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Abstract
The advancement of genetic sequencing techniques led to the production of a large volume of data. The extraction of genetic material 
from a sample is one of the early steps of the metagenomic study. With the evolution of the processes, the analysis of the sequenced 
data allowed the discovery of etiological agents and, by corollary, the diagnosis of infections. One of the biggest challenges of the 
technique is the huge volume of data generated with each new technology developed. To introduce an algorithm that may reduce the 
data volume, allowing faster DNA matching with the reference databases. Using techniques like lossy compression and substitution 
matrix, it is possible to match nucleotide sequences without losing the subject. This lossy compression explores the nature of DNA 
mutations, insertions and deletions and the possibility that different sequences are the same subject. The algorithm can reduce the 
overall size of the database to 15% of the original size. Depending on parameters, it may reduce up to 5% of the original size. Although 
is the same as the other platforms, the match algorithm is more sensible because it ignores the transitions and transversions, resulting 
in a faster way to obtain the diagnostic results. The first experiment results in an increase in speed 10 times faster than Blast while 
maintaining high sensitivity. This performance gain can be extended by combining other techniques already used in other studies, 
such as hash tables.
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Introduction
Metagenomics is the processing and analysis of genetic mate-
rial extracted from an environment (soil, fluids, water and 
others) through the DNA/RNA sequencing of the collected 
biological material (1). A huge volume of data is gener-
ated from modern sequencing machines, which can go from 
gigabytes to terabytes of data (2). Data analysis is a major 
challenge that involves a great demand for computer equip-
ment and is carried out through specialized software that 
analyzes the data and produce results, including statistical 
data (3). While the genomic analysis is focused on a single 
biological subject, metagenomics collects genetic information 
from all biological subjects present in the sample (4). The 
deoxyribonucleic acid (abbreviated as DNA) is made of two 
linked strands forming a double helix, where each strand 
has a backbone of sugar (deoxyribose) with one of the four 
bases (adenine, cytosine, guanine or thymine) attached and 
phosphate groups (molecular biology). The amount of genetic 
material from a single DNA molecule is too small to be 
sequenced. The genetic material obtained from samples must 
be first duplicated and amplified. The first and Next Gen-
eration Sequencing (NGS) use a method called polymerase 
chain reaction (PCR), which is widely used and consists of 
thermal cycles that denatures (breaks) the DNA allowing the 
duplication and amplification processes (4–7). In the next 

phase, a machine identifies the nucleotide sequences. NGS 
(8) works in a massive parallel way, obtaining gigabytes 
of DNA data per run (chemical process cycle). Until the
mid-2000s, when the first NGS sequencers appeared, it was 
hard to obtain data. Today, it is hard to analyze the huge 
amount of data (4).

Once biological agents can be detected from a fluid sam-
ple, the metagenomic technique eventually evolved into what 
is called clinical metagenomics (5), which has the purpose 
of identifying the etiological agents responsible for diseases 
allowing a fast diagnosis. A special chapter of this history 
is to use metagenomics as a tool for the diagnosis of infec-
tious diseases (5–7). As an example, central nervous system 
(CNS) infections are commonly confused with other diseases 
and there are a variety of etiologic agents that are not eas-
ily identifiable. There are estimates that the identification of 
the etiologic agent occurs in only 25% of cases, even con-
sidering excellent laboratory facilities (9). These infections 
are neurological emergencies and have high morbidity and 
mortality. Consequently, it is essential that epidemiological 
studies be carried out and new diagnostic methods and ther-
apeutic strategies be developed to reduce costs for the health 
system. Community-acquired CNS infections have an unfa-
vorable outcome in ∼30% of cases, including severe sequelae 
or even death due to difficulty in identifying the etiologic agent 
and, consequently, leading to an inadequate treatment (10).
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Figure 1. Three main steps of a metagenomic pipeline: filtering, aligning 
and annotating. Source: the authors.

