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Abstract
The number of biological databases is growing rapidly, but different databases use different identifiers (IDs) to refer to the same 
biological entity. The inconsistency in IDs impedes the integration of various types of biological data. To resolve the problem, we 
developed MantaID, a data-driven, machine learning–based approach that automates identifying IDs on a large scale. The MantaID 
model’s prediction accuracy was proven to be 99%, and it correctly and effectively predicted 100,000 ID entries within 2 min. MantaID 
supports the discovery and exploitation of ID from large quantities of databases (e.g. up to 542 biological databases). An easy-to-use 
freely available open-source software R package, a user-friendly web application and application programming interfaces were also 
developed for MantaID to improve applicability. To our knowledge, MantaID is the first tool that enables an automatic, quick, accurate 
and comprehensive identification of large quantities of IDs and can therefore be used as a starting point to facilitate the complex 
assimilation and aggregation of biological data across diverse databases.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Key points 

• MantaID is a data-driven, machine learning–based method 
that automatically identifies IDs with high accuracy and 
efficiency and at a large scale.

• The accuracy of MantaID is confirmed using common sta-
tistical metrics.

• A novel metric method is devised to verify the performance 
of MantaID.

• MantaID is implemented as an R package, as well as a web 
app and application programming interface for easy use.

Introduction
Identifiers (IDs) are used in databases to index and 
code biological data. As of January 2022, there were 
1645 databases and approximately 1700 registered ID 

nomenclatures (1, 2). IDs are required for simple access to 
biological data and for facilitating cross-referencing between 
databases. However, each database has its own representation 
and a set of ID numbers for identifying biological components 
(3–9), indicating that IDs from different databases may over-
lap, that is, the same biological entity may have various IDs 
(10). For example, a molecule can possess both an Entrez ID 
(11) and an Ensembl ID (12, 13); Ring Finger Protein 180 is 
represented by a variety of IDs, including HGNC ID 27752, 
an Entrez ID 285671, an ENSG00000164197 Ensembl ID, 
OMIM ID 616015, etc. We observed that different databases 
tend to employ distinct naming conventions. The first three 
digits of ID in the Ensembl database, for example, begin with 
‘ENS’; the fourth digit of ‘G’ is for gene, ‘T’ is for transcript 
and ‘P’ is for protein; and then the ID ends with number; in 
the Entrez gene database, pure numbers are used as gene IDs, 
beginning with ‘NM’ for transcript number, ‘NP’ for protein 
number and ‘NR’ for non-coding RNA number; a letter plus 
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a number is used in the UniProt database. In contrast, Kyoto 
Encyclopedia of Genes and Genomes IDs are composed of a 
capital letter followed by five digits, while the GO database 
uses a combination of letters, numbers and underscores. In 
addition, these IDs may be temporary, which require modifi-
cation or replacement when new functions for the molecules 
are revealed. The exchange of information between multi-
ple databases is typically accomplished via mappings between 
distinct IDs, which has been a cause for concern.

Several ID conversion services, such as UniProt Mapping 
(14), DAVID (15), BioMart (16), TogoID (17) and Gene-
ToList (18), have been developed to solve this issue. These 
ID conversion tools enable ID–ID mapping to convert a gene 
or gene product from one type to another (19). In addi-
tion, these tools also implement special features, such as 
TogoID (17), which can disambiguate and transform IDs. 
However, they all require previous knowledge of the database 
to which they belong and are incapable of identifying the 
IDs in the absence of database names. Therefore, a tool that 
can automatically construct cross-references between differ-
ent databases without requiring knowledge of the database 
names is needed. In this paper, we describe the MantaID 
tool, which identifies and classifies unknown IDs quickly and 
precisely by automatically creating ID mappings across mul-
tiple databases. This differs from the current ID conversion 
programs, which rely on ID mappings between databases 
and only support a limited number of ID types. To our 
knowledge, MantaID is the first tool for the identification 
of IDs using machine learning algorithms, which were often 
used to be applied in various biological applications such as 
genomic sequence analysis and annotation of proteomics or
metabolomics (20).

The computational framework and all the approaches of 
MantaID are implemented as a software package that han-
dles all the different steps of the model development process 
and makes it easy to create user-defined ID recognition models 
by adjusting a few parameters. To demonstrate the usabil-
ity of MantaID, we have also developed a user-friendly web 
application that demonstrates the framework approach and 
workflow for automated ID recognition and enables users to 
recognize multiple IDs without delving into the model imple-
mentation specification. In addition, we provide application 
programming interface (API) access so that users can launch 
complex queries programmatically.

