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Abstract
How should billions of species observations worldwide be shared and made reusable? Many biodiversity scientists assume the ideal solution 
is to standardize all datasets according to a single, universal classification and aggregate them into a centralized, global repository. This ideal 
has known practical and theoretical limitations, however, which justifies investigating alternatives. To support better community deliberation and 
normative evaluation, we develop a novel conceptual framework showing how different organizational models, regulative ideals and heuristic 
strategies are combined to form shared infrastructures supporting data reuse. The framework is anchored in a general definition of data pooling 
as an activity of making a taxonomically standardized body of information available for community reuse via digital infrastructure. We describe 
and illustrate unified and pluralistic ideals for biodiversity data pooling and show how communities may advance toward these ideals using 
different heuristic strategies. We present evidence for the strengths and limitations of the unification and pluralistic ideals based on systemic 
relationships of power, responsibility and benefit they establish among stakeholders, and we conclude the pluralistic ideal is better suited for 
biodiversity data.
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which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Biodiversity science exemplifies the triumphs and struggles 
of researchers attempting to achieve ‘big data’ by combining 
many smaller datasets from different sources (1, 2). Millions 
of people, including professional scientists and non-academic 
enthusiasts, have collected billions of observations of bio-
logical species across the planet, many of which are avail-
able today using open databases online (3). Generally called 
‘species occurrence observations’, these data document the 
presence of organisms of particular species at particular places 
and times. Many observers also record further information 
about the organism, such as its phenotypic traits, genetics or 
ecological interactions, and link this information to preserved 
physical samples, digital images or audio recordings (4).

Researchers, funders and policymakers aim to make biodi-
versity data reusable because the data contain valuable infor-
mation for societal goals such as sustainable development, 
ecosystem services, pathogen monitoring, wildlife manage-
ment and education, to name just a few (5). A prominent 
strategy is to create and maintain shared digital infrastruc-
tures that data collectors can use to publish their observa-
tions, e.g. by individually uploading information or con-
tributing to institutional collections that in turn submit their 
records to an aggregator database. The Global Biodiver-
sity Information Facility is perhaps the largest biodiversity 
data infrastructure in terms of the number of observations, 
with 2.3 billion records publicly available online as of May
2023.

Biodiversity science, however, continues to face sev-
eral challenges to enabling data reuse, for which online 
accessibility of datasets is generally necessary but not suffi-
cient (6–9). One challenge is that a wide range of actors collect 
biodiversity data in a decentralized manner for heteroge-
neous purposes, including systematists describing new species, 
government agencies monitoring ecological change and con-
servation organizations or businesses making decisions about 
protected species or ecosystems (10). These actors typically 
differ in how they locally label, preprocess and maintain their 
records in the context in which the data were collected and 
first stored (1). Moreover, the categories people use to describe 
what they have observed, such as species names and classifi-
cations, phenotypic traits and sampling procedures, are also 
frequently in flux and contested (11).

A second challenge consists of the varying institutional con-
straints that users place on biodiversity data. These constraints 
include, e.g., legal or organizational policies that restrict 
access due to rare species protections or protocols associated 
with the United States National Park Service, Indigenous or 
private lands. Some policies also require particular data stan-
dards and categories and impose differing norms about what 
makes the data fit-for-use as evidence (12). As a result, there 
is a substantial gap between merely storing biodiversity data 
records in one place and harmonizing them into a coherent 
and trustworthy body of information suitable for reuse across 
situations that vary in scale, scope, target audience or domain 
of application.
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A third challenge underlying these first two is that sci-
entists and other stakeholders often overlook the variety of 
approaches to addressing these challenges, often defaulting to 
one option—e.g. the ideal of having all the relevant standard-
ized data in one place—without well-informed deliberation 
about the alternatives and their suitability to the social and 
technical context at hand (13, 14). For example, global-level 
projects launched in the past several decades have frequently 
pursued ideals of centralizing biodiversity data in a few 
global infrastructures under unified schemes for metadata, 
infrastructure management and other aspects of governance. 
This approach often appears effective for short-term goals 
of data integration and publication but creates longer-term, 
path-dependent constraints on science, narrowing the range 
of what biodiversity data stakeholders can conceive of as 
possible alternative strategies.

We address these challenges by providing a novel concep-
tual framework with which to characterize how biodiversity 
data infrastructures enable data reuse by adopting different 
sets of epistemological ideals and heuristics, and how they 
might be redesigned to better meet the needs and goals of prac-
titioners. We draw on tools from the philosophy of science to 
develop this framework, which includes a general concept of 
data pooling, a continuum of organizational models for pool-
ing and two regulative ideals that can be used to evaluate the 
desirability, design and effectiveness of any particular pooling 
model.

Our strategy to present and advocate for this framework 
is as follows. In the ‘Biodiversity data pooling and portals’ 
section, we introduce the idea of data pooling and review 
its importance for species occurrence observations. In the 
‘Epistemic-organizational models for data pooling’ section, 
we describe five types of epistemic-organizational models to 
characterize how a diverse range of infrastructures navigate 
the technical, infrastructural and governance challenges of 
integrating data from multiple sources. We illustrate how 
these models differ according to their relative degree of 
infrastructure standardization, on the one hand, and user 
customization on the other. Building on these models, the 
‘Regulative ideals for data pooling’ section presents two regu-
lative ideals for biodiversity data—unified and pluralistic data 
pooling. In the ‘Unification for biodiversity data and its lim-
itations’ and ‘Pluralistic data pooling as an overlooked ideal’ 
sections, we then examine how regulative ideals for data pool-
ing and their corresponding epistemic-organizational mod-
els have been influential in biodiversity data pooling, and 
we review existing arguments addressing how effectively 
these ideals address challenges for making biodiversity data 
reusable. The pluralistic ideal we characterize provides an 
effective but often overlooked basis for data pooling practices 
and infrastructure that suit the needs of pluralistic science and 
societal decision-making.