Considering the impact of metagenomics in helping to 
diagnose severe diseases and more rapidly initiate adequate 
treatment, as well as the importance of development of new 
and faster computational methods for analyzing the huge 
amount of data generated by metagenomics, this study aims 
to present a novel algorithm to optimize the database and 
process data to obtain faster results.

Pipeline
A traditional pipeline has several steps chained together, 
each one containing its specific function. In general terms, a 
metagenomic pipeline can be divided into four steps: (i) fil-
tering data, (ii) aligning with databases, (iii) filtering results 
and (iv) statistical reports (Figure 1). Despite the fact the 
DNA vocabulary is very reduced, containing only four let-
ters (A, C, T and G), the combination of them are the 
“source code” of all living matter, which varies from a sim-
ple thousand-base bacteria to a multi-billion-base animal
genome (4).

The computational processing behind this amount of 
data is a challenging problem (11), especially when the 
researcher/physician is running against the time, for example, 
waiting for the diagnosis of a disease. In a computational per-
spective, the main time-consuming problem relies on the huge 
volume of data to be filtered, organized and compared. Once 
the genetic sequencer finishes the sequencing process, all data 
must be processed. The NGS includes technologies of second 
and third generation that produces a large number of “short 
reads,” in contrast to the first-generation sequencing based on 

the traditional Sanger method. Illumina NGS commonly pro-
duces sequences up to 300 (this value refers to the Illumina 
MiSeq; however, the Pacbio Sequencers can produce >30 000 
bases per read using long-read technologies) nucleotide bases 
(adenosine, guanine, thymine or cytosine), represented as a 
string of data like “ACGGATCGATTCGATTG…”. The com-
parison of these sequences with the reference database results 
in a possible diagnosis with the identification of the specific 
etiological agent (virus, bacteria, and/or fungus). The refer-
ence databases are accessible from public sites like GenBank 
(NCBI, USA), EMBL Bank (EMBL-EBI, Europe) and DDBJ 
Bank (DDBJ, Japan), which easily overpass the terabyte of 
data. Figure 2 shows the evolution of the GenBank database 
through the years.

Quality control
The first stage after sequencing is the “quality control.” The 
sequencer produces a large amount of data, but not all with 
the same quality. This step is important to remove “low qual-
ity” data (12, 13). In summary, the first generation and most 
second generation sequencers are based on sequencing by syn-
thesis, where information is collected through a fluorescent 
agent bound to the nucleotide (8), using a very precise wave-
length laser, capturing the light emitted by the molecule to 
infer the sequence. The resulting signal may be biased or not 
deterministic. The sequencer calculates the “quality” of the 
read based on the light intensity and writes the score in the 
result file—each sequenced nucleotide has its specific quality 
score (14). Figures 3 and 4 show chromatograms with low 
(multiple peaks per base) and good quality data, respectively, 
obtained by a first generation sequencer (13).

Amplification
All first and second generation sequencers require a DNA 
amplification step, where DNA is duplicated through PCR 
into multi-million copies, amplifying the signal to be detected 
by the machine. After sequencing, duplicate reads are removed 
resulting in data reduction (15).

Figure 2. Evolution of the GenBank database, maintained by the NCBI. showing an increase in the curve of genomic data deposits, which results in 
computational difficulties of data processing. Source: NBCI statistics webpage.
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Figure 3. Chromatogram with multiple peaks per base—low quality data. Source: Roswell Park Comprehensive Cancer Center.

Figure 4. Chromatogram indicating good quality of data sequence. Source: U-M Biomedical Research Core Facilities.

Host removal
The host removal, while is not mandatory for water and soil 
analysis, it is an important step for human diagnosis, speeding 
up the process and reduce the risk of bias. Since the sample is 
obtained from a living host (human), it is likely to have the 
host DNA present in the data after sequencing. This stage is 
performed by searching for the host DNA in the result file 
through comparison with the reference genome available in 
public databases. Once the host reads are identified, they must 
be removed. In case of human samples, the most recent and 
curated reference human genome is preferentially used.

