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Abstract
The World Health Organization estimates that 9 out of 10 people worldwide breathe air containing high levels of pollutants. Long-
term and chronic exposure to high concentrations of air pollutants is associated with deleterious effects on vital organs, including 
increased inflammation in the lungs, oxidative stress in the heart and disruption of the blood–brain barrier. For this reason, in an effort 
to find an association between exposure to pollutants and the toxicological effects observable on human health, an online resource 
collecting and characterizing in detail pollutant molecules could be helpful to investigate their properties and mechanisms of action. 
We developed a database, APDB, collecting air-pollutant-related data from different online resources, in particular, molecules from 
the US Environmental Protection Agency, their associated targets and bioassays found in the PubChem chemical repository and their 
computed molecular descriptors and quantum mechanics properties. A web interface allows (i) to browse data by category, (ii) to 
navigate the database by querying molecules and targets and (iii) to visualize and download molecule and target structures as well 
as computed descriptors and similarities. The desired data can be freely exported in textual/tabular format and the whole database in 
SQL format.

Database URL: http://apdb.di.univr.it
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Air pollution is a mixture of hazardous substances, includ-
ing gases, organic compounds and metals, from both 
human-made and natural sources [https://www.niehs.nih.gov/
health/topics/agents/air-pollution/ (7 March 2023, date last 
accessed)]. Chronic exposure to air pollution appears to cause 
deleterious effects on human health, affecting lung and heart 
functions, as well as generating alterations in brain cognitive 
functions that may potentially increase risk factors for neu-
rodegenerative disorders such as dementia, Alzheimer’s and 
Parkinson’s diseases (1, 2).

Thus, in the endeavour to deeply understand the molec-
ular and cellular mechanisms responsible for the connection 
between vital organs’ health and air pollution, it is necessary 
to accurately collect, organize and chemically characterize 
pollutant molecules.

A comprehensive list of air pollutants is provided by 
the Environmental Protection Agency (EPA), in particular, 
the EPA has released the SPECIATE database, a curated 
repository of speciation profiles of air pollution sources 
that describes the chemical composition of organic gas, 
particulate matter (PM) and other pollutants emitted by 
these sources [https://www.epa.gov/air-emissions-modeling/

speciate-0 (7 March 2023, date last accessed)]. Supplied 
chemical species include six air pollutants identified as ‘cri-
teria’, namely ground-level ozone, PM, carbon monox-
ide, lead, sulphur dioxide and nitrogen dioxide. The EPA, 
in regulating emissions of hazardous air pollutants, pro-
vided an original list later modified through rule-making to 
include 188 hazardous air pollutants, which are classified as 
‘HAPS’ in SPECIATE [https://www.epa.gov/haps/initial-list-
hazardous-air-pollutants-modifications (7 March 2023, date 
last accessed)].

Other sources of air pollution information are the Agency 
for Toxic Substances and Disease Registry Portal, col-
lecting details on adverse health effects due to expo-
sure to hazardous substances [https://wwwn.cdc.gov/TSP/
index.aspx (7 March 2023, date last accessed)], the Risk 
Assessment Information System [https://rais.ornl.gov/tools/
tox_profiles.html (7 March 2023, date last accessed)], con-
taining toxicity profiles of different chemical species, and 
the Hydrosil International Ltd website [https://hydrosilintl.
com/resources/pollutants (7 March 2023, date last accessed)], 
a leading producer of odour, water, hazardous air pol-
lutants and volatile organic compounds’ control filtration
products.
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Molecular structures of air pollutants can be represented 
in the most recognized chemical-data file formats, e.g. the 
SDF format (Structure Data Format), a formatted ASCII file 
widely used to store and exchange comprehensive informa-
tion about the chemical structure of molecules, including their 
atom types, bond types, 3D coordinates and other relevant 
properties, and the SMILES format (Simplified Molecular-
Input Line-Entry System), a compact ASCII string that 
encodes the connectivity of atoms in a molecule in a stan-
dardized manner which makes it particularly suitable for 
database searching [http://www.structuralchemistry.org/pcsb/
capp_cdf.php (7 March 2023, date last accessed)].

Molecules of interest can be further annotated using sev-
eral online chemical sources, such as PubChem (3), a publicly 
available resource of chemical information maintained by 
the National Center for Biotechnology Information, which 
includes the structure, properties and biological activities of 
120 million chemical compounds, including small molecules, 
peptides and larger molecules like proteins and nucleic acids. 
It also annotates compounds with external resources and 
allows you to browse the chemical information through 
a user-friendly interface making it a valuable resource for 
researchers. ChEMBL (4) and ChEBI (5) are both supported 
by the European Molecular Biology Laboratory’s European 
Bioinformatics Institute. The former is an open, manually 
curated and high-quality chemical database of 2 million bioac-
tive molecules and their targets, hence primarily useful for 
drug discovery and pharmacology studies. The latter covers 
a wider range of chemical entities, including small molecules, 
peptides and other compounds. It contains a freely accessible 
ontology that provides their classification, nomenclature and 
chemical properties.