Materials and Methods
For easy reference, we summarize the mathematical notations 
used throughout this paper in Table 1. 

MantaID framework
A schematic overview of the MantaID framework can be 
found in Figure 1A. First, the MantaID workflow begins with 
a data frame containing ID and class, obtained either by con-
necting to the public database using the ‘mi_get_ID_attr’ and 
‘mi_get_ID’ functions or from other sources after preprocess-
ing such as data frame reshaping and invalid data removal 
by the ‘mi_clean_data’ function. Next, a data frame con-
taining the ID columns is passed into the ‘mi_get_padlen’ 
and ‘mi_split_col’ functions, which cut the IDs into a single-
character vector of maximum length. After that, it returns a 

Table 1. Mathematical notations and symbols used in this paper

Parameters Definitions

D Atrain dataframe with label and features columns
N A dataframe for forecasting with feature columns 

to predict
K A dataframe with feature columns and predict 

column
𝑠max Actual budget for a single hyperparameter 

configuration
B The total budget
n The number of parameter configurations
r The actual budget for a single hyperparameter 

configuration
T A grouping of parameter configurations
𝑛𝑖 Number of bracket configurations
𝑟𝑖 Resource allocation
L The validation loss of configuration t
R Maximum number of resources
𝜂 The proportion of parameter configurations 

‘advances’ to the next round in hyperband 
tuning

𝐺𝑖 The Gini index of the 𝑖th feature
𝛼best Feature that minimizes 𝐺𝑖
𝐷subs Induced sub-datasets from 𝐷 divided by 𝛼best
Z∗ D bootstrap samples
Treeb/Treet A weak tree learner
𝑒b The rate of out-of-bag (oob) error
𝐹b A small subset of features
Forest A strong learner made up of weak tree learners
𝑔𝑡𝑖 The ith node’s first derivative in round t
ℎ𝑡𝑖 The ith node’s second derivative in round t
𝐺𝑡 The sum of the first derivatives
𝐻𝑡 The sum of the second derivatives
𝐺L The sum of the left subtree’s first derivatives
𝐻R The sum of the right subtree’s second derivatives
𝐺R The sum of the right subtree’s first derivatives
𝐻L The sum of the second derivatives of the left 

subtree
𝛾 The regularization coefficient governs the number 

of leaf nodes’ complexity
𝜆 Regularization coefficients that govern the L1–L2 

mix
𝑂𝑗 The value of neuron unit output
𝑤𝑖𝑗 Layer i and layer j weight matrix
𝜃𝑖 The bias of the 𝑖th neuron

wide data frame in the original order of the samples, con-
taining the location features and class of the IDs. Then, all 
single-character features are converted into numeric types 
using a fixed mapping and can be used directly for train-
ing by calling the ‘mi_to_numer’ function. Prior to training, 
the ‘mi_balance_data’ function is developed to oversample 
and undersample the data using the Synthetic Minority Over-
sampling Technique (SMOTE) (21) and random methods, 
respectively. Thirty per cent of the unbalanced data is used 
as the test set, and the remainder as the training set, both of 
which are returned as a list. In addition to this, model tun-
ing is required. The functions ‘mi_tune_rp’, ‘mi_tune_rg’ and 
‘mi_tune_xgb’ use the original dataset to tune the parameter 
spaces of classification and regression tree (CART), random 
forest (RF) and extreme gradient boosting (XGBoost), respec-
tively, and then draw the tuning stages plots and return 
them along with the tuner. Last, the functions ‘mi_train_rp’, 
‘mi_train_rg’, ‘mi_train_xgb’ and ‘mi_train_BP’ train models 
with training sets for CART, RF, XGBoost and back prop-
agation neural network (BPNN), respectively, and validate 
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Figure 1. Schematic overview of the MantaID tool. (A) The theoretical framework MantaID. (B) The R package functions of MantaID. The wrapper 
function created by MantaID; a wrapper function ‘mi()’ is created that is used to group the functionalities of MantaID and can be executed to carry out 
all the steps of the MantaID workflow in a lazy fashion.

models with test sets to obtain the trained model and vali-
dation results. Finally, confusion matrices (CMs) are calcu-
lated and heat maps are plotted using the ‘mi_get_confusion’ 
and ‘mi_plot_heatmap’ functions. Furthermore, a custom 
wrapper function ‘mi’ is provided to streamline the imple-
mentation of steps of the MantaID workflow. In addition to 
quick large-scale ID identification based on machine learn-
ing approaches, MantaID offers a slower but more com-
prehensive ID recognition method based on online retrieval. 