Searching through reference databases
This step is the most computing expensive task. The sequencer 
yields a huge amount (>100 million) of short reads (up to 
300 nucleotides bases in current second generation sequenc-
ing) written in a text file, whose format is commonly the 
FASTQ type (14) (same from the original FASTA file for-
mat but with quality information). Each read is represented 
by one DNA string like “ACGATCGATTCGGA(…)” and it 
must be compared to reference datasets (terabytes of genomes 
from all sorts of living organisms, available on public orga-
nized databases). The first guess is O(m + n) like Knuth–
Morris–Pratt or O(m)+ Ω(n/m) like Boyer–Moore algorithms 
could be applied to solve this problem. However, these 
algorithms are not able to produce efficient results from 
a biological viewpoint. To compare the new sequence to 

Figure 5. Two basic types of mutations: in transitions there is an 
exchange of bases of the same class (purine or pyrimidine), while in 
transversions there is an exchange of bases of different classes. Source: 
the authors.

all sequences available in databases, it is necessary to per-
form sequence alignment. The DNA is not a rigid and static 
sequence, it is submitted to evolutionary forces, such as muta-
tion, selection, genetic drift and migration. Considering the 
mutational aspect, the DNA substitutions can be classified 
as (i) transitions: when involve bases with similar chemi-
cal structure, interchanges of two-ring purines (A ⇋ G) or 
one-ring pyrimidines (C ⇋ T) and (ii) transversions: when 
involve substitutions of one-ring and two-ring DNA bases, 
interchanges of purine for pyrimidine bases and vice-versa. 
Figure 5 indicates the possible transitions and transversions.
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Figure 6. In the alignment of genetic sequences, mismatches (blue), indels (green) and matches (red) can occur. The occurrence of these events does 
not necessarily mean that they are different subjects. Source: the authors (sample on NCBI Blast).

When comparing two sequences to obtain an alignment, 
the main objective is to identify the positional homology, 
i.e. identify sites with a common ancestry in the alignment. 
It may be necessary to include gaps (indels, correspond-
ing to deletion in sequence 1 and insertion in sequence 2) 
to better accommodate one sequence in relation to another.
In this sense, the sequence ‘ACGATCGAT’ may be biologically 
equivalent to the sequence ‘ACGCTCGGAT’ (one mutation 
and one indel), i.e. they may be homologous. Homology is a 
biological concept that indicates two sequences share a com-
mon ancestry. Common algorithms used to align sequences 
in genomic research are Levenshtein Distance (16), Smith–
Waterman (17), Needleman–Wunsch (18), Burrows–Wheeler 
(19) plus hashing and its derivatives. Blast, which uses a 
heuristic method based on Smith–Waterman, is the most used 
software to perform local alignment. It allows identifying sub-
ject sequences in a database that are like a query sequence. 
Figure 6 shows a local alignment obtained by a Blast search, 
with the indication of mismatches (blue arrow and lack of| 
symbol), indels (green arrow and gaps) and matches (red 
arrow and| symbol). It is important to note that another 
source of mismatches is associated with sequencer read errors.

Dynamic programming
Dynamic programming applied to bioinformatics (e.g. Leven-
shtein Distance, Smith–Waterman and Needleman–Wunsch) 
has complexity in order of O(mn) in the worst case, but it 
is possible to improve as demonstrated by Berghel and Roach 
(20). It is very time-consuming in terms of computational pro-
cessing, although it is possible to parallelize the task since an 
input does not depend on other data in the same processing 
stage. It is not rare that a software solution has more than one 
combination of algorithms For example, in case of seed-and-
extend algorithms, it is very common for a software aligner 
to use the Burrows–Wheeler algorithm to reduce data size 
and hash tables to find the seed portions. Dynamic program-
ming applied to sequence alignment can be explained using 
a 2-dimensional matrix where two sequences are compared. 
There are three main steps: (i) matrix initialization; (ii) matrix 
fill (scoring) and (iii) traceback (alignment). Match, penalty-
gap and mismatch values are defined according to a score 
(21). During the matrix fill, for each cell, all possibilities are 
evaluated and received a value: (i) in diagonal: match or mis-
match; (ii) gap in sequence y and (iii) gap in sequence x. The 
traceback step determines the actual alignment(s) that result in 

Figure 7. Dynamic programming illustrated by a matrix ‘mn,’ where the 
highlighted path represents the optimal alignment between the 
sequences. Source: the authors, based on (25).

the maximum score. In Figure 7, the best alignment is shown
in red.

