 
the discovery of new ARGs, manual triage of the scientific 
literature proved inefficient, and the CARD team developed 
word-association scoring matrices to prioritize publications 
in PubMed for manual investigation by curators (10, 13). 
However, this method proved to have several limitations, out-
lined below, and here we report the development of supervised 
learning methods for the identification and prioritization of 
scientific publications containing newly described ARGs for 
curation into CARD. This work is informative for the devel-
opment of automated or algorithm-assisted curation of the 
scientific literature and provides details on CARD’s approach 
for ensuring comprehensive curation of ARGs for annotation 
of newly sequenced genomes or metagenomes.

Materials and methods
Prioritization via word-association scoring matrices 
(CARD*Shark 2)
The CARD team initially attempted the use of word-
association scoring matrices to prioritize papers in PubMed. 
After two rounds of development, the Python-based 
CARD*Shark 2 algorithm guided curators to relevant papers 
using an algorithm that scored papers based on their abstract 
similarity to papers previously curated in CARD for ARGs. 
For example, for macrolide antibiotics, using the relative fre-
quencies of each word in the abstracts of all papers associated 
with macrolides in CARD, CARD*Shark 2 calculates a score 
for each macrolide-associated paper by taking the sum of rel-
ative frequencies of all abstract words. Based on the score, it 
assigned new papers in PubMed to a low- or high-level group 
that dictates the papers’ relevance to curators if the score 
falls below or above a cut-off, respectively. For our analysis, 
papers assigned to the high-level group are considered posi-
tive predictions, and low-level papers are considered negative 
predictions. Although the algorithm provided curators with a 
reasonable set of papers to triage, there were a few key limi-
tations. First, CARD*Shark 2 pulled papers from PubMed on 
a monthly basis using only drug class terms found in CARD’s 
ARO as query terms, ignoring words for individual antibiotics 
or ARGs and thus potentially missing important papers when 
an abstract does not discuss a drug class directly. In addition, 
papers in PubMed can include multiple drug class terms and 

are thus scored differently by each drug class–specific scoring 
matrix. Such papers could be reported under multiple drug 
class search results, creating redundancy and inefficiency for 
curators, but also inconsistency as papers could appear low 
level in one drug class group but high level in another. Finally, 
every paper CARD*Shark 2 examined was considered a pos-
itive result even if the initial PubMed query result included 
non-AMR papers, yet the scoring was often not discrimina-
tory and forced a manual review of all papers by curators. 
With these flaws in mind, we were interested in implement-
ing a machine learning version of CARD*Shark that reviewed 
all recently added PubMed articles monthly and identified 
all relevant publications with high recall, while not overbur-
dening the curator with too many false positives, i.e. low
precision.

Paper retrieval, preprocessing and feature 
extraction for supervised learning
The type of problem CARD*Shark 2 aims to solve is one 
of binary classification: given an input of publications newly 
added to PubMed, we wish to assign a pass/fail on whether 
they contain valuable new information for curation into 
CARD. Many machine learning algorithms can solve binary 
classification problems and we examined these as possible 
improvements upon CARD*Shark 2. Machine learning classi-
fication algorithms fall into two broad categories: supervised 
learning and unsupervised learning (14). Unsupervised learn-
ing methods use clustering methods on unlabeled data to 
identify unknown groups of data (14), while supervised algo-
rithms require two steps: a training step and a prediction 
or testing step. For supervised algorithms, the training step 
involves using a processed, pre-labeled set of data that can 
be fed to the algorithm to generate a model. This model 
is then used to predict results for performance analysis and 
subsequent real-world application.