This method covers 542 databases and can provide thor-
ough small-scale ID recognition tasks and be used as a 
complementary method whenever the users want to, tak-
ing advantage of the up-to-date information available in 
the remote databases. For practical use, the aforementioned 
framework method has been implemented as an open-source 
R package called MantaID, and the steps of the construc-
tion of a MantaID model for ID identifications are described
later.
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MantaID model
Data acquisition
MantaID searches public databases for and downloads ID 
datasets. At first, the function ‘mi_get_ID_attr’ is used to con-
nect to the Ensembl database via the biomaRt package (22) 
and retrieve 3374 attributes of the human genome–related 
dataset in our test (23, 24). MantaID can be applied to 
other species datasets by modifying the argument ‘dataset’ 
of the ‘mi_get_ID_attr’ function and supports the use of all 
datasets listed in the R package biomaRt (22). After the 
retrieval of data, a filter routine based on regular expres-
sions is implemented, leaving 68 ID-related attributes. Then, 
the attribute data frame is passed to the ‘mi_get_ID’ func-
tion, which returns the list of corresponding datasets from 
the Ensembl and rebuilds it into a long data frame, obtaining 
2 936 411 rows. Twenty-nine datasets that lack ID informa-
tion are eliminated by manual inspection. Finally, a data 
frame with ID and class columns and 2 751 478 rows is
generated.

Data preprocessing
MantaID converts ID data into the format required by 
machine learning algorithms . The first step is to get the 
length of the longest ID using the ‘mi_get_padlen’ function. 
The ‘mi_split_col’ function then takes the length and the ID 
data frames as arguments, splits each ID element by charac-
ter into a vector, fills the length to the maximum length and 
combines them by row, before returning a wide data frame 
containing the ID location information. The ‘mi_to_numer’ 
function then converts the input data frame features into com-
putable numeric type features by constructing a mapping from 
characters to numbers.

Data balancing
MantaID balances the minority and majority classes in train-
ing datasets. A common method is the random sampling 
method, which balances the model by randomly selecting 
a minority class sample to add copies to it and a majority 
class sample to remove copies from it. The limitation of ran-
dom sampling is that the model’s capacity to generalize may 
be compromised due to excessive sample duplication (25). 
Therefore, the SMOTE technique is also used for oversam-
pling, whereas the random method is used for undersampling. 
The main advantage of using the SMOTE method is avoid-
ing the overfitting caused by undersampling with the random 
method. MantaID balances data with the ‘mi_balance_data’ 
function, which takes as an input a data frame that contains 
unbalanced data, and then performs data balancing on it. 
Thirty per cent of the original balanced data is used as a test 
set, and the rest as a training set. The returned results from the 
function are formatted as a list. In addition to balancing the 
data, feature filtering is necessary for improving model accu-
racy when the datasets are typically noisy and contain a large 
number of irrelevant features.

Feature filtering
MantaID eliminates irrelevant and redundant features by esti-
mating the feature covariance and Gini significance. Since 
the length of the longest ID determines the number of fea-
tures included in the processed dataset, it is anticipated that 
there would be redundant features that need to be screened.

Prior to filtering, the ‘mi_plot_cor’ function computes the 
Pearson correlation coefficient of the features to generate the 
covariance matrix and plots the heat map with its value as 
the color depth. Next, the ‘mi_get_importance’ function calcu-
lates Gini impurity to indicate the redundancy of the features, 
and a histogram is presented for it. Finally, low-weighted 
features are deleted using a threshold method based on covari-
ance and importance. The filtered data are subsequently fed 
to the machine learning algorithms to generate classification
models.

Model selection
MantaID contains four machine learning models for the large-
scale and automatic identification of IDs: CART, RF, XGBoost 
and BPNN.

CART (26, 27) uses a tree structure to classify samples into 
different categories based on the distribution of features in a 
specific dimension of the samples. All the features and possi-
ble split points in the training set are traversed to find the best 
splitting feature and best split point. The training dataset is 
then split into two subsets using the best splitting feature and 
split point, with the results determined as the left and right 
subtrees, respectively, and the search is repeated for each sub-
tree. The best splitting feature and best split point of each leaf 
node are determined repeatedly, allowing each leaf node to 
be partitioned into left and right subtrees. The pseudocode of 
the implemented algorithm in MantaID is given in Algorithm 
1 (see the Supplementary File).

RF (28, 29) is based on bootstrapping using a small set of 
features to generate a large number of decision trees, which 
are then used to classify new data with greater accuracy than 
a single decision tree. The pseudocode of the RF algorithm is 
presented in Algorithm 2 (see the Supplementary File).

