
Database, 2023, 1–9
DOI: https://doi.org/10.1093/database/baad053
Original article

The MetaGens algorithm for metagenomic database lossy
compression and subject alignment
Gustavo Henrique Cervi *, Cecilia Dias Flores and Claudia Elizabeth Thompson
Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite,
245 - Centro Histórico, Porto Alegre, RS 90050-170, Brazil
*Corresponding author: Tel: +5551991227232; Email: gustavohc@gmail.com

Citation details: Cervi, G.H., Flores, C.D. and Thompson, C.E. The MetaGens algorithm for metagenomic database lossy compression and subject
alignment. Database (2023) Vol. 2023: article ID baad053; DOI: https://doi.org/10.1093/database/baad053

Abstract
The advancement of genetic sequencing techniques led to the production of a large volume of data. The extraction of genetic material
from a sample is one of the early steps of the metagenomic study. With the evolution of the processes, the analysis of the sequenced
data allowed the discovery of etiological agents and, by corollary, the diagnosis of infections. One of the biggest challenges of the
technique is the huge volume of data generated with each new technology developed. To introduce an algorithm that may reduce the
data volume, allowing faster DNA matching with the reference databases. Using techniques like lossy compression and substitution
matrix, it is possible to match nucleotide sequences without losing the subject. This lossy compression explores the nature of DNA
mutations, insertions and deletions and the possibility that different sequences are the same subject. The algorithm can reduce the
overall size of the database to 15% of the original size. Depending on parameters, it may reduce up to 5% of the original size. Although
is the same as the other platforms, the match algorithm is more sensible because it ignores the transitions and transversions, resulting
in a faster way to obtain the diagnostic results. The first experiment results in an increase in speed 10 times faster than Blast while
maintaining high sensitivity. This performance gain can be extended by combining other techniques already used in other studies,
such as hash tables.

Database URL: https://github.com/ghc4/metagens

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Metagenomics is the processing and analysis of genetic mate-
rial extracted from an environment (soil, fluids, water and
others) through the DNA/RNA sequencing of the collected
biological material (1). A huge volume of data is gener-
ated from modern sequencing machines, which can go from
gigabytes to terabytes of data (2). Data analysis is a major
challenge that involves a great demand for computer equip-
ment and is carried out through specialized software that
analyzes the data and produce results, including statistical
data (3). While the genomic analysis is focused on a single
biological subject, metagenomics collects genetic information
from all biological subjects present in the sample (4). The
deoxyribonucleic acid (abbreviated as DNA) is made of two
linked strands forming a double helix, where each strand
has a backbone of sugar (deoxyribose) with one of the four
bases (adenine, cytosine, guanine or thymine) attached and
phosphate groups (molecular biology). The amount of genetic
material from a single DNA molecule is too small to be
sequenced. The genetic material obtained from samples must
be first duplicated and amplified. The first and Next Gen-
eration Sequencing (NGS) use a method called polymerase
chain reaction (PCR), which is widely used and consists of
thermal cycles that denatures (breaks) the DNA allowing the
duplication and amplification processes (4–7). In the next

phase, a machine identifies the nucleotide sequences. NGS
(8) works in a massive parallel way, obtaining gigabytes
of DNA data per run (chemical process cycle). Until the
mid-2000s, when the first NGS sequencers appeared, it was
hard to obtain data. Today, it is hard to analyze the huge
amount of data (4).

Once biological agents can be detected from a fluid sam-
ple, the metagenomic technique eventually evolved into what
is called clinical metagenomics (5), which has the purpose
of identifying the etiological agents responsible for diseases
allowing a fast diagnosis. A special chapter of this history
is to use metagenomics as a tool for the diagnosis of infec-
tious diseases (5–7). As an example, central nervous system
(CNS) infections are commonly confused with other diseases
and there are a variety of etiologic agents that are not eas-
ily identifiable. There are estimates that the identification of
the etiologic agent occurs in only 25% of cases, even con-
sidering excellent laboratory facilities (9). These infections
are neurological emergencies and have high morbidity and
mortality. Consequently, it is essential that epidemiological
studies be carried out and new diagnostic methods and ther-
apeutic strategies be developed to reduce costs for the health
system. Community-acquired CNS infections have an unfa-
vorable outcome in ∼30% of cases, including severe sequelae
or even death due to difficulty in identifying the etiologic agent
and, consequently, leading to an inadequate treatment (10).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

https://orcid.org/0000-0003-1729-0887
mailto:gustavohc@gmail.com
https://github.com/ghc4/metagens
https://creativecommons.org/licenses/by/4.0/