The above web resources provide different molecular iden-
tifiers, among them the Chemical Abstracts Service (CAS) 
Registry Number that uniquely identifies substances, the 
InChIKey (International Chemical Identifier), a textual iden-
tifier encoding molecular information, the canonical SMILES, 
a unique structural in-line representation for a molecule and 
the molecular formula (e.g. C2H3Cl2F). Moreover, these 
databases contain the collections of bioactivity and toxicity 
data associated with small molecules, which can be easily 
accessed through public Application Programming Interfaces 
and processing utilities in batch mode.

Molecules can be characterized through a wide range of 
structural and physicochemical properties, also called molec-
ular descriptors. Descriptors can be calculated starting from 
two-dimensional (2D) structures [e.g. 2D autocorrelation 
indices by Moreau–Broto (ATS), Moran (MATS) and Geary 
(GATS) algorithms or topological charge indices (6)] and 
from three-dimensional (3D) structures (e.g. charged partial 
surface area (7) or Weighted Holistic Invariant Molecular 
indices (8)). Among properties based on quantum mechanics 
(QM), the orbital energies of the highest occupied molecular 
orbital (HOMO) and the lowest unoccupied molecular orbital 
(LUMO) [https://chem.libretexts.org/Bookshelves/General_
Chemistry/General_Chemistry_Supplement_(Eames)/Molecu
lar_Orbital_Theory/Frontier_MOs%3A_An_Acid-Base_The
ory (7 March 2023, date last accessed)], which describe 
the tendency of a molecule to behave as a nucleophile or 
an electrophile, are the most known. QM methods accu-
rately describe the behaviour of the electrons in atoms and 

molecules based on the Schrödinger equation that governs the 
wave function representing all the properties, e.g. momen-
tum, time, position and spin, of a particle in a quantum 
system [http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/
schr.html (7 March 2023, date last accessed)].

All the aforementioned molecular properties and descrip-
tors can be computed from open-source chemoinformatics 
libraries, RDKit (9), PaDEL-Descriptor (PaDEL for the sake 
of brevity) (10) or the Chemistry Development Kit (11), as 
well as proprietary licence software, such as Jaguar from 
Schrödinger company (12). In particular, Jaguar software, an 
ab initio quantum chemistry programme that applies to both 
organic and inorganic chemistry, is used to calculate molec-
ular properties (e.g. molecular orbitals and electron density) 
and QM properties (e.g. vibrational frequencies, multipole 
moments, polarizabilities, enthalpies, and entropies). PaDEL 
instead is used to compute physicochemical properties, a wide 
range of 2D and 3D molecular descriptors and fingerprints. 
The fingerprint of small molecules is a binary or a count 
string representation that can be fragment-based, encoding 
the presence or absence of specific structural features or pat-
terns, e.g. MACCS (Molecular ACCess System) keys (13) or 
the E-state fingerprint by Hall and Kier (14), or hash-based, 
encoding bond paths up to a fixed length [e.g. Chemistry 
Development Kit (CDK) fingerprint].

Molecular descriptors and fingerprints are widely used 
for chemical substructure search, molecular similarity cal-
culation, clustering of molecules and so forth [https://
www.daylight.com/dayhtml/doc/theory/theory.finger.html (7 
March 2023, date last accessed)]. Depending on the type 
of descriptor, several measures can be used to derive sim-
ilar molecules. For example, for numeric vectors (e.g. 2D 
autocorrelation indices or E-state indices), the similarity is 
the complement of the normalized Euclidean distance or just 
the cosine similarity between them (15). Usually, for binary 
descriptors (e.g. 2D fingerprints and atom pairs), the mostly 
used similarity metrics are the Tanimoto coefficient or the 
Tversky index (16), defined as no. of bits = 1 in both sets/no. 
of bits = 1 in either set. Molecular similarity has been demon-
strated to be relevant in drug discovery campaigns to find 
new molecules or to repurpose drugs (17) and can be like-
wise applied in toxicology to infer chemical toxicity based 
on the similarity of a molecule with known toxicants. This 
is useful also in comparing pollutants in order to let scientists 
deeply analyse and understand the putative toxic effect of air 
pollution.