Based on the gradient boosting decision tree (30), XGBoost 
(31, 32) is an optimized distributed gradient boosting library 
that can massively parallelize the boosting tree. The main 
strength of using XGBoost is in continuously adding trees and 
performing feature splitting to grow. Each new tree is equiv-
alent to learning a new function that fits the residuals of the 
previous one. When training is complete, we have k trees, each 
of which corresponds to a leaf node based on sample char-
acteristics, and the score for each leaf node adds up to the 
sample’s prediction value. A detailed pseudocode is presented 
in Algorithm 3 (see the Supplementary File).

The learning process of BPNN is divided into two stages 
(33, 34): forward signal propagation and backward error 
propagation. When the actual output of the output layer does 
not match the desired output in the forward propagation pro-
cess, the error advances to the backward propagation stage, 
obtaining the error signal of each unit as a basis for correct-
ing the weights of each unit. The pseudocode of this process 
is shown in Algorithm 4 (see the Supplementary File).

Model tuning
MantaID uses the hyperband approach to tune hyperparame-
ters for CART, RF and XGBoost before training. Hyperband 
(35), as an extension of Successive Halving (36), is used to 
determine the optimized setting of operational parameters. 
For each set of parameter combinations, the loss value is 
computed using R package ‘mlr3hyperband’ (37). Following 
the evaluation of the loss of each parameter combination,
only one-third of parameter combinations with the lowest loss 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad028/7158387 by guest on 19 April 2024



Database, Vol. 00, Article ID baad028 5

Figure 2. New metrics for aggregating MantaID models. To incorporate the information, we multiply the model’s F1 score metrics by the mismatch rates 
of other models to calculate the submodel’s score. When the submodels disagree, we assign a score to each result and select the best one.

values are selected for the next iteration. The aforementioned 
process is summarized in the pseudocode form in Algorithm 
5 (see the Supplementary File).

Parameter configurations for BPNN are tuned using a dif-
ferent approach as follows. BPNN consists of a four-layer fully 
connected network with an input layer, two hidden layers and 
an output layer. First, the number of nodes in the input and 
output layers is set equal to the number of features and cate-
gories, while the number of nodes in the hidden layer is fixed 
at 40 according to some rules of thumb that have been pre-
viously described (38). Next, Rectified Linear Unit (Relu) is 
used as the activation function for the hidden layer instead of 
sigmoid and tanh because it is less computationally intensive 
and does not tend to saturate, while Softmax is used for the 
output layer. Finally, the Adam (39) optimizer is implemented 
to compute individual adaptive learning rates for different 
parameters, circumventing the need for hyperparameters tun-
ing. The aforementioned process is described in Algorithm 4 
(see the Supplementary File).

Model training
Balanced datasets are used for training. To begin the pro-
cess, the training and test sets are accepted as parameters 
by functions ‘mi_train_rp’, ‘mi_train_rg’ and ‘mi_train_xgb’ 
in order to train and validate CART, RF and XGBoost mod-
els. After the CMs of the validating results are calculated and 
plotted as heat maps, trained models are returned as a list. 
For BPNN, the ‘mi_train_BP’ function sets epoch and batch 
size first equal to 64 and the batch size equal to 128, based 
on the empirical guidelines in the literature (38), and it also 
accepts the training and test sets as inputs. Likewise, after 

training is complete, the CM is returned and plotted as a
heat map.

Model unification and scoring
The use of an even number of models makes it impossible 
to directly derive the final result using the voting method. 
To resolve this issue, we present a new method for aggre-
gating models, as depicted in Figure 2 and as follows. Man-
taID uses the voting method when there is a majority class 
in prediction results; however, when there are scattered 
opinions, MantaID uses the following scoring formula for
evaluation: 

𝑁𝑠𝑐𝑜𝑟𝑒 = 𝐹1𝑁
𝑥 ∏

𝑅∈¬𝑁; 𝑦=𝑣𝑎𝑙(𝑅)
(𝑐 + (1 − 𝑐) ⋅ 𝑃(𝑦|𝑥)𝑅) (1)

𝜕𝑆𝑐𝑜𝑟𝑒𝑁

𝜕𝑃(𝑦|𝑥)¬𝑁 = 1 − 𝑐 (2)

where 𝑁𝑠𝑐𝑜𝑟𝑒 is the score of model 𝑁, 𝐹1𝑁
𝑥  is the F1 score 

of model 𝑁 for category 𝑥, val(R) is the prediction result of 
model 𝑁, P(y/x)N is the probability that model 𝑁 misclassifies 
𝑦 as 𝑥 and 𝑐 is a constant value that determines the degree of 
influence of other models on the score of the current model. 
The larger the 𝑐 value, the lower the bias derivative 𝜕𝑆𝑐𝑜𝑟𝑒𝑁