Proposed algorithm
To be feasible, the nucleotide matching algorithm must respect 
and reflect the nature of the DNA strand. In other words, the 
matching string must be straight enough to pair the sequence 
and be flexible enough to address the mutations and indels. 
The strategy behind this proposed algorithm is to divide and 
conquer, removing the most obvious non-matches from the 
database, limiting the fine search to the relevant subjects. To 
achieve this purpose, the algorithm computes the sequence to 
create identities of the reads, counting the distance between 
nucleotides A to next A and C to next C, simulating a wave 
where the same nucleotide interval is interpreted as a com-
puted frequency (Figure 8). The cycle count obtained from 
the interval is stored in a database and used to perform the 
preliminary filter.

The algorithm locates the first nucleotide A in the sequence, 
then counts the number of nucleotides for the next A, and then 
repeats with the next A until the end of the read (Figure 9). 
The same process is performed with C nucleotide. The result 
of this computation is a set of numeric values containing 
the nucleotide distances, which is more efficient to evaluate 
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Figure 8. Hypothetical reads. The bases in red are used as a distance marker (green line). The result, in blue, makes up the sequence identity. Source: 
the authors.

Figure 9. Example of a possible wave and its frequency. SARS-CoV-2 reference sample read from NCBI Sequence Read Archive (SAR): ERR4329467.

Figure 10. The indel problem. Source: the authors.

than alphabetic values, such as “ACGT” in a computational 
approach. This algorithm reduces the size of the data by a 
fraction of the original. Mismatches on nucleotides G and T 
are irrelevant to the result, although it can be also calculated 
using the same method. Another important decision is that 
the repeating zones may be irrelevant because distances longer 
than nine are ignored (low priority) and distances equal to 
zero are ignored as well. These identities are used to match 
the reads to the reference genome in a highly sensitive way, 
discarding the unmatched reads due to the probability of 
a high e-value in a subsequent alignment. With the set of 
identities in a database, the next step is to filter and find 
possible matches with the reference genome, which must go 
through the same identity processing. The resulting data set 
is the block that will be used for the actual alignment of 
sequences, using consolidated techniques, such as the Blast
algorithm.

This approach may have flaws because of indels, where 
nucleotides can be inserted or deleted in the strain (Figure 10). 
In this case, the distance between the same nucleotides will 
vary. The solution is to create a range of tolerance using a 
substitution matrix where a distance between 19 and 20 (or 
a long range) is represented by the letter “A” (this param-
eter can be modified on the algorithm). Another approach 
relies on slicing the result code to reduce the final size of the 
comparison (Figure 10).

After the range code substitution, the resulting sequence 
is “normalized” creating a kind of wave softness allow-
ing the matching of sequences with small gaps or inser-
tions (Figure 11).

The exact strategy to handle gaps is the substitution 
in Table 1 and the repetitions can be compressed using the 
sample in Table 2.

Experiments
For the experiments, a tool called MetaGens with a graphical 
interface was built as an application for Windows (it can be 
ported to other operating systems). The purpose is to allow 
the researcher to build experiments with minimal computer 
knowledge. This tool allows the user to organize their research 
projects (diagnoses) into patients and runs. It is also possible 
to automatically download readymade experiments directly 
from NCBI and manipulate the algorithm parameters to vary 
its sensitivity and specificity. Figure 12 shows a screenshot of 
the quality control panel of a specific run performed by Meta-
Gens, allowing the user to manipulate the controls and apply 
different filters.