Here, we built a database, APDB, which takes strength 
from all the information available in the aforementioned 
resources to give a comprehensive and easy-to-use platform 
for the analysis of pollutant molecules (Figure 1a). Publicly 
available chemical databases report large-scale molecules to 
be used for different purposes, e.g. drug discovery, quantita-
tive structure-activity relationship and quantitative structure-
property relationship. Usually, molecular descriptors are also 
provided (18), or they can be computed for the investigated 
chemical structures (19). However, these results do not take 
into account energy minimization or consider only minimum 
local energy. Unlike other resources (19–22), we focused on 
similarities between air pollutants by using molecular and 
quantum mechanical descriptors which analyse physical prop-
erties at the atomic or subatomic scale. Moreover, APDB 
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Figure 1. An APDB overview. (a) The online resources, the collected molecular annotations, targets and bioassays, the computed molecular descriptors 
and similarities, the data statistics and the download functionalities. (b) The IDF weights distribution of fingerprints bits and counts and the first five 
principal components of molecular descriptors and quantum properties.

specifically provides chemical space visualization and similar-
ity search of air pollutants by leveraging graph embeddings to 
create air pollutant signatures.

APDB is enriched with collected molecular annotations, 
the computed 2D, 3D and QM descriptors (as shown 
in Figure 1b), the identified targets and bioassays and the 
predicted similar molecules. Molecular descriptors and prop-
erties are exploited to derive molecular similarities (Figure 2). 
Indeed, each identified chemical dataset is turned into a 
numeric matrix of molecular features by latent semantic 
indexing (LSI) or principal component analysis (PCA), and 
similar molecules are retrieved by applying the most com-
mon similarity and dissimilarity measures. The significance of 
the computed similarities is assessed by a permutation test. 
As a last step, a node embedding algorithm is applied to 
the obtained similarity networks to explore the most simi-
lar molecules given a threshold. All data are freely accessible 
via a web application that allows database searches and data 
visualization and download.

The rest of the paper is organized as follows. The section 
‘Materials and methods’ details the proposed methodology 
providing information on (i) collected molecular data in 
APDB, (ii) computed quantum properties, (iii) calculated 
molecular descriptors and fingerprints, (iv) derived molecu-
lar similarity, (v) implementation of the web interface and 
(vi) overview of the database. The section ‘Utility and dis-
cussion’ describes case studies and discusses obtained results. 
The section ‘Conclusion’ summarizes key points and gives 
suggestions on possible applications.

Materials and methods
The molecular data in APDB
The APDB database contains a collection of air
pollutant molecules from the US EPA website, which 
provides the list of SPECIATE data [https://www.epa.
gov/air-emissions-modeling/speciate-0 (7 March 2023, date 
last accessed)] that also incorporates the list of haz-
ardous air pollutants [https://www.epa.gov/haps/initial-list-
hazardous-air-pollutants-modifications (accessed 7 March 
2023, date last accessed)] classified as ‘HAPS’. SPECIATE 5.1 
(June 2020) is released both in Microsoft Access® and in the 
SPECIATE Data Browser.

We used this resource as a starting point for building con-
tent in APDB; specifically, we exported the ‘SPECIES_PROP-
ERTIES’ table containing molecule information such as CAS 
number, species name, SMILES notation and molecular for-
mula. We kept only one chemical name per molecule, eliminat-
ing synonyms and removing duplicated species, CAS numbers 
and missing or corrupted SMILES strings.

In APBD, molecules are annotated with PubChem’s molec-
ular identifiers and properties, such as PubChem Compound 
Identification (CID), CAS, InChIKey, canonical SMILES and 
molecular formula, retrieved via PubChem’s PUG REST ser-
vice querying by SMILES string (23). Each queried SMILES 
was associated with a single compound in PubChem, result-
ing in a total of 1830 molecules from an initial set of about 
2800 species.

To determine the molecule type, i.e. organic or inorganic, 
we used a web-based application named ClassyFire (24), 
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Figure 2. Data preprocessing and similarity analysis. (a) From data collection and storage to data preprocessing and similarity calculation. (b) k -means 
clustering of similarity spaces. (c) The panel of similar molecules to a query molecule (default threshold is 0.95; if no similar molecules are found, those 
with the closest threshold are returned).

which hierarchically classifies chemical entities. We employed 
RDKit (9), an open-source chemoinformatics toolkit, to list 
all the unique atoms present in every molecule and gener-
ate the 2D molecular structures starting from the canonical 
SMILES. For each molecule, its associated targets found in the 
PubChem BioAssay database (25) are reported. We accessed 
bioassay data through PubChem’s RESTful interface query-
ing by PubChem CID and searching for the word ‘active’ in 
the assay description. We annotated each target with the gene 
symbol and UniProtKB identifier using the AnnotationDbi 
R/Bioconductor package (26), keeping only human genes. 
Overall, the number of molecules with associated targets
is 537.