𝜕𝑃(𝑦|𝑥)¬𝑁

and the smaller the effect, according to Equation (2).
Although accuracy is a good indicator of the model’s cor-

rect prediction rate of random individuals, it works poorly on 
unbalanced datasets and is inclined to hide serious classifica-
tion errors for classes with few samples (40). This problem 
can be avoided by using F1 score, which is a good balance 
between accuracy and implementability, reflecting the model’s
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effectiveness in classifying this class (41); therefore, this eval-
uation criterion in MantaID is implemented based on the F1 
score. In addition, to fully utilize the existing information, we 
add other models’ misclassification rates when computing a 
model’s score, in order to avoid being biased in the evaluation. 
Finally, the model with the highest score (𝑁score) is selected 
and is then evaluated by recall, precision, accuracy and the F1 
score. For convenience, we use the following abbreviations: 
TP, true positive; FP, false positive; TN, true negative; FN, 
false negative; Acc, accuracy; Pre, precision; Rec, recall; and 
F1, F1 score. 

Acc = TP + TN
TP + FN + FP + TN

(3)

Pre = TP
TP + FN

(4)

Rec = TP
TP + FP

(5)

F1 = 2TP
2TP + FN + FP

(6)

MantaID web application
MantaID includes a user-friendly web application for ID 
identification, which is available free from the website at 
https://molaison.shinyapps.io/MantaID/. The primary Man-
taID interface features a search box that lets you input your 
query and implement the ID identification methods available 
in MantaID. A more comprehensive, crawler-based algorithm 
is also adopted by the MantaID web application to improve 
the accuracy of the ID identification. First, MantaID per-
forms pattern matching with regular expressions obtained 
from identifiers.org hosted by European Bioinformatics Insti-
tute (42) to filter out missing or malformed data. Second, 
MantaID connects to the Uniform Resource Locators (URLs) 
of IDs using the ‘httr’ R package (43). An ID is determined 
as non-existent or inaccessible when the connection yields an 
error Hypertext Transfer Protocol (HTTP) status code, such as 
the 404 page-not-found error. Finally, MantaID retrieves and 
analyzes the text from the database webpages to determine 
whether an ID does not exist based on the presence of contex-
tual keywords such as ‘failure’ or ‘No correct information’. 
These steps should be sufficient for determining the existence 
of IDs and the databases to which they belong, excluding 
invalid IDs.

To assist new users, example queries and guidelines are pro-
vided alongside the search box. As the identification process 
progresses, each successfully matched database name and per-
tinent information are returned as a row in the result table, 
displayed beneath the search box and can be saved and out-
putted in various file formats. The original names retrieved 
from the databases are added with modifiers and shown in 
the same column as ‘name’ to distinguish between the identi-
cal entities within databases, enabling an ID query to identify 
all matched biological entities such as a gene, protein, or 
transcript (44, 45).

The advanced search option is also provided: (i) the 
user can specify the maximum time for accessing each 
entry, (ii) the user can select whether to go directly to the

associated database using the provided URL, (iii) the user 
can specify the type of object indicated by the ID and (iv) 
the user can select between local (intensified) and global 
(diversified) search strategies. A batch search tool is sup-
plied to implement the described MantaID methodology 
for large quantities of unidentifiable ID data files. The 
batch search results can be formatted and aligned, and 
data can be outputted for download in a variety of user-
specified formats, as well as for reproducing the model
predictions.

Results
Performance evaluation of the MantaID Model
We evaluated MantaID on datasets assembled from pub-
lic databases to demonstrate its superior ability to identify 
IDs. MantaID was executed to construct an ID identifi-
cation model using 39 datasets (Table 2). After the data 
processing steps were completed, the correlation heat map 
and importance histogram were generated based on the fea-
ture covariance matrix and the feature selection results. As 
shown in Figure 3, the posterior 10 features have low feature 
importance and low relevance with the target class, which 
supports our hypothesis that the redundancy is caused by 
padding IDs; thus, these features were regarded as redundant 
and deactivated.