Biodiversity data pooling and portals
Biodiversity data are necessary to address long-standing ques-
tions in the life sciences and to inform policy and regulatory 
actions, from climate change to zoonotic diseases to biodiver-
sity loss. The challenges created by decentralized, large-scale 
biodiversity data collection and sharing are as much social 
as technical in character, and making biodiversity data com-
prehensively available and reusable will likely require major 

changes to the cultures, organizations and infrastructures of 
the research communities involved (1, 14–17). In this section, 
we develop an account of data pooling that emphasizes the 
processes, practices and ideals by which people pool data 
into shared repositories rather than treating datasets as static 
objects abstracted from ongoing use and modification. We 
also discuss data portals as a critical type of scientific knowl-
edge infrastructure that facilitates access to and management 
of pooled data resources, and we briefly stress the impor-
tance of data pooling and portals for biodiversity research and 
action.

We introduce the term ‘data pooling’ to describe this pro-
cess by which a group of actors assemble a body of data and 
manage it as a shared resource for long-term reuse by others. 
We define ‘data pooling’ for biodiversity data as a process that 
combines data from multiple sources into one taxonomically 
standardized body of information, provides infrastructure for 
managing and accessing the combined data and governs it as 
a shared resource for a community of users and stakeholders 
beyond a single research project or lab. We define ‘taxonomic 
standardization’ as a set of processes for verifying and re-
identifying a collection of species observations as needed to 
ensure that they are classified in a standardized way accord-
ing to a single, coherent taxonomy of choice. More generally, 
‘data standardization’ (also known as data harmonization) 
is an established term in academic and industry data science 
practices (18–20).

Philosophers of science have recently discussed related 
ideas under the topic of data integration. They illustrate its 
influence on the production of scientific knowledge and of 
assessment of societal risks and benefits, as both increas-
ingly incorporate modeling, experiments and exploratory and 
hypothesis-driven approaches (21, 22). ‘Often conceived as 
a problem or at least a major challenge, data integration is 
the activity of making comparable different data types from a 
huge variety of potentially inconsistent sources’ (21). Among 
other desirable features, these datasets should be trustwor-
thy, fit-for-use and comprehensive to the scope of problems 
while enabling the exclusion of irrelevant information. This 
rough characterization captures some common aspects of data 
integration practices, but it does not address key social and 
organizational aspects of data pooling, especially the involve-
ment of socio-technical infrastructure, governance and work 
done at scales beyond particular projects or labs.

Depending on how they are managed, pooled data 
resources may comprise one of four types of goods under Eli-
nor Ostrom’s classification (Figure 1). The typology is based 
on the degree that one person’s use of the resource subtracts 
from the amount of resource available to others (subtractabil-
ity) and the relative difficulty of excluding people from using 
the resource (exclusion). Researchers generally treat data as 
having low subtractability because they can be copied and 
reused by many people without destroying or consuming the 
data’s information content or meaning (23). Data pooling is 
thus consistent with either open or restricted access to pooled 
resources, so pooled data can be managed as a public good or 
club good system, respectively. The main point of the typology 
is that different governance strategies will be effective depend-
ing on how the resource’s characteristics shape people’s ability 
to control and benefit from its use.

Our analysis explores how the standardization of resource 
units affects their excludability, which is critical for 
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Figure 1. A typology for suitable management approaches to resources, 
modified from Ostrom et al. (62).

biodiversity science given its bottom-up organization of data 
collection and infrastructures. Data pooling requires infras-
tructure sufficient to preserve data and provide users with 
epistemically virtuous datasets for users’ projects. Data that 
are otherwise in the public domain online may nonetheless 
show a high degree of excludability if only a few actors are 
able to afford the high transaction costs needed to find them 
and make them useful for a particular project (24).

Data portals are the predominant mode for organizing 
data pooling projects with infrastructure and governance. We 
define ‘data portals’ as socio-technical infrastructures that 
include a repository, the data and metadata stored in the 
repository, an online Web interface for querying and retrieving 
stored records, an organization for administering the por-
tal, a set of people filling roles within the organization and 
a set of formal and informal institutions to govern the por-
tal, such as metadata standards, co-operative agreements with 
other organizations and job descriptions. People involved 
in running or using a portal often do many things besides 
running the repository, such as training new users, curating 
data, improving metadata classifications, hosting workshops 
and conducting and publishing research. Portals also have 
material inputs, such as funding, branding, physical facilities 
and sometimes preserved samples. Pooling data into a shared 
resource thus involves more than simply producing a new unit 
of information and it incorporates similar social and economic 
components as are found elsewhere in scientific practice.

Many countries, international organizations and scien-
tists have prioritized data pooling efforts to monitor and 
understand biodiversity loss, creating big science projects on 
unprecedented scales in this domain. The National Ecological 
Observatory Network (NEON), e.g., is projected to receive 
>$2 billion from the US National Science Foundation (NSF) 
over three decades to collect long-term environmental and 
ecological data at ∼80 sites across the USA. The Global Biodi-
versity Information Facility (25) has been funded by multiple 
countries over several decades to aggregate digital biodiver-
sity records from museums, national monitoring programs 
and citizen science initiatives into a global database that as 
of January 2023 contains >2.2 billion records. Conserva-
tion organizations such as NatureServe in North America use 
information from these projects and from US state natural 
heritage programs to assess threats to species and ecosystems. 

Their work supports non-governmental conservation efforts, 
legal protections under the Endangered Species Act and assess-
ment for other relevant federal policies.

Thousands of biodiversity data portals have been created 
with formal organizational and governance structures, and 
with missions aimed at benefiting basic science research, pol-
icy or conservation decision-making and public access to 
scientific knowledge (26). In the USA, the NSF has channeled 
tens of millions of dollars into the Advancing Digitization 
of Biological Collections program, which supports efforts to 
digitize, share and augment preserved specimens in museum 
collections. Many of these funded projects use the Symbiota 
software platform (27) to host ∼80 million data records and 
manage contributions from thousands of registered users.

Pooling data into data portals is an essential and 
widespread process for efforts that often cross institutional 
and political boundaries. Symbiota portals in the USA, e.g., 
are generally multi-institutional collaborations to digitize and 
share preserved specimen records from different collections 
related to a common theme, such as arthropod parasites 
or Californian plants. NatureServe assesses trends in species 
and ecosystems that cross state and national boundaries even 
though most of its clients have geopolitically defined juris-
dictions, e.g. the North Carolina State Heritage program. 
Exceptions are collection-based portals run by individual, 
large institutions such as the American Museum of Natural 
History.