The calculation of QM properties
QM properties were computed using Jaguar (12) computa-
tional program on Maestro, a graphical user interface that 
provides access to Schrödinger’s software and allows dis-
playing and manipulating chemical structures [https://www.
schrodinger.com/products/maestro (7 March 2023, date last 
accessed)], while additional molecular properties, descriptors 
and fingerprints were calculated with the PaDEL-Descriptor 
software (10).

The computation of quantum mechanical descriptors 
comprises two main tasks: (I) geometry optimization and 
(II) single-point energy calculation. Canonical SMILES were 
imported in Maestro in order to clean them up and check 
the correctness of atom connectivity, bond orders and desalt-
ing, using the LigPrep module [https://www.schrodinger.com/
products/ligprep (7 March 2023, date last accessed)], which 
generates an energy-minimized and accurate 3D representa-
tion of a molecule, i.e. its most stable conformation, allowing 

to avoid issues with the molecular structures and geometries. 
We applied the OPLS4 molecular mechanics force field (27) 
and selected the Epik tool for pKa prediction to produce pos-
sible ionization and tautomeric states at pH 7.0 ± 2.0. pKa 
is a property that describes how acidic or basic a chemical 
entity is by reflecting the ionization state, i.e. the charge, and 
the tautomeric states, i.e. the interconvertible structures, of 
a molecule in solution at a given pH value (28). LigPrep 
was not applied to molecules containing metallic elements, 
small compounds and ions. The output SDF file [http://www.
structuralchemistry.org/pcsb/capp_cdf.php (7 March 2023, 
date last accessed)] reports information about the ionization 
state, formal charge and added hydrogen. To improve the 
readability, the details of the output fields are given in 
Supplementary Table S1.

Only one structure for each molecule was selected for fur-
ther optimization (as described later) according to the lowest 
conformational energy, state penalty, ionization penalty and 
highest tautomer probability.

The preprocessed molecules were subsequently given in 
input to Jaguar. We first performed a default-level optimiza-
tion task to converge the molecular structure to a minimum 
geometry and then we ran a single-point energy calculation 
for computing the quantum properties. Both steps require 
the choice of density functionals and basis sets. The density 
functional theory (DFT) is a widely employed computational 
method to calculate the electronic, structural and magnetic 
properties of atoms and molecules. This theory aims to quan-
titatively understand the properties of a QM system by solving 
the Schrödinger equation based on the electron density, which 
represents the probability of finding an electron at a spe-
cific region around atoms and molecules (29). Several density 
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functionals are available in Jaguar, so we decided to apply 
the traditional hybrid density functional B3LYP (30) to all 
molecules to perform both tasks. Like many quantum chem-
istry software programs, Jaguar employs basis sets (sets of 
basis functions) consisting of Gaussian-type atomic orbitals 
to represent the electronic wavefunction or electron densities 
used in the DFT. The standard basis set in Jaguar is called 
6-31G and covers the elements from hydrogen to argon (12); 
therefore, we used the 6-31G** basis set to perform geometry 
optimization of all molecules containing H–Ar and non-metal 
elements (except for iodine).

For ‘SCF’ convergence, which is a self-consistent field 
method to investigate electronic structure configurations 
within the DFT, we selected the ‘Quick’ accuracy level for 
geometry optimization and the ‘Accurate’ for single-point cal-
culation, while we left the initial guess as ‘Atomic overlap’. 
We kept the default convergence criteria and methods, except 
in some particular cases in which we increased the number 
of maximum iterations to help convergence. In the ‘Solvation’ 
settings, we selected the ‘None’ option as the solvent model 
since we did not analyse molecules in solution, but in gas 
phase.

After coordinate optimization, it is common to use larger 
basis sets, i.e. having more functions per atom, in a single-
point calculation to compute QM properties. In the work 
by Bochevarov et al. (12), the authors recommend using cc-
pVTZ(-f) for accurate computations of the energy; thus, we 
applied this basis set to all molecules containing elements from 
hydrogen to argon and remaining non-metals, after geom-
etry optimization. For the molecules not converging with 
cc-pVTZ(-f), namely long-chain fatty acids, we used again 
6-31 G** in the single-point task and increased the number 
of maximum iterations to 1000. For metal atoms beyond 
argon, it is strongly recommended the usage of the LACVP** 
basis set for geometry optimization and LACV3P** subse-
quent energy evaluation; therefore, we applied these basis sets 
to the different metals and molecules containing metallic ele-
ments beyond argon. For a few compounds not converging 
in optimization, we directly performed single-point energy 
calculation changing the atom-level settings for every single 
atom, i.e. we chose cc-PVTZ(-f) or LACV3P** depending 
on the atom type [e.g. for hydroxyapatite (HAp), potassium 
carbonate and chrysotile]. As described in the reference man-
ual (31), since lanthanides are covered by the CSDZ basis 
set, we applied CSDZ** to directly execute the single-point 
energy task. The ERMLER2 ECP basis set instead is sup-
ported by both lanthanides and actinides; therefore, we used 
ERMLER2** for actinides elements and for those lanthanides 
not converging with the CSDZ basis set. We still selected 
‘Accurate’ as the accuracy level and increased the number of 
maximum iterations when needed.