Then, the ratio of the largest majority class to the small-
est minority class was used to measure the imbalance degree. 
According to Table 2, the ratio for the original dataset is about 
14 702:1, indicating that the data are extremely imbalanced. 
After completing the data balancing steps, the ratio is reduced 
to approximately 12:1, suggesting that the data imbalance is 
significantly reduced. After balancing the data, the three mod-
els of CART, RF and XGBoost were tuned using Hyperband 
methods, with 𝜂 set to 3, leaving only one-third of the possible 
hyperparameter combinations for each of the four stages. In 
total, 49 parameter combinations were tuned for all stages in 
the parameter spaces of the three models, as shown in Table 3. 
The results of the parameter tuning for all stages are shown 
in Figure 3. The parameter combination with the lowest loss 
value in the fourth stage was regarded the most robust and 
was chosen for each model.

Next, the balance effect was assessed by training the model 
with the optimal set of parameters using both the balanced 
and unbalanced training datasets. The assessment results were 
presented as heat maps representing the CMs (Figure 4). The 
diagonal numbers in the CMs were used to compare models 
trained on the balanced and unbalanced datasets, because a 
change in the model’s specificity was a better outcome measure 
for qualifying the results of minority classes in both the bal-
anced and unbalanced datasets than the overall accuracy. Our 
results show that, before balancing, CART and RF misclas-
sified nearly all minority classes, XGBoost misclassified only 
a few minority classes and BPNN correctly classified almost 
all the minority classes. After balancing, all the four mod-
els almost perfectly classified the minority classes, indicating 
that MantaID effectively constructed a robust classifier when 
learning from a large quantity of unbalanced ID datasets.

Finally, the performances of our models were compared 
by using accuracy, precision, recall and F1 scores, as sum-
marized in Table 4. The high recall rates for most ID classes 
provide confidence for the accurate classifications. However, 
low precision values were obtained for some minority classes,
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which is due to the incorrect classification of a small portion 
of a large number of majority classes into minority classes. 
Most models failed to accurately predict WikiGene IDs, due to 
the fact that WikiGene (46) unites multiple data sources, such 
as UniProt and Entrez, containing overlapping information. 
What stands out in Table 4 is that the results of integrated 
model were superior to those of the individual models in 
almost every category, indicating that the integrated model 
inherits the advantages of individual models.

Features of MantaID web application
MantaID functions can be used directly via the MantaID’s 
Shiny application in an easy and reliable way. ManatID con-
tains three main modules (Figure 5): (i) a general search 
engine; (ii) a more advanced search engine, named as the batch 
search tool, and (iii) a fully documented API.

A Google-like search engine is provided to allow users 
to make queries on IDs easily and reliably. ID identification 
can be carried out across all existing biological databases 
listed on (identifiers.org) using default, or customizable with 

advanced options to perform advanced crawler-based, per-
sonalized algorithms when the user has partial knowledge or 
imperfect information about the sources of the unknown IDs.

The batch search tool of MantaID shiny app provides a 
template comprising five steps to facilitate the large-scale ID 
identification, as well as guideline and extensive helps for 
customizing parameters of the MantaID model to pursue bet-
ter identification efficiency. All results can be aggregated into 
a single table displayed and can be outputted into various 
formats for ease of analysis.

The API is provided for interfacing with other applica-
tions or tools and allows us to integrate the services provided 
by MantaID into other workflows. This paves the way for 
other applications to integrate ID identification into their data 
processing pipelines.

The advantages of using MantaID shiny app are manifold: 
(i) it is cost free, platform =-independent, user-friendly and 
available to any internet-connected user; (ii) it can perform 
all the methodologies and methods available in MantaID and 
(iii) user interactions can be restricted to circumvent undesired 
modifications.