2 Database , Vol. 00, Article ID baad053

Figure 1. Three main steps of a metagenomic pipeline: filtering, aligning
and annotating. Source: the authors.

Considering the impact of metagenomics in helping to
diagnose severe diseases and more rapidly initiate adequate
treatment, as well as the importance of development of new
and faster computational methods for analyzing the huge
amount of data generated by metagenomics, this study aims
to present a novel algorithm to optimize the database and
process data to obtain faster results.

Pipeline
A traditional pipeline has several steps chained together,
each one containing its specific function. In general terms, a
metagenomic pipeline can be divided into four steps: (i) fil-
tering data, (ii) aligning with databases, (iii) filtering results
and (iv) statistical reports (Figure 1). Despite the fact the
DNA vocabulary is very reduced, containing only four let-
ters (A, C, T and G), the combination of them are the
“source code” of all living matter, which varies from a sim-
ple thousand-base bacteria to a multi-billion-base animal
genome (4).

The computational processing behind this amount of
data is a challenging problem (11), especially when the
researcher/physician is running against the time, for example,
waiting for the diagnosis of a disease. In a computational per-
spective, the main time-consuming problem relies on the huge
volume of data to be filtered, organized and compared. Once
the genetic sequencer finishes the sequencing process, all data
must be processed. The NGS includes technologies of second
and third generation that produces a large number of “short
reads,” in contrast to the first-generation sequencing based on

the traditional Sanger method. Illumina NGS commonly pro-
duces sequences up to 300 (this value refers to the Illumina
MiSeq; however, the Pacbio Sequencers can produce >30 000
bases per read using long-read technologies) nucleotide bases
(adenosine, guanine, thymine or cytosine), represented as a
string of data like “ACGGATCGATTCGATTG…”. The com-
parison of these sequences with the reference database results
in a possible diagnosis with the identification of the specific
etiological agent (virus, bacteria, and/or fungus). The refer-
ence databases are accessible from public sites like GenBank
(NCBI, USA), EMBL Bank (EMBL-EBI, Europe) and DDBJ
Bank (DDBJ, Japan), which easily overpass the terabyte of
data. Figure 2 shows the evolution of the GenBank database
through the years.

Quality control
The first stage after sequencing is the “quality control.” The
sequencer produces a large amount of data, but not all with
the same quality. This step is important to remove “low qual-
ity” data (12, 13). In summary, the first generation and most
second generation sequencers are based on sequencing by syn-
thesis, where information is collected through a fluorescent
agent bound to the nucleotide (8), using a very precise wave-
length laser, capturing the light emitted by the molecule to
infer the sequence. The resulting signal may be biased or not
deterministic. The sequencer calculates the “quality” of the
read based on the light intensity and writes the score in the
result file—each sequenced nucleotide has its specific quality
score (14). Figures 3 and 4 show chromatograms with low
(multiple peaks per base) and good quality data, respectively,
obtained by a first generation sequencer (13).

Amplification
All first and second generation sequencers require a DNA
amplification step, where DNA is duplicated through PCR
into multi-million copies, amplifying the signal to be detected
by the machine. After sequencing, duplicate reads are removed
resulting in data reduction (15).

Figure 2. Evolution of the GenBank database, maintained by the NCBI. showing an increase in the curve of genomic data deposits, which results in
computational difficulties of data processing. Source: NBCI statistics webpage.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

Database, Vol. 00, Article ID baad053 3

Figure 3. Chromatogram with multiple peaks per base—low quality data. Source: Roswell Park Comprehensive Cancer Center.