Molecular properties selected for geometry optimization 
and single-point calculations are provided in Supplementary 
Table S2. Quantum-chemical properties written to the output 
structure file (.sdf ) are listed and detailed in Supplementary 
Table S3.

The molecular descriptors and fingerprints
The output structure files from single-point energy calcula-
tions were used to compute physicochemical properties, 2D 
and 3D descriptors and fingerprints with PaDEL. It currently 
computes 797 types of descriptors (663 1D, 2D descriptors 

and 134 3D descriptors) and 12 classes of fingerprints (10) 
(note that we did not compute 3D descriptors for metal-
containing inorganic molecules due to the lack of reliable 
3D information). The obtained 1D descriptors mainly rep-
resent information computed from the molecular formula, 
while the more complex 2D descriptors describe molecular 
features regarding the size, morphology and electron dis-
tribution in the molecule; finally, 3D descriptors represent 
properties related to the 3D molecular conformation (32). 
Common 1D descriptors are atom and bond counts and 
types, and molecular weight, while remarkable 2D descrip-
tors are the Ghose–Crippen octanol-water coefficient (ALogP) 
expressing lipophilicity, the Ghose–Crippen molar refractiv-
ity (AMR) that measures dispersive interactions (33), the 
Moreau–Broto (ATS), Moran (MATS) and Geary (GATS) 
autocorrelation indices, i.e. topological descriptors encod-
ing both molecular structure and physicochemical properties 
(such as mass, van der Waals forces and electronegativities) 
of a molecule (34) and the atom-type electrotopological state 
(E-state) indices, which combine the electronic state of an 
atom with its topological context within a molecule (14). 
Examples of 3D descriptors obtained from the 3D structure 
of molecules are the polar and non-polar surface area (35); 
moreover, autocorrelation can also be calculated from 3D 
molecular geometry.

Molecular fingerprints are a way of representing a molecule 
as a vector whose components encode the presence/absence, 
or the counts, of a specific functional group, scaffold or 
feature in the molecular graph (36). We obtained different 
classes of fingerprints from PaDEL, namely the CDK and 
CDK-extended fingerprints (FP and ExtFP) (11), examples of 
path-based hashed fingerprints that encode paths of length 8 
into a 1024-bit array; the E-state fingerprint, a 79-bit array 
that represents the presence/absence of the 79 E-state atom 
types defined by Kier and Hall (14); the CDK graph only 
fingerprint, which is a specialized version of the CDK FP; 
the MACCS fingerprint that indicates the presence/absence 
of 166 structural features called MACCS keys (13); the 
PubChem fingerprint, a 881-bit array encoding molecular 
fragment information [https://ftp.ncbi.nlm.nih.gov/pubchem/
specifications/pubchem_fingerprints.pdf (7 March 2023, date 
last accessed)]; the substructure fingerprint that represents 
the presence or count of 307 SMARTS patterns describ-
ing atomic and bond properties [https://www.daylight.com/
dayhtml/doc/theory/theory.smarts.html (7 March 2023, date 
last accessed)]; the Klekota–Roth fingerprint, a 4860-bit array 
that describes the presence or count of chemical substruc-
tures defined by Klekota and Roth (37) and the 2D atom 
pairs fingerprint encoding the presence or count of atom pairs 
at various topological distances in the molecular bond graph 
(e.g. F–F pair at distance 4).

The molecular similarity
All the described molecular properties and descriptors were 
used to calculate molecular similarities in the APDB as out-
lined in Figure 2a.