For the classification of the scientific literature, we exam-
ined supervised classification algorithms including logistic 
regression, naive Bayes, random forest, extreme gradient 
boosting and support vector machines to determine the best-
performing approach to guide the curation of papers into 
CARD. To create prediction models for classification tasks, 
we used PubMed’s Entrez application programming inter-
face (API) to retrieve abstracts and metadata from PubMed’s 
database (15) as a step toward creating a set of features for 
training models. The retrieved papers were then preprocessed 
using the Natural Language Toolkit (NLTK) and the regu-
lar expression package in python (16) to help normalize and 
reduce redundancy within the text (17). Preprocessing is an 
important step to help improve model performance by remov-
ing any non-essential terms from the text, removing punctua-
tion, converting terms to their base form and removing digits 
(17). Using regular expressions, we first removed punctuation 
from abstracts. Then, after splitting abstracts into individ-
ual words, stopwords provided by the NLTK package were 
removed along with digits. A Porter stemmer then converted 
each remaining word to its base form (18), and collectively 
these preprocessing steps resulted in abstracts containing a 
series of normalized words.

Once preprocessed, the procedure of converting data into 
usable vectors for machine learning is called feature extraction 
and aims to reduce the dimensionality of data for algorith-
mic use. The two major types of dimensionality reduction 
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that can be applied to text include bag-of-words (BOW) 
and term frequency–inverse document frequency (TF–IDF) 
(19, 20). BOW, like its name suggests, involves counting the 
number of occurrences of a word in a document. TF–IDF 
can be considered a more sophisticated version of BOW as 
it takes the frequency of words appearing in a text and multi-
plies it by the logarithm of the inverse fraction of documents 
containing the word (19). TF–IDF helps classifiers ignore 
words that appear too commonly, giving more weight to other 
words more relevant to the information extraction task at 
hand. To assess the relative strengths of each approach, the 
normalized abstracts were converted into usable vectors fol-
lowing three approaches using scikit-learn (21): TF–IDF on 
bigrams and trigrams, BOW, and TF–IDF on individual words. 
Each method was applied separately to produce three sepa-
rate training/testing sets for evaluation by each of the different 
supervised learning approaches.

Model training and cross-validation
To determine the best classifier and using scikit-learn (21), 
we trained and tested logistic regression, naive Bayes, ran-
dom forest, extreme gradient boosting and support vector 
machines through 5-fold stratified cross-validation for each 
set of normalized abstracts. We trained/tested models on a 
set of 9710 papers, of which 1886 papers were previously 
curated into CARD within ‘AMR Gene Family’ tagged ontol-
ogy terms as our positive set. The remaining 7824 papers 
acted as our negative set, i.e. low-scoring predictions obtained 
from CARD*Shark 2 but not added to CARD by human cura-
tors. Of the total set of papers, 75% was used for initial 
model training and testing through cross-validation, with the 
remaining 25% of papers used for a final holdout evaluation. 
After 5-fold cross-validation, we calculated precision (i.e. the 
proportion of papers classified as curation-worthy that were 
in the 1886 paper positive set), recall (i.e. the proportion 
of the 1886 paper positive set classified as curation-worthy) 
and the F1 statistic (i.e. the harmonic mean of precision and 
recall). For comparison, we also scored the 9710 papers using 
CARD*Shark 2 with 5-fold stratified cross-validation.

Human validation
Papers for September and November 2019 were obtained 
from PubMed using the MeSH ‘[Date—Create]’ query via 
the Entrez API (i.e. ‘start date’ [Date - Create]: ‘end date’ 
[Date - Create]). We processed these papers, as outlined ear-
lier, and classified them using the models generated from 
cross-validation. For independent human validation of the 
classifiers, 100 papers were randomly selected from the 
September logistic regression predictions, with an even 50/50 
split between classification results (i.e. 50% predicted posi-
tive and 50% predicted negative), while for the November 
set, a total of 330 papers were selected for validation (half pro-
vided by selecting an even split of predictions from naive Bayes 
and the other half from an even split of predictions from ran-
dom forest). Subsequently, a group of 11 experienced CARD 
curators reviewed each paper by answering a series of three 
questions to generate binary labels for each paper, with two 
individuals reviewing each paper. The subset of algorithms 
examined during human validation was based on the best-
performing approaches during initial investigations, instead 
of all possible algorithms, to reduce the overall effort required 
by our human curators. The three questions asked of the 

human curators were the following: ‘Is there an AMR gene 
described in the abstract’, ‘Is there an elevated MIC anywhere 
in the paper’ and ‘Would you curate the gene into CARD 
based solely on the abstract?’ If conflicting labels arose, the 
paper was not included in the final validation results; oth-
erwise, the human curator results were compared to the 
supervised model predictions as an independent assessment of
performance.