Figure 4. Chromatogram indicating good quality of data sequence. Source: U-M Biomedical Research Core Facilities.

Host removal
The host removal, while is not mandatory for water and soil
analysis, it is an important step for human diagnosis, speeding
up the process and reduce the risk of bias. Since the sample is
obtained from a living host (human), it is likely to have the
host DNA present in the data after sequencing. This stage is
performed by searching for the host DNA in the result file
through comparison with the reference genome available in
public databases. Once the host reads are identified, they must
be removed. In case of human samples, the most recent and
curated reference human genome is preferentially used.

Searching through reference databases
This step is the most computing expensive task. The sequencer
yields a huge amount (>100 million) of short reads (up to
300 nucleotides bases in current second generation sequenc-
ing) written in a text file, whose format is commonly the
FASTQ type (14) (same from the original FASTA file for-
mat but with quality information). Each read is represented
by one DNA string like “ACGATCGATTCGGA(…)” and it
must be compared to reference datasets (terabytes of genomes
from all sorts of living organisms, available on public orga-
nized databases). The first guess is O(m + n) like Knuth–
Morris–Pratt or O(m)+ Ω(n/m) like Boyer–Moore algorithms
could be applied to solve this problem. However, these
algorithms are not able to produce efficient results from
a biological viewpoint. To compare the new sequence to

Figure 5. Two basic types of mutations: in transitions there is an
exchange of bases of the same class (purine or pyrimidine), while in
transversions there is an exchange of bases of different classes. Source:
the authors.

all sequences available in databases, it is necessary to per-
form sequence alignment. The DNA is not a rigid and static
sequence, it is submitted to evolutionary forces, such as muta-
tion, selection, genetic drift and migration. Considering the
mutational aspect, the DNA substitutions can be classified
as (i) transitions: when involve bases with similar chemi-
cal structure, interchanges of two-ring purines (A ⇋ G) or
one-ring pyrimidines (C ⇋ T) and (ii) transversions: when
involve substitutions of one-ring and two-ring DNA bases,
interchanges of purine for pyrimidine bases and vice-versa.
Figure 5 indicates the possible transitions and transversions.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

4 Database , Vol. 00, Article ID baad053

Figure 6. In the alignment of genetic sequences, mismatches (blue), indels (green) and matches (red) can occur. The occurrence of these events does
not necessarily mean that they are different subjects. Source: the authors (sample on NCBI Blast).

When comparing two sequences to obtain an alignment,
the main objective is to identify the positional homology,
i.e. identify sites with a common ancestry in the alignment.
It may be necessary to include gaps (indels, correspond-
ing to deletion in sequence 1 and insertion in sequence 2)
to better accommodate one sequence in relation to another.
In this sense, the sequence ‘ACGATCGAT’ may be biologically
equivalent to the sequence ‘ACGCTCGGAT’ (one mutation
and one indel), i.e. they may be homologous. Homology is a
biological concept that indicates two sequences share a com-
mon ancestry. Common algorithms used to align sequences
in genomic research are Levenshtein Distance (16), Smith–
Waterman (17), Needleman–Wunsch (18), Burrows–Wheeler
(19) plus hashing and its derivatives. Blast, which uses a
heuristic method based on Smith–Waterman, is the most used
software to perform local alignment. It allows identifying sub-
ject sequences in a database that are like a query sequence.
Figure 6 shows a local alignment obtained by a Blast search,
with the indication of mismatches (blue arrow and lack of|
symbol), indels (green arrow and gaps) and matches (red
arrow and| symbol). It is important to note that another
source of mismatches is associated with sequencer read errors.