Table 2. Databases and datasets currently available on MantaID model

Name Imbalanced Balanced Description

The Consensus CDS 32 717 60 736 CCDS ID
Conserved Domain Database 7204 68 390 CDD ID
ChEMBL 4030 69 342 ChEMBL ID
EMBL 199 350 139 545 European Nucleotide Archive ID
Ensembl exon 852 763 596 934 Exon stable ID
Ensembl gene 68 016 50 146 Gene stable ID
Entrez Gene Database 22 927 63 673 NCBI gene (formerly Entrezgene) ID
HAMAP 358 70 444 HAMAP ID
HGNC 39 780 58 617 HGNC ID
HGNC Transcript 232 496 162 747 Transcript name ID
PANTHER 23 775 63 418 PANTHER ID
Interpro 17 612 65 267 Interpro ID
Merops 780 70 317 MEROPS—the Peptidase Database ID
miRBase 1846 69 997 miRBase ID
Protein Data Bank 48 239 56 079 PDB ID
Pfam 6595 68 572 Pfam ID
pfScan 895 70 282 PROSITE profiles ID
PIRSF 949 70 266 PIRSF ID
PRINTS 1483 70 106 Prints ID
Protein 490 333 343 233 INSDC protein ID
Reactome 2495 69 802 Reactome gene ID
Refseq mrna 62 046 51 937 RefSeq mRNA ID
Refseq ncrna 15 828 65 803 RefSeq ncRNA ID
Refseq peptide 57 215 53 386 RefSeq peptide ID
Rfam 58 70 534 RFAM ID
Rfam transcript 1461 70 113 RFAM transcript name ID
RNAcentral 89 729 62 810 RNAcentral ID
ScanProsite 881 70 287 PROSITE patterns ID
Structure–Function Linkage Database 64 70 532 SFLD ID
SMART 1020 70 245 SMART ID
SUPERFAMILY 1113 70 217 Superfamily ID
TIGRFAMs 594 70 373 TIGRFAM ID
UCSC 226 788 158 752 UCSC Stable ID
UniProt Archive 90 791 63 554 UniParc ID
Uniprot gene 20 438 64 420 UniProtKB Gene Name symbol
Uniprot isoform 24 825 63 104 UniProtKB isoform ID
Uniprot TrEMBL 61 771 52 020 UniProtKB/TrEMBL ID
Uniprot Swiss-prot 19 287 64 765 UniProtKB/Swiss-Prot ID
WikiGene 22 926 63 673 WikiGene name
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Discussion
In this work, the MantaID was developed based on machine 
learning approaches to conduct the large-scale identification 

of unknown and heterogeneous IDs. Besides achieving a good 
level of accuracy, MantaID can predict thousands of IDs in 
a few seconds, e.g. in our test, 100 000 of IDs generated by 

Figure 3. Validation of the MantaID model performance. (A and B) The result of features selection. (A) Correlation heat map. Positive values mean 
positive correlation; negative values mean negative correlation, as evaluated by Pearson’s correlation test. (B) Features importance computed by RF. The 
horizontal coordinate is the Gini impurity, an indicator for evaluating importance, and the vertical coordinate is the feature. Stage plot for Hyperband 
tuning of (C) CART, (D) RF and (E) XGBoost. Each line or point represents a set of related parameters, and Hyperband algorithm discards configurations 
with a percentage of 1

𝜂  to cut training time. Notably, the cart model’s polygon line appears to be stagnating as a result of the minimal accuracy change 
between stages when compared to the span.
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Table 3. Parameter configuration for CART, RF, XGBoost and BPNN

Model Classification Tree RF XGBoost Back Propagation

Complexity parameter 0.00053
Maximum depth of tree 24 368 8
Minimum observations in a node 4
Number of cross-validations 0
Number of competitor splits retained 3
Number of decision trees 385
Criteria for fragmentation ‘gini’
Minprop 0.017
Evaluation with the off-bag sample TRUE
Importance ‘impurity’
Eta 0.29
Regularization factor 0.014
Proportion of random sampling 0.84
Iterative model ‘gbtree’
Minimum loss function descent value 0
Regularization term of weight 0.92
Number of passes 10
Column sampling 0.99
Iterations 64
Proportion of training set as the test set 0.3
Loss function ‘Categorical_crossentropy’
Number of samples per workout 128
Optimizer ‘Adam’

The MantaID model uses Hyperband to tune the parameters of the first three algorithms

randomly sampling the available ID datasets can be identified 
in 71 s.

Previous studies created ID mapping by formulating 
knowledge-based rules based on their understanding of map-
pings provided by selected databases (14, 15, 17, 18, 47, 48). 
These tools rely on metadata and annotations provided by 
databases to link IDs from different databases (49). Common 
database IDs, such as Ensembl (13) and RefSeq (50), serve as 
bridges between databases that lack direct linking of the same 
entity. The linkages were used as ID mappings that must be 
frequently updated, such as in the case of a recently published 
tool TogoID (17), which is dependent on manual curation 
and is updated every 2 weeks. Lack of frequent updating can 
result in query failures for new IDs. For example, UniProt (14) 
can support 98 databases for conversion, DAVID (15) only 
supports 41 databases for conversion and TogoID (17) only 
supports 48 databases for conversions. In contrast, MantaID 
employs a series of machine learning models trained based 
on a large number of database IDs; once the MantaID model 
derives the rules of ID to database mapping automatically 
from the training datasets, it uses the automatically generated 
ID database mapping to perform ID interpretation. Therefore, 
MantaID does not require human intervention for updates. In 
addition, the IDs are not unique across different databases 
and there is no universal agreement on the composition of 
a database ID, i.e. an artificial, fictitious ID created for test-
ing purpose could pass as a real ID in some databases. Tools 
present in the literature (15, 17, 18) have quite limited ID con-
version capabilities that are primarily dependent on ID and 
database mappings created by annotations. The ID mappings 
in these tools are fixed and can only be modified by tool’s 
maintainers, necessitating a stringent ID validation prior to ID 
conversions (49). Therefore, these tools can only accept input 
of IDs specified within their ID-to-database mapping tables. In 
contrast, MantaID is a machine learning–based tool that can 
interpolate and impute any IDs supplied by users based on 