Following the direction of Duran-Frigola et al. (20), APDB 
data were divided into four identified ‘chemical spaces’: (i) fin-
gerprints bits, (ii) fingerprints counts, (iii) molecular descrip-
tors and (iv) quantum properties. In addition, single elements 
were filtered from the last two spaces to be analysed sepa-
rately. Each dataset was turned into a numeric matrix having 
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molecules as rows and features as columns. In particular, term 
frequency–inverse document frequency (TF–IDF) transforma-
tion was applied to discrete numeric data represented by bits 
and counts associated with each molecule, and dimensionality 
reduction, called LSI based on singular-value decomposition, 
was performed on the resulting TF–IDF matrix by keeping the 
number of components explaining 80% of the variance (38). 
For continuous numeric data, PCA (39) for dimensionality 
reduction was applied to the preprocessed matrices after man-
aging missing values and scaling data, by keeping 80% or 
90% of the variance depending on the number of input fea-
tures. Similar molecules were derived by primarily applying 
cosine similarity to the reduced numeric matrices. To assess 
the significance of the computed similarities, a permutation-
based test was performed on the low-dimensional matrices by 
shuffling values within rows and by comparing the expected 
pairwise similarity matrix with the true similarity matrix for 
a given number of permutations (default 1000). Subsequently, 
similarity networks were built from statistically significant 
pairwise similarities, i.e. with a P-value of <0.05 or 0.01. 
The final features associated with each molecule are low-
dimensional vectors obtained by running the ‘Node2Vec’ (40) 
node embedding algorithm on each similarity network. In 
particular, we used 36 dimensions for molecular fingerprints 
and descriptors, and 9 dimensions for quantum properties. 
The obtained embedding model, which maximizes the likeli-
hood of preserving the original network structure, was used to 
explore the most similar molecules, given a similarity thresh-
old. Embedding vectors were also used to cluster molecules 
into communities or groups of similar compounds by k-means 
(41) (Figure 2b) or agglomerative clustering (42).

Finally, we performed a similarity assessment by comput-
ing the association between the number of common targets 
found between similar molecules and between not similar 
molecules. Similar molecules are those with a high similarity in 
the embedding space (e.g. >0.96), while not similar molecules 
are those with a low similarity (e.g. <0.46). Through a chi-
squared test, we found that the association between being 
similar or not similar and having common targets was sta-
tistically significant. Moreover, we observed that the group of 
similar molecules had slightly higher odds of having common 
targets than not similar molecules.

Web interface implementation
APDB is a relational database implemented in PostgreSQL 
with a web application developed using Python (version 
3.10.4) and Flask (version 2.1.2) (43). The front end was 
designed using the HTML and CSS languages and the Boot-
strap framework. The application was developed with Docker 
on Ubuntu 18.04 server and consists of two containers, one 
with the main Flask application and one with the PostgreSQL 
database.

RDKit (9) was used to dynamically generate the 2D 
molecules’ structures, and 3Dmol.js (44) was embedded to 
visualize high-resolution target 3D structures from the Protein 
Data Bank (PDB) (45).

Web interface overview
The main APDB interface modules are Home, Statistics and 
Downloads/Contacts. These allow (i) to navigate the database 

by searching for molecules, targets and bioassays, descrip-
tors and similarities; (ii) to visualize data statistics and (iii) 
to download data.

Home
Through the Home section, the user is directed to subsequent 
pages where one can browse molecules, targets and bioassays, 
descriptors and similarities.

• Molecular annotations: Molecules are specified by using 
the chemical name, CID, CAS, InChIKey, canonical 
SMILES and molecular formula from PubChem. Molecule 
structures can be filtered by clicking on one periodic table 
element. By pressing the download button, users can 
obtain a CSV file with the whole table or with the selected 
items from the column checkboxes, the periodic table or 
the search form. Molecules can be searched by all their 
listed identifiers. By clicking on a CID entry, users are 
redirected to the panel of similar molecules.

• Targets and bioassays: Bioassays are specified through the 
assay ID, associated CID, activity value in μm, activity 
name, assay name, assay type and PubMed ID. Targets 
are inserted by their GenInfo Identifier, gene ID, sym-
bol and UniProtKB. By pressing the download button, 
users can obtain a CSV file with the whole table or with 
the selected items from the column checkboxes or the 
search form. Targets can be searched by all their listed 
identifiers. By clicking on a UniProtKB entry, users are 
redirected to the target panel containing information on 
the searched target. If present, the optimized PDB file gen-
erated with 3Dmol.js can be visualized and downloaded 
through the ‘PDB’ button; otherwise, users can down-
load and explore the predicted protein structure on the 
AlphaFold page. Molecules associated with the searched 
target can be downloaded as a CSV file by pressing on 
the download icon. By clicking on a CID entry, users are 
redirected to the panel of similar molecules.

• Molecular descriptors: Descriptors are illustrated through 
an interactive radar chart representing the distribution 
of the IDF weights of all classes of fingerprints bits and 
counts and a scatter plot matrix with the first five prin-
cipal components of molecular descriptors and quantum 
properties. By pressing on the download icon, users 
can obtain a CSV file with the corresponding descriptor
table.