Dynamic programming
Dynamic programming applied to bioinformatics (e.g. Leven-
shtein Distance, Smith–Waterman and Needleman–Wunsch)
has complexity in order of O(mn) in the worst case, but it
is possible to improve as demonstrated by Berghel and Roach
(20). It is very time-consuming in terms of computational pro-
cessing, although it is possible to parallelize the task since an
input does not depend on other data in the same processing
stage. It is not rare that a software solution has more than one
combination of algorithms For example, in case of seed-and-
extend algorithms, it is very common for a software aligner
to use the Burrows–Wheeler algorithm to reduce data size
and hash tables to find the seed portions. Dynamic program-
ming applied to sequence alignment can be explained using
a 2-dimensional matrix where two sequences are compared.
There are three main steps: (i) matrix initialization; (ii) matrix
fill (scoring) and (iii) traceback (alignment). Match, penalty-
gap and mismatch values are defined according to a score
(21). During the matrix fill, for each cell, all possibilities are
evaluated and received a value: (i) in diagonal: match or mis-
match; (ii) gap in sequence y and (iii) gap in sequence x. The
traceback step determines the actual alignment(s) that result in

Figure 7. Dynamic programming illustrated by a matrix ‘mn,’ where the
highlighted path represents the optimal alignment between the
sequences. Source: the authors, based on (25).

the maximum score. In Figure 7, the best alignment is shown
in red.

Proposed algorithm
To be feasible, the nucleotide matching algorithm must respect
and reflect the nature of the DNA strand. In other words, the
matching string must be straight enough to pair the sequence
and be flexible enough to address the mutations and indels.
The strategy behind this proposed algorithm is to divide and
conquer, removing the most obvious non-matches from the
database, limiting the fine search to the relevant subjects. To
achieve this purpose, the algorithm computes the sequence to
create identities of the reads, counting the distance between
nucleotides A to next A and C to next C, simulating a wave
where the same nucleotide interval is interpreted as a com-
puted frequency (Figure 8). The cycle count obtained from
the interval is stored in a database and used to perform the
preliminary filter.

The algorithm locates the first nucleotide A in the sequence,
then counts the number of nucleotides for the next A, and then
repeats with the next A until the end of the read (Figure 9).
The same process is performed with C nucleotide. The result
of this computation is a set of numeric values containing
the nucleotide distances, which is more efficient to evaluate

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

Database, Vol. 00, Article ID baad053 5

Figure 8. Hypothetical reads. The bases in red are used as a distance marker (green line). The result, in blue, makes up the sequence identity. Source:
the authors.

Figure 9. Example of a possible wave and its frequency. SARS-CoV-2 reference sample read from NCBI Sequence Read Archive (SAR): ERR4329467.

Figure 10. The indel problem. Source: the authors.

than alphabetic values, such as “ACGT” in a computational
approach. This algorithm reduces the size of the data by a
fraction of the original. Mismatches on nucleotides G and T
are irrelevant to the result, although it can be also calculated
using the same method. Another important decision is that
the repeating zones may be irrelevant because distances longer
than nine are ignored (low priority) and distances equal to
zero are ignored as well. These identities are used to match
the reads to the reference genome in a highly sensitive way,
discarding the unmatched reads due to the probability of
a high e-value in a subsequent alignment. With the set of
identities in a database, the next step is to filter and find
possible matches with the reference genome, which must go
through the same identity processing. The resulting data set
is the block that will be used for the actual alignment of
sequences, using consolidated techniques, such as the Blast
algorithm.

This approach may have flaws because of indels, where
nucleotides can be inserted or deleted in the strain (Figure 10).
In this case, the distance between the same nucleotides will
vary. The solution is to create a range of tolerance using a
substitution matrix where a distance between 19 and 20 (or
a long range) is represented by the letter “A” (this param-
eter can be modified on the algorithm). Another approach
relies on slicing the result code to reduce the final size of the
comparison (Figure 10).

After the range code substitution, the resulting sequence
is “normalized” creating a kind of wave softness allow-
ing the matching of sequences with small gaps or inser-
tions (Figure 11).

The exact strategy to handle gaps is the substitution
in Table 1 and the repetitions can be compressed using the
sample in Table 2.