Another important part of the tool is the selection of ref-
seqs for building the diagnostic project. The researcher can 
filter references among the >220 000 records available in the 
NCBI database and further speed up the alignment process. 
This step is totally visual and the download of refseqs is also 
automated, directly from one of the available NCBI mirrors 
(cloud included). Figure 13 shows the database filter panel, 
which allows the reference selection.

After filtering and selecting refseqs, the next step is to pro-
cess the sequences and align the reads with the selected refseqs. 
At this stage, the massive processing is computed. All CPU 
cores (CPU-threads included) are used in order to optimize 
the analysis. Figure 14 shows the database query panel, which 
is an alignment control panel where is possible to visualize 
some results that identify the etiological agents responsible for 
disease.

Results and discussion
The first impact of the proposed algorithm (O(n)) is the 
data size reduction (∼80%) in comparison with the original 
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Figure 11. Partial result of the algorithm. Source: the authors.

Table 1. Handle gaps substitution matrix. Source: the authors

Range
(includ-
ing) Identifier

Range
(includ-
ing) Identifier

Range
(includ-
ing) Identifier

0.2 1 15.16 8 29.30 F
3.4 2 17.18 9 31.32 G
5.6 3 19.20 A 33.34 H
7.8 4 21.22 B 35.36 I
9.10 5 23.24 C 37.38 J

11.12 6 25.26 D 39.9999 Z
13.14 7 27.28 E

Table 2. Naive compression substitution matrix. The X represents the 
repeating same gap size. Source: the authors

Repetition Identifier

XXXXXXXXXX a
XXXXXXXXX b
XXXXXXXX c
XXXXXXX d
XXXXXX e
XXXXX f
XXXX g
XXX h
XX i

nucleotide sequence. As an example, a sample read of SARS-
CoV-2 containing 480 nucleotides yields a 79-character iden-
tity. The overall reduced size increases the main performance 
of the massive matching process. The algorithm is ∼10× faster 
than naive search (up to O(mn), both implemented in C#, 
using dotnet framework). As another example, the Neisse-
ria meningitidis strain 433_NMEN (ASM106340v1) contains 
2,397,512 bytes (nucleotides) before processing and 373,439 
bytes after compression. The high sensitivity nature of the 
algorithm leads to alternative matches as can be observed on 
the NCBI SRA accession SRR12665177. The overall cover-
age leads to N. meningitidis (100%), although other subjects 
can be also matched (Klebsiella quasipneumoniae—98% cov-
erage). Table 3 shows an example of the length of the files 
before and after the process.

For the experiments, a GUI was implemented in the 
dotnet framework and published at https://github.com/ghc4/
metagens. Since the algorithm is based on lossy compression, 
the data reduction may be translated as loss of information, 
but it is not. Both data from the sequencer machine and the 
REFSEQ sequence are processed using the same technique. As 
consequence, the comparison is between the same “genomic 
language”—translated to a kind of wave. The final compari-
son is between the same metrics and the match is preserved. 

Table 3. Comparison showing the size file between before and after 
processing files. Source: the authors

File
Original size 
(bytes)

Reduced Size 
(bytes) Shrink %

GCF_000003925.
1@ASM392v1

5 631 514 749 257 87

GCF_000006945.
2@ASM694v2

5 013 482 797 157 84

GCF_900087615.
2@WHOM

2 255 268 352 126 84

GCF_006334535.
1@ASM633453v1

2 159 924 331 985 85

GCF_000002825.
2@ASM282v1

54 436 962 6 471 680 88

GCF_004115315.
1@ASM411531v1

6 507 834 1 034 216 84

GCF_003290055.
1@ASM329005v1

5 893 322 970 815 84

Once the distance between the nucleotides can vary due to 
insertions and deletions, a substitution range can be defined 
by the user, making the indels irrelevant. The transitions and 
transversions may be also irrelevant because the algorithm is 
not analyzing all nucleotides between the “waves,” only the 
“wavelength” is important to this approach. In comparison 
with dynamic programming, this technique is very permis-
sive, detecting a great variety of subjects due to the nature 
of the matching strategy. Depending on how wide the param-
eters are, it is possible to reach false positives. However, at this 
stage, this algorithm may be more useful as a pre-filter, allow-
ing faster dynamic programming (with smaller databases) or 
even a faster Blast.