Epistemic-organizational models for data 
pooling
In this section, we characterize five organizational models for 
data pooling infrastructures. All of these models contrast with 
data integration activities that result in private datasets held 
by specific labs or collaborative projects with no or limited 
access for people beyond the current or future members of 
those groups. For example, many projects integrate datasets 
from different model species to study a causal mechanism in a 
single target system, but the data and code remain desktop-
based or restricted to private or commercial access rather 
than openly available online through a data or code repos-
itory. Projects that submit their dataset to an independent 
repository, such as GenBank, DataOne or Zenodo, are con-
tributing to an external data pooling effort but are not directly 
contributing to the infrastructure or governance required to 
operate the data pool as a shared resource.

We illustrate some important differences between the mod-
els based on the degree to which they exhibit infrastructure 
standardization and preprocessing versus user customization 
and effort (Figure 2). Those features generally relate to each 
other inversely, so the more that a model exhibits standardiza-
tion, the less it admits customization, and vice versa. However, 
these axes do not provide an exhaustive description of how 
the models are related. We review each of these models next, 
indicate their use in biodiversity data science, and discuss how 
the models involve epistemic and resource tradeoffs.

Model 1: data aggregator
The dominant strategy for pooling biodiversity data has been 
to build one comprehensive infrastructure system that aims 
to provide a single access point and metadata system (i.e. a 
‘one-stop shop’) for all data discovery and access in a domain 
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Figure 2. Five epistemic-organizational models for data pooling: data aggregators, search index portals, research contractors, peer data commons and 
custom databases. The properties of these models are illustrated by analogous approaches to how businesses or social groups make food for broader 
consumption. The models rely on data standardization and preprocessing to an increasing degree from left to right.

(16, 28, 29). The aggregator model pools data from all avail-
able sources into a centralized repository. The Global Biodi-
versity Information Facility (GBIF) is the premiere example 
of an aggregator for species occurrence data, and other major 
examples include iDigBio in the USA and the Global Bio-
diversity Interaction (GloBI) database for species interaction 
data internationally. GBIF began in 2001 upon a recommen-
dation from the Biodiversity Informatics Subgroup of the 
Organization for Economic Cooperation and Development’s 
Megascience Forum, and its dominant sources for occurrence 
data have been digital repositories for natural history collec-
tions, citizen science projects and ecological surveys hosted 
and conducted around the world.

This model requires substantial centralized work. In the 
context of biodiversity data, a centralized repository such 
as GBIF must handle large volumes of heterogeneous data 
types that are only partially standardized, often to incom-
patible metadata categories, and provide regular updates as 
data publishers contribute new observations. This operational 
complexity also entails an intensive design process that typi-
cally requires collaboration between many stakeholders who 
do not have a prior history of working together. In some cases, 
the obstacles prove insuperable even if stakeholders initially 
agree that a centralized repository is desirable, e.g. when ade-
quate international funding and intellectual property agree-
ments are not available to attempt a large-scale centralized 
database (13).

Model 2: search index portal
An alternative to pooling all records into a centralized, com-
prehensive repository is to connect multiple, modular reposi-
tories under a common search interface that automates data 
integration based on user requests. This model can maintain 
the goal of comprehensive data integration while avoiding 
some of the major costs of the data aggregator model.

The DataONE index portal for ecological and environmen-
tal data provides a good exemplar of the search index portal 
model. There were originally two types of organizational 
members in the DataOne federated network that contributed 
to data pooling:

Member nodes are existing repositories of scientific data 
that implement services conforming to the published 
DataONE API… Three coordinating nodes located in the 

US catalog the federated content harvested from the mem-
ber nodes, provide support for discovery and access, and 
manage replication of content among geographically dis-
persed member nodes (30).

The coordinating nodes are academic institutions that 
provide partially redundant computational infrastructure in 
order to ensure robust data access and preservation. Jointly, 
they provide the back-end system for DataONE’s core online 
indexing and search service through its website (dataone.org). 
DataONE thereby avoids having to make a single centralized 
repository by providing similar functionalities on top of exist-
ing domain repositories operated by other institutions, such as 
the NEON and Dryad Digital Repository. Users can assem-
ble data on demand from member repositories even when 
the repositories rely on otherwise incompatible local software 
systems and heterogeneous data formats.

Model 3: research contractor
There is a niche for research services that address the imme-
diate needs of conservation decision-making and policy, such 
as deciding which parts of a landscape to prioritize for pro-
tection, documenting baseline population sizes and habitats 
for species affected by future development plans or justify-
ing a change in legal protection for a species through the 
Endangered Species Act. These activities are subject to stan-
dards informed by government directives on the use of science 
in decision-making and by the possibility of having evidence 
challenged in court.

Conservation non-governmental organizations have devel-
oped a model to generate revenue as a contractor to pool 
data for others to use in research about these topics. In North 
America, e.g., NatureServe reported an annual revenue of $9 
million in 2019–20 (31) by pooling data from clients such as 
US state heritage programs and public sources into a custom 
database and portal. As many species of conservation concern 
are rare or rapidly declining, research clients need high-quality 
standardization to avoid taxonomic identification and clas-
sification mistakes from distributed data sources. A single 
mistaken observation may substantially change the estimated 
geographic size and relevant threats for an at-risk species. 
Aggregators such as GBIF or DataOne do not guarantee accu-
racy to this granularity and instead assign responsibility for 
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identifying and correcting errors to the authoritative data 
sources they use (32), which creates opportunities for custom 
data integration and analysis services.

Model 4: peer data commons
While data pooling under the research contracting model 
is primarily driven by meeting client demands, peer data 
commons in biodiversity science are typically focused on 
increasing the supply of reusable data through research grants 
supporting specimen digitization or citizen science projects. 
The 50-plus data portals that use the Symbiota software plat-
form (27) exemplify US peer data commons driven primarily 
by collections-based research funding. For brevity, we call 
these portals ‘Symbiota portals’ (33). They are generally led by 
academic researchers and are typically affiliated with consor-
tia of museums or universities that share digitized specimen 
data for free public use. Symbiota portals rely on research 
staff and students for data contributions and management, 
and some use citizen scientists.