Experiments
For the experiments, a tool called MetaGens with a graphical
interface was built as an application for Windows (it can be
ported to other operating systems). The purpose is to allow
the researcher to build experiments with minimal computer
knowledge. This tool allows the user to organize their research
projects (diagnoses) into patients and runs. It is also possible
to automatically download readymade experiments directly
from NCBI and manipulate the algorithm parameters to vary
its sensitivity and specificity. Figure 12 shows a screenshot of
the quality control panel of a specific run performed by Meta-
Gens, allowing the user to manipulate the controls and apply
different filters.

Another important part of the tool is the selection of ref-
seqs for building the diagnostic project. The researcher can
filter references among the >220 000 records available in the
NCBI database and further speed up the alignment process.
This step is totally visual and the download of refseqs is also
automated, directly from one of the available NCBI mirrors
(cloud included). Figure 13 shows the database filter panel,
which allows the reference selection.

After filtering and selecting refseqs, the next step is to pro-
cess the sequences and align the reads with the selected refseqs.
At this stage, the massive processing is computed. All CPU
cores (CPU-threads included) are used in order to optimize
the analysis. Figure 14 shows the database query panel, which
is an alignment control panel where is possible to visualize
some results that identify the etiological agents responsible for
disease.

Results and discussion
The first impact of the proposed algorithm (O(n)) is the
data size reduction (∼80%) in comparison with the original

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

6 Database , Vol. 00, Article ID baad053

Figure 11. Partial result of the algorithm. Source: the authors.

Table 1. Handle gaps substitution matrix. Source: the authors

Range
(includ-
ing) Identifier

Range
(includ-
ing) Identifier

Range
(includ-
ing) Identifier

0.2 1 15.16 8 29.30 F
3.4 2 17.18 9 31.32 G
5.6 3 19.20 A 33.34 H
7.8 4 21.22 B 35.36 I
9.10 5 23.24 C 37.38 J

11.12 6 25.26 D 39.9999 Z
13.14 7 27.28 E

Table 2. Naive compression substitution matrix. The X represents the
repeating same gap size. Source: the authors

Repetition Identifier

XXXXXXXXXX a
XXXXXXXXX b
XXXXXXXX c
XXXXXXX d
XXXXXX e
XXXXX f
XXXX g
XXX h
XX i

nucleotide sequence. As an example, a sample read of SARS-
CoV-2 containing 480 nucleotides yields a 79-character iden-
tity. The overall reduced size increases the main performance
of the massive matching process. The algorithm is ∼10× faster
than naive search (up to O(mn), both implemented in C#,
using dotnet framework). As another example, the Neisse-
ria meningitidis strain 433_NMEN (ASM106340v1) contains
2,397,512 bytes (nucleotides) before processing and 373,439
bytes after compression. The high sensitivity nature of the
algorithm leads to alternative matches as can be observed on
the NCBI SRA accession SRR12665177. The overall cover-
age leads to N. meningitidis (100%), although other subjects
can be also matched (Klebsiella quasipneumoniae—98% cov-
erage). Table 3 shows an example of the length of the files
before and after the process.

For the experiments, a GUI was implemented in the
dotnet framework and published at https://github.com/ghc4/
metagens. Since the algorithm is based on lossy compression,
the data reduction may be translated as loss of information,
but it is not. Both data from the sequencer machine and the
REFSEQ sequence are processed using the same technique. As
consequence, the comparison is between the same “genomic
language”—translated to a kind of wave. The final compari-
son is between the same metrics and the match is preserved.