Results and discussion
With the overwhelming number of papers added every month 
to PubMed, it is difficult for curators to triage the whole scope 
of domain-specific literature. CARD had previously devel-
oped CARD*Shark 2 to address the issue of reducing the 
number of papers individual curators needed to review to 
identify novel ARGs. However, there were limitations with 
this word-association scoring algorithm in both the scope 
of papers it scored and the grouping of papers. To improve 
upon CARD*Shark 2 while expanding the scope of papers 
examined, we created and tested a set of supervised learning 
models that would predict whether a paper contained infor-
mation appropriate for curation into CARD. To identify the 
best-performing model, we evaluated five supervised learning 
methods through cross-validation. All the supervised learning 
models achieved receiver operating characteristic (ROC) area 
under the curves of >0.94, while CARD*Shark 2 obtained 
an area under the curve of 0.88 (Figure 1). Similarly, the 
precision and F1 results of CARD*Shark 2 underperformed 
in comparison to most supervised learning models (Table 1), 
although not surprisingly CARD*Shark 2 was able to recall 
97% of papers already curated into CARD while suffering 
from low precision (i.e. also predicting many unworthy papers 
as curation-worthy). Overall, results from cross-validation of 
the supervised learning models showed that these methods 

Figure 1. CARD*Shark 2 and supervised learning cross-validation ROC 
curves. Results from 5-fold cross-validation of several supervised learning 
models using three feature extraction methods, plus CARD*Shark 2. 
Results from all five cross-validation tests were averaged to produce a 
single curve. Shadows around each line are ±1SD from the mean. For 
CARD*Shark 2, high-level predictions are considered positive predictions, 
and low-level predictions are considered negative predictions.
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Table 1. CARD*Shark 2 and supervised learning cross-validation precision-
recall statistics

Model name
Feature extraction 
method Precision Recall F1

Logistic regression TF–IDF bi/trigram 0.96 0.41 0.58
TF–IDF word 0.92 0.81 0.86
BOW 0.89 0.88 0.89

Naive Bayes TF–IDF bi/trigram 1.00 0.26 0.41
TF–IDF word 0.99 0.36 0.52
BOW 0.74 0.96 0.83

Random forest TF–IDF bi/trigram 0.83 0.60 0.70
TF–IDF word 0.89 0.66 0.76
BOW 0.90 0.66 0.76

Extreme gradient 
boosting

TF–IDF bi/trigram 0.84 0.65 0.74
TF–IDF word 0.89 0.81 0.85
BOW 0.89 0.81 0.85

Support vector 
machine

TF–IDF bi/trigram - 0.00 0.00
TF–IDF word - 0.00 0.00
BOW 0.96 0.15 0.26

CARD*Shark 2 0.38 0.97 0.54

Results from 5-fold cross-validation of several supervised learning mod-
els using three feature extraction methods, plus CARD*Shark 2. Under-
lined numbers represent the best-performing method for each category. For 
CARD*Shark 2, high-level predictions are considered positive predictions, 
and low-level predictions are considered negative predictions.

can achieve a better performance compared to the current 
CARD*Shark 2 algorithm. However, solely based on cross-
validation, it was difficult to discern the best-performing 
supervised learning model. 