The size and scope of Symbiota portals vary widely. The 
Channel Islands Biodiversity Information System, e.g., cov-
ers all species collected on the islands off the West Coast 
of the USA, while the Symbiota Collections of Arthropods 
Network covers any arthropod species globally, although it 
primarily holds North American specimen data. Some por-
tals are also scoped in ecological terms, such as the Great 
Lakes Invasive Network portal that focuses on digitized spec-
imens of non-native plants and animals collected in North
America.

Symbiota portals have key differences in governance com-
pared to GBIF or NatureServe. The Symbiota software allows 
two main states for datasets within a portal: (i) ‘live-managed,’ 
which means that the entity owning the physical collection 
of specimens or vouchers has comprehensive rights within 
the portal to create new occurrence records and annotations, 
and (ii) ‘snapshots,’ which can be time-stamped versions of a 
portal dataset that is curated in a separate platform and can 
be exported to outside portals. Snapshot records can be fur-
ther annotated, typically by actors who are not members of 
the entity that owns the physical collection. The distinction 
between live-managed and snapshot datasets is a matter of 
data governance, i.e. tracking where editing rights are vested 
within versus outside of a given portal.

An individual data collection typically undergoes live man-
agement in only one portal, while it may be represented as 
a partial or full snapshot in one or more external portals. 
A snapshot can be periodically (in some cases automati-
cally) updated in external portals from its respective live-
managed portal. Conversely, annotations made on snapshot 
occurrence records can be integrated with the correspond-
ing live-managed collection under some social and techni-
cal conditions. For example, the Consortium of California 
Herbaria and the SEINet portal reciprocally exchange occur-
rence records and annotations. The set of Symbiota por-
tals therefore defines a network of data pooling projects. 
They also have outgoing connections to other projects out-
side the network but no overarching aggregator devoted 
solely to Symbiota portal records. In contrast to orga-
nizations such as NatureServe that primarily provide ser-
vices for existing data records, Symbiota portals are typi-
cally funded to digitize and curate new records to support
open-ended reuse.

Summary
The different models we have described illustrate some epis-
temic and organizational aspects of data pooling. One epis-
temic aspect involves the production of modifiable datasets, 
which are potential evidence for many research problems, 
through standardizing information from multiple sources 
according to a single classification system. Standardization is 
important when reusing data from distributed sources because 
distortions can arise from merging records labeled according 
to incompatible classifications or classifications on different 
levels of granularity. Some data pooling models maintain a 
single pooled resource, as in the aggregator case, while the 
search index and peer data commons models involve linking 
multiple pooled resources.

The organizational aspect concerns the forms of infrastruc-
ture and governance for the pooled data resource or resources. 
GBIF regularly resynthesizes a comprehensive taxonomy for 
all species in order to aggregate occurrence records from 
its many sources, and it does not permit individual users 
to modify data records in its centralized repository. Sym-
biota portals, by contrast, maintain a species taxonomy more 
directly scoped to the local data records they hold, which 
are typically a mix of both live and snapshot data records. 
Additionally, Symbiota portals rely on a shared open-source 
software platform, while DataONE assumes that member 
nodes already have their own data management and sharing
software.

Regulative ideals for data pooling
We now characterize two regulative ideals that data pooling 
projects may embed or presuppose. We label them the ‘uni-
fied data pooling ideal’ and the ‘pluralistic data pooling ideal’. 
To develop them, we draw from Grantham’s (34) account 
of integration as interconnectedness (while Grantham origi-
nally sought to redefine ‘unification’, his proposed meaning 
is closer to the current usage of ‘integration’ today). First, 
we review regulative ideals and how they function. Then 
we overview Grantham’s account of practical and theoret-
ical interconnectedness and we discuss how those concepts 
relate to biodiversity data pooling. Next, we characterize gen-
eral kinds of theoretical and practical interconnections within 
and between data pooling infrastructures and how these can 
be heuristically organized to achieve integration. Finally, we 
characterize the two regulative ideals. The following section 
then analyzes the suitability of these heuristics and ideals for 
biodiversity data pooling.

Regulative ideals in scientific practice
A ‘regulative ideal’ is a property realized by a system or body 
of knowledge in its ultimate (or distant future) state of devel-
opment. A regulative ideal differs from a project objective or 
organizational goal, which both connote achievability in rel-
atively short timespans. Instead, the desired property is ideal 
because it does not currently hold nor do we expect it to in any 
appreciable time. The ideal property is also regulative because 
it spurs researchers to regularly reexamine and assess their 
current knowledge and practices so as to attempt to improve 
it. In doing so, researchers compare the features of their cur-
rent body of knowledge and activities to the posited ideal 
feature, note the differences and work to revise the former 
to more closely approximate the latter. They may also alter or 
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replace the ideal if they choose. As the ideal cannot be straight-
forwardly satisfied on typical time scales used for planning 
research projects or institutional initiatives, it spurs ongoing 
methodological work to develop and revise heuristic maxims 
to guide individual and collective efforts. While some might 
class regulative ideals as norms, for our purposes it is more 
accurate to say that they provide higher-level motivations for 
adopting and enforcing norms.

Most discussions of regulative ideals have at least two 
limitations. First, they prominently treat unification as the 
regulative ideal of knowledge. (The concept of regulative ide-
als is usually associated with Immanuel Kant, who proposed 
that we use our cognitive faculty of reason regulatively to 
examine the concepts and regularities developed in natural 
science and how well they fit into a single unified system 
of knowledge, which he took to be the ultimate ideal of 
all our cognition. We cannot know beforehand that such an 
ideal is actually achievable, and it functions to spur ever fur-
ther inquiries and structuring of their results.) While there 
are weighty criticisms of unificationism, few have proposed 
alternatives that are explicitly developed as positive ‘regula-
tive’ ideals and have clear heuristics. Philosophers often talk 
past each other about how well unificationist ideals describe 
current knowledge and should inform research design and 
evaluation in the short versus long terms (35–37). As a result, 
it can appear as if the concepts of regulative ideal and unifica-
tion are necessarily conjoined, and many researchers assume 
this by default. Second, most discussions of regulative ideals 
focus on knowledge encapsulated in scientific theories com-
posed of laws of nature for the purpose of causal explanation. 
For instance, researchers pursuing unification might aim to 
develop a knowledge system according to which they can 
reduce all psychological laws and concepts to biological laws, 
and both to those of physics.