Table 3. Comparison showing the size file between before and after
processing files. Source: the authors

File
Original size
(bytes)

Reduced Size
(bytes) Shrink %

GCF_000003925.
1@ASM392v1

5 631 514 749 257 87

GCF_000006945.
2@ASM694v2

5 013 482 797 157 84

GCF_900087615.
2@WHOM

2 255 268 352 126 84

GCF_006334535.
1@ASM633453v1

2 159 924 331 985 85

GCF_000002825.
2@ASM282v1

54 436 962 6 471 680 88

GCF_004115315.
1@ASM411531v1

6 507 834 1 034 216 84

GCF_003290055.
1@ASM329005v1

5 893 322 970 815 84

Once the distance between the nucleotides can vary due to
insertions and deletions, a substitution range can be defined
by the user, making the indels irrelevant. The transitions and
transversions may be also irrelevant because the algorithm is
not analyzing all nucleotides between the “waves,” only the
“wavelength” is important to this approach. In comparison
with dynamic programming, this technique is very permis-
sive, detecting a great variety of subjects due to the nature
of the matching strategy. Depending on how wide the param-
eters are, it is possible to reach false positives. However, at this
stage, this algorithm may be more useful as a pre-filter, allow-
ing faster dynamic programming (with smaller databases) or
even a faster Blast.

In a direct comparison with the alignment algorithm
used in Blast, the run SRR12665147 (taken from the NCBI
biosample SAMN16133045) aligned with the subject N.
meningitidis (GCF_008330805.1_ASM833080v1) resulted in
over a million matches in 609.64 s of processing. On the
same equipment, the proposed algorithm resulted in 23 622
matches in 49 s. The reduction in the number of matches
occurs because the database was compressed and similar
sequences were grouped. Moreover, almost all reads had
some duplicates in the Blast analysis, streamlining the pro-
cess. It was observed that the processing time has been
reduced by >90%. Despite the comparison using the same
hardware (i7-6700/64GB RAM), the Blast implementation
is made using C/C++, while this algorithm prototype was
written in C#, so an even higher gain is expected in the anal-
ysis of the results with better performance implementations
(C/C++, Rust, etc). In another direct comparison, the same
run (SRR12665147) aligned with the genome of Neisseria

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

https://github.com/ghc4/metagens
https://github.com/ghc4/metagens

Database, Vol. 00, Article ID baad053 7

Figure 12. Graphical interface of the MetaGens software showing the quality control panel. It is a user-friendly interface that allows the specification of
the quality control parameters. Source: the authors.

Figure 13. Graphical interface of the MetaGens software showing the database filter panel. When filtering the reference sequences, it is possible to
reduce the size of the database in order to reduce the analysis time. Source: the authors.

sicca (GCF_017753665.1_ASM1775366v1) took 175.47 s to
process 69 235 matches, while the proposed algorithm took
27.74 s. Despite the N. sicca genome being of almost same
size as the N. meningiditis genome, the number of matches

directly influences the Blast processing time, but does not have
a significant impact on the processing of the proposed algo-
rithm since what weighs more in this case is the complexity
of nucleotide sequences. It is important to emphasize that

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

8 Database , Vol. 00, Article ID baad053

Figure 14. Graphical interface of the MetaGens software showing the database query panel. On the query screen, it is possible to follow the progress
of the alignment. The table shows the subjects under analysis and their matches. Source: the authors.

Table 4. Benchmark comparison on the alignment of SRR12665147 with Neisseria meningiditis and Neisseria sicca (with partial database slice). Source:
the authors.

Classifier
N. meningiditis
(matches)

N. meningiditis
(time)

N. sicca
(matches)

N. sicca
(time)

Kaiju 226 054 1589 s 490 1589 s
Kraken2 458 504 80 s 1035 80 s
BLAST Over one million 609 s 69 235 175 s
Centrifuge 245 417 89 s 95 89 s
MetaGens 12 461 (compressed) 30 s 430 (compressed) 27 s

this study considers the matches to be relevant for the pur-
poses of diagnosing infection. Consequently, the important
thing is to identify the etiological agent and not necessarily its
phylogeny. Table 4 shows a simple benchmark that has the
illustrative purpose of comparing the result of a query using a
reduced database with more complex tools, often containing
complete genome banks, therefore it should not be evaluated
in a 1:1 ratio.