To gain a better understanding of each model’s per-
formance in a real-world application, each model made 
predictions on all papers for September and November 
2019 (Table 2). A random subset of these papers was used 
for independent human validation. The main goal of these 
models was to achieve a high recall value as missing a novel 
ARG because of a poorly performing model is detrimental to 
CARD’s overall objectives. The secondary objective of these 
models was a high precision to reduce the number of papers 
curators must review. Based on human validation, all the 
supervised learning models resulted in low precision values of 
<34%, while naive Bayes obtained the highest recall of 88% 
(Table 2). Despite high recall by naive Bayes, low precision is 
undesirable as it would result in too many papers for man-
ual review. If we instead focus on models with a good balance 
between precision and recall via F1 values, we find logistic 
regression, naive Bayes, random forest and extreme gradient 
boosting each have one model that performs with the highest 
F1 score, with random forest on TF–IDF on bi/trigrams hav-
ing the best overall performance (Table 1). CARD*Shark 2 
performs with the best recall (100%) at the cost of having the 
third lowest precision. The impact of CARD*Shark 2’s low 
precision can be seen in the 40 899 papers it flags for cura-
tor review, more than an order of magnitude higher than any 
of the supervised learning methods. Future improvements to 
precision and recall may require the use of an ensemble of 
the best-performing models. Notably, only 430 papers were 
selected for human validation out of a set of >200 000 papers, 
and as such, we cannot definitively conclude that one model is 
better than another until more papers are evaluated. A more 
significant issue faced by both CARD*Shark 2 and the super-
vised learning models is that we do not know the extent of 
relevant papers being ignored as CARD does not keep a record 
of negative curations. Moving forward, it would be advisable Ta
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Table 3. Retrospective predictions against papers added to PubMed 
between July 2017 and December 2020

Model name
Papers 
examined

Positive 
predictions

Added to 
CARD

Logistic regression 3 955 928 30 049 75
Naive Bayes 75 843 93
Random forest 17 318 69
CARD*Shark 2 22 196 H: 10 676;L: 11 520 H: 58; L: 8

CARD*Shark 2 categorizes its predictions into an L or H level. L, low; H, 
high.

Figure 2. A Venn diagram illustrating the overlap of each model’s positive 
paper predictions that were ultimately curated into CARD. The plot based 
on data from Table 3. For CARD*Shark 2, both high- and low-level 
predictions are included.

to mix a subsample of negative predictions into the curation 
set to evaluate ignored essential papers.

Continued evaluation of logistic regression, random forest 
and naive Bayes is being performed through monthly paper 
predictions that are assessed by CARD’s team of curators. 
Additionally, a retrospective analysis of each of the mod-
els was conducted by predicting papers for the majority of 
months CARD*Shark 2 has been running (1 July 2017–1 
November 2020). During this time, CARD*Shark 2 flagged 
22 196 unique papers, 66 of which were added to CARD by 
the curators (Table 3). The benefit of the expanded scope of 
the supervised learning models can be seen in Figure 2, where 
44 papers were successfully identified by the models but never 
flagged by CARD*Shark 2. At the same time, CARD*Shark 2 
was able to identify 16 papers the supervised learning models 
missed (Figure 2). These results indicate that a combination 
of CARD*Shark 2 and the supervised learning models may 
be necessary to identify papers for curation into CARD. 

Conclusion
Overall, we have found that supervised learning applica-
tions to rapidly triage thousands of publications can viably 
reduce the burden associated with curating data. However, 
due to the limited scope associated with CARD’s curation 

goal (i.e. identifying new ARGs only), models perform with 
poor precision but high recall. To compensate for this pre-
cision, a combination of CARD*Shark 2 and the supervised 
learning models will be incorporated into CARD by rank-
ing publications based on model agreement to maintain high 
recall while prioritizing high-value publications (i.e. publica-
tions with the highest model agreement are reviewed first). 
As such, a computer-guided curation paradigm that cen-
ters ultimately on expert, human biocuration allows CARD 
to provide comprehensive, high-value, trustworthy data for 
genomic surveillance of AMR.

Data availability
Software for CARD*Shark is available at https://github.com/
edalatma/card_shark_3.
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