We confront both of these limitations when developing and 
evaluating regulative ideals for data pooling. First, unifica-
tion ideals enjoy widespread and often implicit adoption for 
biodiversity data infrastructures, but those ideals can stifle 
or obscure legitimate scientific disagreements. For example, 
standardizing the production and labeling of datasets often 
causes controversies about the extent to which whole research 
communities (and non-academic stakeholders) must converge 
on shared ontological beliefs, methodological standards, and 
aims (1, 38, 39). Second, much of the relevant theoretical 
knowledge for biodiversity data is structured in taxonomies, 
not in statements of causal laws or mechanisms. For data 
pooling infrastructures, these taxonomic theories are used 
primarily for structuring, ordering and searching through 
knowledge (40). While data users may deploy the results in 
further, explanatory projects, the benefits of unification for 
explanation versus data pooling are separate questions. Pre-
mature data unification could in fact slow down theoretical 
progress by erasing or distorting important differences in the 
properties of phenomena.

Data pooling and interconnectedness
In order to think about regulative ideals for data pooling with-
out presupposing views about theoretical unification, we draw 
on a lesser known but especially relevant account of integra-
tion by Grantham (34). In particular, Grantham characterizes 
how a range of scientific activities beyond intertheory reduc-
tion can advance both theoretical and practical integration. 

He writes that fields can be theoretically integrated as theories 
developed within each field become more densely intercon-
nected and that fields can be practically integrated ‘insofar as 
one field comes to rely on the methods, heuristics, or data 
of a neighboring field’ (34). On his view, researchers can 
increase theory integration with new explanatory, ontologi-
cal or conceptual connections such as explanatory reduction, 
part-whole or causal relationships, or conceptual refinements. 
Similarly, they can practically integrate fields by establish-
ing dependencies among activities and resources across fields, 
such as by using theories or methods from one field to generate 
new hypotheses in another or methodological integration that 
uses data from multiple fields to test hypotheses. Grantham 
emphasizes that integration is a matter of degree based on the 
interconnectedness among fields.

In our case, the primary aim of data pooling is to facilitate 
data reuse, which is an instance of practical interconnected-
ness. A data pooling project provides a set of scientifically 
coherent data records for researchers to access from multiple 
different contexts, such as labs, projects, disciplines or coun-
tries. The pooling project is an authoritative source in virtue of 
having harmonized and augmented the information contained 
in the pooled data records and making these altered versions 
available for reuse. ‘Authoritative’ minimally means to author 
a dataset with distinctive content or features. More strongly, 
the authoritativeness of a data pool is the degree to which it is 
credentialed by experts contributing to the data pooling pro-
cess, the methods they use and explicit validation of the data’s 
epistemic fitness-for-use (42).

For theoretical interconnectedness, efforts to harmonize 
data within and among categories can establish more coher-
ent and principled systems of categories, e.g. by leading 
researchers to agree on common principles for applying Lin-
naean ranks to taxa. Classificatory theories express general 
claims about the existence and properties of many enti-
ties or processes in the world (1). They also express claims 
about relevant or necessary information scientists should pro-
vide in measuring or manipulating their objects of study. 
If researchers reach a global consensus about what there is 
to observe and how to observe it, then they have achieved 
a strong unification of the concepts, methods and beliefs 
involved in making and using the data.

Data pooling can also increase practical interconnect-
edness in a way not previously noted. When they pool 
data, researchers create and often maintain a new epistemic 
resource that the larger research community can recognize 
as authoritative. To the extent that researchers add or revise 
information for existing records (4), a pooled dataset can col-
lect the observational and analytical outputs of many fields 
within a single resource. This can support but is not the same 
as using data from different fields to make theoretical infer-
ences or test models (21, 22). Crucially, we use Grantham’s 
notion of practical interconnectedness to show that unifica-
tion is not aptly contrasted with local or problem-specific 
integration if this entails fragmentation of the system into 
unconnected data silos.

Heuristics for increased data interconnectedness
We can now discuss heuristics people use to inform how they 
design and manage their current data pools relative to the 
aim of increasing interconnectedness. Heuristics are rules of 
conduct for reasoning that are relatively easy to use and often 
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Figure 3. Four possible heuristics (A–D) for data pooling and their relationship to the unified and pluralistic ideals. See main text for discussion of A-D. 
White boxes represent distinct data portals, and colored symbols within the box represent data standardized to a local, potentially unique taxonomic 
classification that is not deliberately harmonized with other taxonomies. The vertical overlap in white boxes indicates where portals overlap in the scope 
of data they include.

pragmatically useful, but which rely on substantive simplifi-
cations or idealizations about the world, and therefore can 
yield systematically bad outputs despite correct application 
(43). We address how these heuristics relate to unified and 
pluralistic ideals for data pooling in the following subsection.

Figure 3 shows the practical and theoretical interconnect-
edness of pooled data based on the organizational models 
listed in the ‘Epistemic-organizational models for data pool-
ing’ section and their capacities to share data. The vertical 
axis shows how data pooling can be organized according 
to domains, which we define as ontological or theoretical 
categories. The domains scientists use to organize biodiver-
sity data are typically taxonomic groups, such as arthropods, 
fungi, mammals or plants, but can include geographic regions 
and ecological relationships.

The horizontal access of Figure 3 shows three heuristics 
that achieve high interconnectedness: 3A and 3B pursue uni-
fied data pooling by implementing a single, centralized aggre-
gator (Figure 2, model 1) or a search index portal (model 2); 
3C pursues pluralistic data pooling by implementing a coor-
dinated network of data portals consisting of one or multiple 
organizational models. By contrast, low interconnectedness 
arises in 3D when multiple data portals have a poor capacity 
to share data despite overlapping contents according to the 
domains shown.