It is important to note that the number of matches does
not necessarily mean greater sensitivity or accuracy. Consider-
ing that the reference database and accession are compressed,
it is expected that the number of matches will be less than
the same uncompressed data, as lossy compression will end
up generating equal strings that will be discarded during the
quality control process. It is also important to note that the
compressed database does not use all genomes available in
other tools, but a similar result can be obtained with the use
of hash tables and, consequently, with greater use of RAM.
This study has the purpose of propose an algorithm accord-
ing to the similarity between sequences, not considering,
at this moment, the analysis of taxonomic selectivity and
sensitivity.

The metagenomics applied to the diagnosis of diseases is
an important ally in several specific cases. Once the etiologic
agent is identified, specific treatment can be implemented and
the patient’s chances of improvement are increased. In some
cases, as in infectious diseases of the CNS, the time to diag-
nosis is decisive in the outcome of the clinical case. The faster
it occurs, the greater the chances of cure. The combination of
several matching acceleration algorithms can be the key to the
efficiency in the search for etiological agents in a large mass
of genetic data.

In the last few years, clinical metagenomics has jumped
from ∼70 publications on PubMed in 2010 to ∼540 pub-
lications in 2019, probably as a result of the advances on
computational methods and development of new sequencing
technologies. While the mainstream factories are spreading
genetic sequencers through the biotech laboratories, some
companies are developing pocket sequencers (22) at a cost
of ∼U$4 500 00 that produce up to 30 Gb of data. In
the near future, it may allow the self-diagnosis of some dis-
eases with effective confidence, thus it will result in a massive
amount of data to process, turning the analysis even more
challenging.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

Database, Vol. 00, Article ID baad053 9

Conclusion
In some preliminary experiments, with use of functional mas-
sive parallel processing, it was possible to observe an interest-
ing gain of performance in comparison with the very same
structure running standard algorithms, using the reduced
mass of data, although it is not yet parametrized or precisely
measured because of the different metrics involved. Through
the years, the researchers are evolving their techniques to
speed up the analysis process and produce results faster
(23–25). Computer technology is also evolving, increasing
speed and capacities in new processor generation. However,
the genomic databases are also growing in an exponen-
tial way. Consequently, it is necessary for a faster solu-
tion able to deal with large amounts of data comparisons,
enabling the use of clinical metagenomics as an impor-
tant weapon against infections of difficult diagnosis and
treatment.

Acknowledgements
This work is funded by grant number 440084/2020-2
from Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq—Brazilian Ministry of Science and Tech-
nology) and Amazon Web Service (AWS—Cloud Credits for
Research).

Conflict of interest
None declared.

References
1. Chen,K. and Pachter,L. (2005) Bioinformatics for whole-genome

shotgun sequencing of microbial communities. PLoS Comput.
Biol., 1, 106–112.

2. Editorial (2009) Metagenomics versus Moore’s law. Nat. Methods,
6, 623–623.

3. Kakirde,K.S., Parsley,L.C. and Liles,M.R. (2010) Size does matter:
application-driven approaches for soil metagenomics. Soil Biol.
Biochem., 42, 1911–1923.

4. Compeau,P. (2015) Bioinformatics Algorithms, vol.i, 2nd edn.
Active Learning Publishers, La Jolla, CA.

5. Chiu,C.Y. and Miller,S.A. (2019) Clinical metagenomics. Nat. Rev.
Genet., 20, 341–355.

6. Dekker,J.P. and Carroll,K.C. (2018) Metagenomics for clinical
infectious disease diagnostics steps closer to reality. J. Clin. Micro-
biol., 56, 10–128.

7. Pallen,M.J. (2014) Diagnostic metagenomics: potential applica-
tions to bacterial, viral and parasitic infections. Parasitology, 141,
1856–1862.

8. Benefits of SBS Technology. Robust sequencing data quality.
https://www.illumina.com/science/technology/next-generation-se
quencing/sequencing-technology/sbs-benefits.html (26 Oct 2020,
date last accessed).

9. Rotbart,H.A. (2000) Viral meningitis. Semin. Neurol., 20,
277–292.

10. Erdem,H., Inan,A., Guven,E. et al. (2017) The burden and epi-
demiology of community-acquired central nervous system infec-
tions: a multinational study. Eur. J. Clin. Microbiol. Infect. Dis.,
36, 1595–611.