• Molecular similarities: Similarity spaces are illustrated 
through an interactive scatter plot of k-means clusters 
projected to 3D with t-distributed Stochastic Neighbor 
Embedding (t-SNE) (Figure 2b). The legend below shows 
the number of similar molecules found for each cluster. 
By pressing on the download icon, users can obtain a 
.zip file with the corresponding embedding model from 
‘Node2Vec’ (note that molecular descriptors and quan-
tum properties also include the model for single elements). 
Similar molecules can be retrieved by inserting the CID 
or InChIKey of a molecule of interest in the search area. 
The molecule similarity panel (Figure 2c) shows molec-
ular info together with the 2D structure generated with 
RDKit and the list of similar molecules ranked by the num-
ber of intersecting spaces and average similarity. Users can 
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change the similarity threshold in the range of 0.75–0.99 
(default 0.95); if no similar molecules are found, the 
application automatically decreases the threshold until at 
least one similar molecule is returned. The ‘SDF’ but-
ton allows downloading the optimized SDF file for the 
searched molecule. Similar molecules can be downloaded 
as a CSV file by pressing on the download icon in the table 
header.

Statistics
The Statistics section illustrates some interactive charts on 
data in APDB. A pie plot shows the percentage of organic 
and inorganic molecules. A histogram plot represents the 
count of molecules with a specific number of targets. A set 
of histograms shows the distribution of similar molecules at 
different similarity thresholds. A table describes the number 
of entries in APDB.

Documentation
Through the ‘Documentation’ section, the user can have an 
overview of the data contained in the APDB and a quick guide 
to the main sections and utilities.

Downloads/Contacts
In the ‘Downloads/Contacts’ section, the whole database can 
be dumped as a compressed archive .zip or in .sql format 
(except for molecular descriptors and fingerprints which can 
be downloaded in .csv format from the dedicated page). 
Search results (i.e. by molecule, target and similarity) can 
be downloaded in .csv format through the corresponding 
‘Download’ buttons.

Results and discussion
The user can easily access and browse APDB molecular infor-
mation through the appropriate sections and search for a 
query molecule to get similar compounds, known biological 
targets and related chemical features. For each chemical entity, 
the results represent the specific contribution of each chemi-
cal space in computing similar molecules as described in the 
section ‘The molecular similarity’.

Case studies
We selected the most representative molecules to illustrate 
the features and usability of APDB, e.g. 2-(2-hydroxypro-
poxy)propan-1-ol, 1-methyl-4-nitronaphthalene for organic 

Figure 3. The first two similar molecules for each case study molecule with a similarity threshold of >0.96 in the corresponding space.
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and HAp, and phosgene for inorganic compounds (Figure 3). 
These four molecules were selected according to chemical 
features and complexity. The two organic compounds are 
examples of aromatic, cyclic, linear substructures and sev-
eral functional groups. Inorganic compounds were chosen 
because they represent the low and high complexity of typical
inorganic molecules. 2-(2-Hydroxypropoxy)propan-1-ol is 
not a common compound in industry or laboratory; how-
ever, it could potentially be used in the synthesis of other 
compounds or as a solvent.

1-Methyl-4-nitronaphthalene is a nitro derivative of naph-
thalene, classified as a nitroaromatic compound which in turn 
has been used as an intermediate in the synthesis of other 
organic compounds, such as dyes, pesticides and pharmaceu-
ticals (46). Indeed, there is concern about its potential toxicity 
and carcinogenicity (47).

Both compounds are not widely studied and their analysis 
can potentially shed light on negative effects on human life.

HAp is a naturally occurring mineral form of calcium phos-
phate. It is the main mineral component of bones and teeth in 
living organisms and is insoluble in water and organic sol-
vents. HAp has a number of unique properties that make it 
useful in a variety of industrial and medical applications. Due 
to its chemical similarity to the mineral component of bone, 
it has been used as a bone substitute material in orthopaedic 
and dental applications. It is also used as a coating material 
on metal implants to promote bone growth and improve the 
bonding between the implant and the surrounding bone.

Phosgene is a poisonous and colourless gas primarily used 
as a constituent in many pharmaceutical and organic indus-
tries. Once inhaled, it produces a dose-dependent toxic effect 
by acylating several enzymes related to energy metabolism, 
which in turn causes a breakdown of the blood–air bar-
rier resulting in the clinical manifestation of pulmonary
oedema (48).

Analysing the results of case studies queries, it is notewor-
thy how every chemical space of similarity shows interest-
ing and complementary similarity aspects between molecules. 
Thus, the consultation and comparison between different 
chemical spaces offer the user the possibility to analyse sim-
ilarities from different points of view. Fingerprints spaces 
will give back molecules containing similar fragments within 
the chemical structure, whereas molecular descriptors and 
quantum mechanical descriptors will propose molecules with 
structural and reactivity similarities.