Relation of heuristics to regulative ideals
For data pooling, practical interconnectedness raises issues 
about how to organize and conduct the distribution and 
regulation of authoritative status on data records. Recall 
that regulative ideals provide shared long-term ideals against 
which researchers evaluate current practices and resources, 
so the positions below characterize bodies of knowledge 
at some future ideal state. A major point of contention in 
biodiversity data science is whether the community should 
have more than one authoritative source for the same data 
records (28, 32, 44). When researchers advocate for different 

answers to that question, they invoke different, frequently 
tacit, regulative ideals.

Unified data pooling: every repository

(i) has a distinct, non-overlapping set of records,
(ii) is the authoritative source for all the records it holds,

(iii) follows the same overarching taxonomy for classifying 
its records and

(iv) defines its scope of domain according to a category in 
that taxonomy.

Note that condition (iii) describes how data records are 
classified within repositories, while condition (iv) describes 
how data records are grouped among repositories. For exam-
ple, consider a group of museums that each host their own 
data portals for their specimen collections. The museums 
could satisfy condition (iii) by all labeling their specimens 
using the same taxonomy while failing condition (iv) if their 
collection holdings do not map cleanly onto non-overlapping 
taxonomic categories. Unified data pooling can be pursued 
through two of the heuristics discussed earlier: a single, cen-
tralized data aggregator (Figure 3A) or multiple modular 
repositories connected by a search index portal (Figure 3B). 
There is an equivalent definition from the perspective of the 
data records: every data record has only one authoritative 
repository, is standardized according to the same overarching 
taxonomy and is assigned to a repository according to how it 
is classified in that taxonomy.

An alternative, pluralistic ideal shows how moderate to 
high degrees of interconnectedness are possible given per-
sistent theoretical and practical disagreements. Philosophers 
have noted that scientists often invoke regulative ideals other 
than unification, especially in explanatory contexts, and 
that ideals of integration are localized to particular research 
problems (37, 38). What might an ideal for data pool-
ing without unification look like, especially given that data 
pooling does not fit philosophical accounts of explanatory 
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unification or integration to address a local problem?
To address the overarching goal of data sharing and reuse, the 
pluralistic ideal must characterize at least a moderate level of 
interconnectedness. To avoid collapsing into the unification 
ideal, however, it must not be a transient intermediate on the 
way to total unification.

Pluralistic data pooling: for any given repository,

1. it can hold overlapping data records with other reposi-
tories,

2. it is the authoritative source for a unique set of records, 
even when those records are shared in other reposito-
ries,

3. it can harmonize its records according to different tax-
onomies and

4. it can define the scope of its contents according to 
different domain categories than other repositories.

Pluralistic data pooling can be pursued through multiple 
coordinated data pools, as shown in Figure 3C, where the 
need for data sharing is based on overlaps between the repos-
itories’ scopes. Any given data record can be accessed through 
multiple repositories, standardized according to different tax-
onomies and assigned to repositories according to different 
taxonomies. By allowing multiple access points for the same 
data records, researchers do not necessarily engender low 
theoretical or practical interconnectedness.

Pluralistic data pooling can foster fragmentation, as repre-
sented in Figure 3D, with potentially undesirable results. For 
example, repositories might maintain multiple versions of the 
same data record with no way to share updates. It might also 
be difficult to translate data standardized using one taxonomy 
into a different taxonomy preferred by another repository. 
Moreover, the contents of repositories may be defined such 
that they do not match the needs of users, increasing the bur-
dens users experience trying to find all and only the relevant 
records for their purposes. Many data pooling projects also 
struggle to navigate the common boom-bust cycles of fund-
ing in the absence of mutual networks of support (45), and 
this can often be addressed by eliminating redundancies and 
sharing personnel or technological resources. While concep-
tually defensible, philosophical arguments for radical elimi-
nativism about biodiversity (46) fail to address these practical 
challenges for maintaining multiple disconnected knowledge 
resources. As a result, biodiversity scientists generally discour-
age the fragmented heuristic shown in Figure 3D for open 
data, although it might be justified for more competitive or 
confidential settings.

By contrast, Figure 3C illustrates how pluralistic data pool-
ing can approximate the positive regulative ideal through 
coordination among heterogenous data pooling models. In 
general, the coordinated approach relies on organizational 
and infrastructural elements that address the shortcomings of 
fragmentation. For data repositories that maintain authority 
on the same records, their managers must negotiate mech-
anisms for sharing updates or corrections, and the whole 
community must align alternative taxonomies used by reposi-
tories to ensure that data can be translated (or ‘cross-walked’) 
across taxonomies without loss of precision and accuracy. The 
community must also help set the boundaries of the reposi-
tories to ensure that data pooling projects are appropriately 
scoped to the aims of both data contributors and users.

Those who adopt the pluralistic data pooling ideal seek 
the benefits of customizing data pooling efforts in concert 
with tolerance for the preferred scopes and taxonomies of 
different communities. They do not enforce uniform standard-
ization when it poorly reflects their divergent local research 
aims and situations. Similarly, they work to avoid the down-
sides of fragmentation by investing in the social and technical 
infrastructure needed to coordinate information across pool-
ing projects. Insofar as the underlying heterogeneity persists in 
the communities using and sustaining these data repositories, 
realizing the pluralistic ideal achieves data integration with-
out unification: high interconnectedness that does not lead to 
unified data pooling or theoretical unification.

Unification for biodiversity data and its 
limitations
By documenting when and why the heuristics described 
in Figure 3 systematically fail, we gain a better understand-
ing of the suitability of regulative ideals for situated scientific 
practices such as data pooling. Most approaches to data pool-
ing articulated by biodiversity researchers over the past several 
decades pursue the centralized or modular forms of unified 
data pooling (28, 47–51). In this section, we illustrate both 
centralized and modular forms using high-profile examples 
involving past and present biodiversity data (28, 52). We 
analyze some heuristic guides for collective action that accom-
pany these ideals and present several arguments that these 
assumptions are not met for biodiversity data.