11. Council NR (2007) The New Science of Metagenomics: Reveal-
ing the Secrets of Our Microbial Planet. National Academies Press
(US), US.

12. Cook,D.A., Hatala,R., Brydges,R. et al. (2011) Technology-
enhanced simulation for health professions education: a systematic
review and meta-analysis. JAMA, 306, 978–988.

13. Sequencing Quality Scores. https://www.illumina.com/science/
technology/next-generation-sequencing/plan-experiments/quality-
scores.html (26 Oct 2020, date last accessed).

14. FASTQ files explained. https://support.illumina.com/bulletins/
2016/04/fastq-files-explained.html (26 Oct 2020, date last
accessed).

15. Porta,A. and Enners,E. (2012) Determining annealing tempera-
tures for polymerase chain reaction. Am. Biol. Teach., 74, 256–60.

16. Levenshtein,V.I. (1966) Binary codes capable of correcting dele-
tions, insertions and reversals. Sov. Phys. Dokl., 10, 707.

17. Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195–197.

18. Needleman,S.B. and Wunsch,C.D. (1970) A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins. J. Mol. Biol., 48, 443–453.

19. Burrows,M. and Wheeler,D.J. (1994) A Block-sorting Lossless
Data Compression Algorithm. Digital Systems Research Center,
US.

20. Berghel,H. and Roach,D., An Extension of Ukkonen’s Enhanced
Dynamic Programming ASM Algorithm. http://berghel.net/
publications/asm/asm.php (26 Oct 2020, date last accessed).

21. Carroll,H., Clement,M., Ridge,P. et al. (2006) Effects of Gap
Open and Gap Extension Penalties. http://paper/Effects-of-Gap-
Open-and-Gap-Extension-Penalties-Carroll-Clement/ce0915ad1
15793154e0e3c9e4db76ac932248d76 (27 Oct 2020, date last
accessed).

22. MinION. Nanopore Technol. http://nanoporetech.com/products/
minion (27 Oct 2020, date last accessed).

23. Mishra,P. and Bhoi,N. (2020) Genomic signal processing
of microarrays for cancer gene expression and identification
using cluster-fuzzy adaptive networking. Soft. Comput., 24,
18447–18462.

24. Quaid,M.A.K. and Jalal,A. (2020) Wearable sensors based
human behavioral pattern recognition using statistical features
and reweighted genetic algorithm. Multimed. Tools. Appl., 79,
6061–6083.

25. Chattopadhyay,A. and Menon,V. (2020) Fast simula-
tion of Grover’s quantum search on classical computer.
ArXiv200504635 Quant-Ph, 2020, 3.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad053/7241443 by guest on 02 M

ay 2024

https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/sbs-benefits.html
https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/sbs-benefits.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html
https://support.illumina.com/bulletins/2016/04/fastq-files-explained.html
http://berghel.net/publications/asm/asm.php
http://berghel.net/publications/asm/asm.php
http://paper/Effects-of-Gap-Open-and-Gap-Extension-Penalties-Carroll-Clement/ce0915ad115793154e0e3c9e4db76ac932248d76
http://paper/Effects-of-Gap-Open-and-Gap-Extension-Penalties-Carroll-Clement/ce0915ad115793154e0e3c9e4db76ac932248d76
http://paper/Effects-of-Gap-Open-and-Gap-Extension-Penalties-Carroll-Clement/ce0915ad115793154e0e3c9e4db76ac932248d76
http://nanoporetech.com/products/minion
http://nanoporetech.com/products/minion

	The MetaGens algorithm for metagenomic database lossy compression and subject alignment
	 Introduction
	 Pipeline
	 Quality control
	 Amplification
	 Host removal
	 Searching through reference databases
	 Dynamic programming
	 Proposed algorithm

	 Experiments
	 Results and discussion
	 Conclusion
	Acknowledgements
	Conflict of interest
	References