principles derived from probabilistic models. MantaID aims 
to identify all IDs of existing biological databases; MantaID 
models are built and trained on a vast amount of data from 
a variety of databases, so it is possible to find a legitimate 
use for an ID that was previously thought to be fictitious. We 
believe that the MantaID approach is better suited for dealing 
with a growing number of databases, as it generates ID-to-
database mappings automatically without the need for human 
annotation or intervention.

MantaID is a novel hybrid approach combining machine 
learning–based algorithms and expressive power of regular 
expressions to capture the variability during the process of ID 
matching. Regular expressions are a general-purpose string-
matching technique that can only be used to expedite the 
identification of IDs when ID names are constructed accord-
ing to carefully and precisely defined rules. However, there 
are no standard rules set for constructing ID names and the 
ID names can be similar across databases; in most cases, 
according to our experience, the same regular expressions can 
match multiple IDs from different databases. For example, on 
https://identifiers.org/ (42), the same regular expression pat-
tern ‘∧[A-Z0-9]+$’ that is defined for Catalogue of Somatic 
Mutations in Cancer Gene, Bacterial Tyrosine Kinase and 
DEPhOsphorylation databases can also match the ChEMBL 
database IDs (with a regexes of ‘∧CHEMBL\d+$’). The inef-
ficiency of regular expressions has been encountered and 
noted in the literature (51, 52). In addition, overly formu-
lated complex regular expressions for ID identifications can 
exhibit catastrophic backtracking, consuming the majority of 
the computer’s computing power (53–55). So regular expres-
sions alone are not sufficient enough for identifications of 
IDs that can be inconsistently or erratically formulated in 
many databases. On the other hand, besides the use of reg-
ular expressions for a global, coarse-grained identification of 
IDs, MantaID employs machine learning approaches to iden-
tify IDs in order to achieve high efficiency and effectiveness. 
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Figure 4. Heat maps of the CMs for models. CART, RF, XGBoost and BPNN, which were trained on both balanced and unbalanced data, are included. 
The number of truth-prediction pairs is shown by the value in the box. The more the model is accurate, the more the values are concentrated on the 
diagonal. Through comparing models with and without balancing samples, we discovered that while accuracy did not noticeably improve as a result of 
balancing datasets, the models performed better for minor classes.
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Figure 5. The features of the MantaID web application. The setting panels allow users to configure the basic and advanced settings; basic settings 
populate settings panels by default, whereas advanced settings enable a more granular control.

MantaID generates data-driven, recursive models that can be 
automatically trained and improved by adding more datasets.

MantaID can identify IDs without requiring explicit 
knowledge of database names, which, to our knowledge, is 
a functionality that none of other tools provide (56, 57). 
This functionality is expected to facilitate the automation 
of the data-driven analysis pipelines that involves the trans-
lation of unsorted free text words extracted from research 

papers containing IDs of different fields into biologically rel-
evant information via databases. For example, it has been 
a difficult task to construct a genome-scale metabolic model 
that involves merging and processing of various omics data, 
which are managed by different databases using different 
IDs (58), into a structured and unified model; it has always 
required human knowledge of the databases from which the 
IDs originate, in order to translate and search the IDs using 
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databases, due to the lack of software tools capable of auto-
matically identifying the ID database (59, 60). Now, with the 
help of MantaID, large amounts of free text in literature can 
be fed into MantaID to search for their meanings in databases, 
and based on the organized ID meaning tables, protein inter-
actions, gene–disease associations, etc. can be constructed 
(61–64).

Conclusion
In summary, MantaID is capable of identifying IDs rapidly 
and is based on various machine learning approaches that 
are tailored for high accuracy and efficiency. Due to the 
data-driven nature of our proposed framework approach, 
MantaID supports the identification of all types of IDs across 
diverse databases, thereby avoiding the limitations encoun-
tered by a few other ID conversion programs By eliminat-
ing the need to manually look up biological IDs in online 
databases, it is envisioned that MantaID will become an 
indispensable tool for the creation of large-scale models by 
assimilating and integrating large quantities of ID data linking 
all biological knowledge.
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