We first consider a particular heuristic for unified data 
pooling articulated by an early leader in biodiversity infor-
matics, Frank Bisby, who aimed for a comprehensive online 
‘catalog of life’ for all species (28). Bisby argued that a univer-
sal taxonomic hierarchy (Figure 4A) was essential to pooling 
biodiversity data on a global scale given the institutionally 
and geographically distributed sources of species observa-
tions. In particular, he advocated against maintaining multiple 
overlapping classifications for species, e.g. regional flora or 
fauna lists of species produced by individual experts or local 
groups (28). The assumption was that globally distributed 
data records would then be produced and updated accord-
ing to this universal classification system. GBIF continues 
Bisby’s work to construct a comprehensive taxonomic ‘back-
bone’ for all species. Making this vision a practical reality has 
been a critical challenge for GBIF’s goal of pooling species 
observations in a centralized repository for public access.

More recently, Gallagher et al. (51) advocate for a unified 
ideal while rejecting the goal of constructing a single, compre-
hensive repository. They introduce the Open Traits Network 
(OTN) as an international collaboration focused on data syn-
thesis for organismal trait information. They contrast their 
approach against that of a global aggregator:

A centralized and connected network structure will not 
facilitate trait data synthesis. Trait observations are highly 
nuanced and hierarchical. Describing multiple aspects of a 
phenotype for any organism with traits is not amenable to 
a simplified set of exchange fields that apply across the Tree 
of Life (51).

In short, and in contrast to species observations as orga-
nized in GBIF, trait observations from different taxonomic 
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Figure 4. Two heuristic approaches to unified data pooling. (A) Image from Bisby (28), illustrating his envisioned unified hierarchy of classificatory 
theories for taxonomic domains. The hierarchy would enable a centralized aggregator or modular system of data pools. (B) Image from Gallagher et al.
(52), illustrating a modular hub-and-spoke system for integrating trait data about species by taxonomic domains. Black circles at the edges of the 
network show primary data publishers or sources. Intermediate nodes show projects harmonizing data and developing standards. The central, largest 
node represents a trait dataset registry that functions as a basic search index portal across domains.

groups are too heterogeneous to pool into one database under 
a single standardized classification system.

OTN’s strategy is closer to DataONE’s approach to link-
ing ecosystem, climate and species data, but with a stronger 
emphasis on data pooling according to a progressive hierar-
chy of domains (Figure 4B). While Gallagher et al. (52) do not 
directly address the issue of pluralistic authorship for the same 
trait observation records, they endorse the goal of all data 
being curated according to a universal set of categories: one 
of OTN’s five major aims is to ‘build consensus for common 
trait definitions and measurement methodologies for major 
organismal groups’ (52).

Given these examples of influential teams adopting the uni-
fied data pooling ideal, it is worth considering how their 
heuristic strategies may systematically fail and lead to sub-
stantial practical and epistemic costs. A core component of 
unified data pooling is that ideal data pools will have a consen-
sus classification scheme for all relevant data and repositories. 
Scientists typically argue for the ultimate reality of a consensus 
scheme by appealing to universal truths about the nature of 
the domain, e.g. the existence of a tree of life, or to the charac-
teristics of reliable knowledge in the domain, e.g. a structural 
versus evolutionary approach to defining anatomical features 
(39). The implication is then that everyone will benefit from 
unified pooling data because the resulting dataset can be con-
structed based on an objective, universal way of ‘carving up’ 
nature. When researchers adopt heuristics to approximate the 
unified data pooling ideal, they reason that since the ideal 
pools will share a consensus classification, they can approxi-
mate this ideal state by implementing consensus classifications 
in the design and management of current and future data 
pools.

We briefly review a few existing arguments for why this 
line of reasoning has proven problematic for biodiversity data 
(10, 32, 53–57, 58 and references therein). First, it assumes 
that researchers have a consensus classification now or that 
they will sometime soon, neither of which has come true after 
centuries of research in systematics. Furthermore, a consensus 

classification presumes that the categories are sufficiently sta-
ble over time and not subject to major disputes (59), which is 
not the case even for highly studied groups such as birds or 
mammals (11, 54, 55).

Second, there is an assumption that the consensus clas-
sification provides a set of domains for data pooling that 
are equally suitable for all problems, or more realisti-
cally the problems the research community deems important 
enough to prioritize. Recognizing that not all research prob-
lems are treated equally in practice raises questions about 
who decides which ones are important, raising concerns 
about equity, justice and sovereignty given that the cur-
rently prioritized problems, aims and researchers pursuing 
them are not representative of society at large (56). Third, 
there is a potential mismatch between the domain categories 
most preferred by data users versus collectors and curators 
(32). Fourth, unified data pooling presumes that the useful 
information contained in datasets sourced from heteroge-
neous contexts can be preserved during the standardization
process (32).

In addition, while unified data pooling has strengthened 
collective efforts to digitize and improve data quality, it also 
entrenches a particular epistemic-organizational division of 
labor and responsibility that can be difficult to alter and that 
privileges the classificatory decisions of those with the most 
institutional power (10, 32). Centralized biodiversity portals 
such as GBIF and GenBank typically restrict curation priv-
ileges for users and either outsource editing of records to 
other institutions or allow participants to edit a subset of data 
(e.g. only the data people have contributed themselves). These 
restrictions impact the accuracy of data across scales and its 
tunability for different applications (53, 60). Restrictions on 
editing centralized datasets can arise for a variety of reasons, 
including constraints from original data sources on modify-
ing their content or the difficulty of vetting expert users on 
that scale. Users with corrections or new annotations must 
then contact each original data source individually to request 
edits.
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Figure 5. Selected examples of North American and global biodiversity data pooling projects illustrate the current partially coordinated flow of 
biodiversity data (uni- or bi-directional arrows). Projects are distinguished by the geographic scale (y -axis) and type of domain used to characterize their 
scope (colors by column on the x -axis). The aggregator column represents some important biodiversity data pooling projects whose scopes cut across 
the other domain categories.

Finally, few biodiversity experts work on all groups and 
at the global level. Instead, experts and communities tend 
to have taxonomic, geographic and governmental boundaries 
more accurately represented at low- or middle-level scales. 
Research communities that do analyze all organisms at the 
global level usually lack the corresponding situated exper-
tise needed, e.g., to reconcile non-congruent classification 
schemes inherent in biodiversity data packages aggregated 
from multiple localized sources and communities of practice. 
The result is a primarily one-way flow of new and edited 
data from many distributed sources toward the global dataset 
with limited gain for particular communities to collaborate 
on data curation and to preserve improvements across indi-
vidual projects. The community that focuses on ‘global data’ 
is small proportional to the whole field, and just because it 
claims wide epistemic scope, it does not thereby represent 
wide social–organizational scope.