For example, analysis of phosgene results (Figure 3) shows 
carbonyl sulphide (CID 10 039) as the most similar com-
pound, due to the presence of the carbonyl moiety detected 
by molecular and QM properties as the most similar in terms 
of reactivity and chemical composition. Interestingly, these 
two gases have been reported to share toxicity mechanisms 
and they have been recently also evaluated as comparable for 
the HOMO–LUMO reactivity towards aromatic compounds 
(49). Fingerprints, instead, find other similar fragments such 
as the chlorine atoms connected to a central carbon atom, con-
tained in the carbon tetrachloride (CID 59 430). Also in this 
case, the similarity tool offered important data, considering 
that the hepatotoxic effect of carbon tetrachloride is mediated 
by its transformation in tissues, where its peroxidation gen-
erates phosgene (50). This case study demonstrates how the 
similarity tool can be useful for direct molecular similarity or 

to suggest toxicity mechanisms behind a molecular structure 
otherwise neglected without considering possible metabolites.

For the other inorganic compound chosen as a case study, 
HAp, it is really interesting to see how three different spaces 
suggest the same prioritized compound as similar, chrysotile 
asbestos (CID 25 477), based on different aspects of their reac-
tivity. It is known that these two minerals share a similar 
toxicity profile, due to their reactivity and capability to inter-
act with inflammation cascade (e.g. NLRP3 inflammasome 
activation) (51). The second most similar compound proposed 
for this case study is aluminium oxide (CID 9 989 226). Even 
in this case, the similarity suggested is interesting because 
from the literature it is known that aluminium oxide shares 
with asbestos the same toxicity mechanism mediated by 
macrophage cells (52).

Results for organic compounds enlighten other interest-
ing aspects of molecular similarity. The 2-(2-hydroxypro-
poxy)propan-1-ol (CID 32 881) was found to be similar to 
1,1′-oxydi-2-propanol (CID 8087) and 1-ethoxy-2-propanol 
(CID 15 287). These compounds, classified in the ‘CAMEO 
Chemical Reactivity Classification’ [https://cameochemicals.
noaa.gov/browse/react (7 March 2023, date last accessed)] as 
alcohols and polyols or ethers, act as acute and chronic toxi-
cants to different targets (53). In this case, the fingerprints bits 
and quantum properties of chemical spaces correctly enlight-
ened the main features of these toxicants such as the polyols 
and ether functions. Fingerprints enlightened the chemical 
components of similarity, while quantum properties found 
similarity because of the same reactivity of the molecular 
functional groups.

For the fourth case study, 1-methyl-4-nitronaphthalene, 
the chemical spaces found the same molecules as the 
most similar, 1-methyl-5-nitronaphthalene and 1-methyl-6-
nitronaphthalene (CID: 93496 and 86258), two structural 
isomers. It confirms again the importance of the similarity tool 
offering a molecule set that is similar in structural patterns 
and mechanism of action. Interestingly, in this case, molecu-
lar descriptors and quantum properties did not recognize the 
1-methyl-6-nitronaphthalene as the most similar to the query 
molecule, and it is probably due to different reactivity to oxi-
dation and subsequent toxic mechanism led by the methyl 
position (54).

Conclusion
APDB is an essential resource that improves our knowledge of 
the existing pollutant molecules, providing an in-depth insight 
into their physicochemical, structural and quantum proper-
ties. The collection of pollutant molecular structures together 
with all the chemical characteristics provided in APDB offers 
scientists a unique resource for a wide view of the biochemical 
aspects of pollutant toxicity mechanisms. As a matter of fact, 
APDB is the first publicly available online database offering a 
complete chemical and biological annotation of air pollutants.

Moreover, derived similarities can be explored to identify 
similar molecules, then infer similar mechanisms of action and 
study potential synergistic effects in disease pathways (55). 
As previously discussed in the case studies section, the use of 
four distinctive chemical spaces for the similarity assessment 
between molecules allows scientists to have a view of simi-
lar compounds and therefore of putative targets/mechanism of 
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action of the studied pollutant. The molecular properties used 
(fingerprints, molecular descriptors and quantum properties), 
in their complementarity, are capable of collecting different 
aspects of chemical similarity (functional groups, reactivity 
and connectivity) so that users can infer biochemical aspects 
of the toxicity behind every chemical structure. Lastly, the tar-
gets associated with the molecules can be easily retrieved and 
used in other fields of biomedical research, e.g. in molecular 
simulations, chemoinformatics approaches or toxicological 
and epidemiological studies (56–58).

Supplementary material
Supplementary material is available at Database online.

Data availability
All data and resources of APDB are freely available at https://
github.com/InfOmics/APDB.
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