Pluralistic data pooling as an overlooked ideal
In this section, we illustrate the heuristic of coordinated plu-
ralistic data pooling in the context of biodiversity data. To 
begin, Figure 5 illustrates how selected current biodiversity 
data portals define their domains and interact through data 
sharing. Figure 5 describes how things are rather than directly 
evaluating them with respect to a regulative ideal. How-
ever, we have selected particular data pooling projects to 
highlight some points of divergence between unified and plu-
ralistic data pooling. In particular, the repositories shown do 
not define their scopes according to a single system of non-
overlapping domains, instead drawing on a variety of cross-
cutting disciplinary categories such as taxonomic groups, 
geopolitical regions, conservation status and ecological inter-
actions. Figure 5 also illustrates how the broader network of 

biodiversity data infrastructures shares and maintains multi-
ple authoritative sources for the same observations.

Rather than eliminating the pluralistic domain classifica-
tion schemes and data authorities represented in Figure 5, the 
pluralistic data pooling ideal treats these as virtues. The plu-
ralistic ideal characterizes a system in which pooled datasets 
are customizable to the aims of specific communities and 
their research problems, based on infrastructures that enable 
researchers to laterally exchange data while maintaining dif-
ferent local classifications.

Symbiota portals provide an example of a network that 
increasingly pursues the pluralistic ideal. Each portal pub-
lishes its data on the Web using the Darwin Core stan-
dard for taxonomic categories. Any other portal can then 
construct a customized dataset by importing partial or full 
snapshots from any source, not limited to Symbiota por-
tals, that makes data available online in a Darwin Core–
compliant format. This importing process facilitates custom 
mapping of records for which datasets differ in their meta-
data categories or portal data managers can locally edit
snapshot data.

Symbiota portals are developing the capacity to overcome 
systemic limitations to unified data pooling described in the 
previous section. First, each portal maintains autonomy to 
select and curate pooled data according to metadata infor-
mation tuned to its aims and classificatory theories. No 
universal taxonomic classification or other classificatory the-
ory is necessary, as data harmonization occurs only between 
a targeted, often small number of sources. Next, Symbiota 
portals can curate data locally. Compared to global portals, 
larger percentages of Symbiota portal users can contribute to 
the governance of metadata standards in the primary portal 
they use and maintain versions of cleaned data they pro-
duce. As a result, and third, it is possible for portal users to 
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maintain accurate data at the level of individual species and 
for biodiversity monitoring projects.

To increasingly approximate the pluralistic ideal using the 
coordinative heuristic, at least two conditions must be met. 
First, the producers of classificatory theories for occurrence 
data must be empowered and incentivized to provide suf-
ficient information to enable translation across alternative 
theories (38, 54, 61). The flexibility to customize pooled data 
across competing or historical viewpoints depends on imple-
menting the capacity and professional incentives to accurately 
map data records annotated under one system to the cate-
gories posited by another system. In principle, this flexibility 
is consistent with constructing a comprehensive classificatory 
theory so long as the ability and resources to crosswalk data to 
other (perhaps less comprehensive) theories are maintained.

Second, data pooling projects must closely align with pro-
fessional and enthusiast communities that have the exper-
tise and resources to curate the resulting datasets. From 
an institutional perspective, enabling each community to 
steward its data and lead data management is a powerful 
incentive that is potentially lost when unified data pooling 
is imposed in a top-down fashion. Furthermore, a retic-
ulated strategy for data pooling can deliver benefits over 
the unified approach when experts need to represent con-
flict and ambiguity inherent in individual sources and ver-
sions or when they disagree about how to characterize 
data but nonetheless wish to share data across projects. 
Nonetheless, maintaining standardized datasets and infras-
tructures is highly resource intensive, so it is generally infea-
sible for each person to run their own data pooling project
individually.

Conclusion
We have developed a conceptual framework with which to 
characterize biodiversity data pooling, the regulative ideals 
guiding current and past data pooling efforts and their suit-
ability of their heuristic strategies to existing knowledge, tech-
nology and interests of salient communities. Our framework 
includes a general definition of data pooling, a continuum of 
organizational models for pooling data and two regulative 
ideals that inform and evaluate heuristic approaches to design-
ing and connecting scientific data infrastructures and projects. 
We contrasted the strengths and limitations of each ideal for 
pooling biodiversity data to serve a plurality of aims. When 
we consider regulative ideals, we should recall that data pool-
ing generally (almost by definition) serves a plurality of aims. 
Infrastructure and governance for data reuse must balance 
aspirations for scale, efficiency, relevance and fitness-for-use 
in a wide range of problems (22).

While the unified data pool has operated widely through-
out biodiversity data science, approximating a global and 
comprehensive scale of pooled biodiversity data does not elim-
inate the demand for datasets scaled and attuned to local 
problem and solution frameworks that scientists and deci-
sion makers have to address. Nonetheless, as the coordinated 
network of data portals exemplifies, data can be usefully 
integrated without satisfying a requirement for theoretical 
unification. There is therefore substantial opportunity for bio-
diversity data scientists to overcome key limitations of existing 
heuristics for unified data pooling by pursuing a coordinated 
approach to pluralistic data pooling.

Nonetheless, all the heuristics we discussed make substan-
tive assumptions about the social and technical states of the 
larger system. The coordinative heuristic assumes sufficient 
expertise and personnel to map concepts across taxonomies 
in pluralistic approaches, while the centralized aggregator and 
modular hierarchy heuristics rely on robust agreement about a 
shared taxonomy that adequately serves all community aims. 
This illustrates how excludability is not an inherent property 
of a pooled data resource but instead depends on further social 
and technical attributes of the system as a whole. Pursuing 
the unification ideal may in fact raise excludability and lower 
equality of access and benefits if it is implemented heuristi-
cally in ways that run systematically counter to the aims and 
needs of many local communities.
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