In a direct comparison with the alignment algorithm 
used in Blast, the run SRR12665147 (taken from the NCBI 
biosample SAMN16133045) aligned with the subject N. 
meningitidis (GCF_008330805.1_ASM833080v1) resulted in 
over a million matches in 609.64 s of processing. On the 
same equipment, the proposed algorithm resulted in 23 622 
matches in 49 s. The reduction in the number of matches 
occurs because the database was compressed and similar 
sequences were grouped. Moreover, almost all reads had 
some duplicates in the Blast analysis, streamlining the pro-
cess. It was observed that the processing time has been 
reduced by >90%. Despite the comparison using the same 
hardware (i7-6700/64GB RAM), the Blast implementation 
is made using C/C++, while this algorithm prototype was 
written in C#, so an even higher gain is expected in the anal-
ysis of the results with better performance implementations 
(C/C++, Rust, etc). In another direct comparison, the same 
run (SRR12665147) aligned with the genome of Neisseria 
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Figure 12. Graphical interface of the MetaGens software showing the quality control panel. It is a user-friendly interface that allows the specification of 
the quality control parameters. Source: the authors.

Figure 13. Graphical interface of the MetaGens software showing the database filter panel. When filtering the reference sequences, it is possible to 
reduce the size of the database in order to reduce the analysis time. Source: the authors.

sicca (GCF_017753665.1_ASM1775366v1) took 175.47 s to 
process 69 235 matches, while the proposed algorithm took 
27.74 s. Despite the N. sicca genome being of almost same 
size as the N. meningiditis genome, the number of matches 

directly influences the Blast processing time, but does not have 
a significant impact on the processing of the proposed algo-
rithm since what weighs more in this case is the complexity 
of nucleotide sequences. It is important to emphasize that 
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Figure 14. Graphical interface of the MetaGens software showing the database query panel. On the query screen, it is possible to follow the progress 
of the alignment. The table shows the subjects under analysis and their matches. Source: the authors.

Table 4. Benchmark comparison on the alignment of SRR12665147 with Neisseria meningiditis and Neisseria sicca (with partial database slice). Source: 
the authors.

Classifier
N. meningiditis
(matches)

N. meningiditis
(time)

N. sicca
(matches)

N. sicca
(time)

Kaiju 226 054 1589 s 490 1589 s
Kraken2 458 504 80 s 1035 80 s
BLAST Over one million 609 s 69 235 175 s
Centrifuge 245 417 89 s 95 89 s
MetaGens 12 461 (compressed) 30 s 430 (compressed) 27 s

this study considers the matches to be relevant for the pur-
poses of diagnosing infection. Consequently, the important 
thing is to identify the etiological agent and not necessarily its
phylogeny. Table 4 shows a simple benchmark that has the 
illustrative purpose of comparing the result of a query using a 
reduced database with more complex tools, often containing 
complete genome banks, therefore it should not be evaluated 
in a 1:1 ratio.

It is important to note that the number of matches does 
not necessarily mean greater sensitivity or accuracy. Consider-
ing that the reference database and accession are compressed, 
it is expected that the number of matches will be less than 
the same uncompressed data, as lossy compression will end 
up generating equal strings that will be discarded during the 
quality control process. It is also important to note that the 
compressed database does not use all genomes available in 
other tools, but a similar result can be obtained with the use 
of hash tables and, consequently, with greater use of RAM. 
This study has the purpose of propose an algorithm accord-
ing to the similarity between sequences, not considering, 
at this moment, the analysis of taxonomic selectivity and
sensitivity.

The metagenomics applied to the diagnosis of diseases is 
an important ally in several specific cases. Once the etiologic 
agent is identified, specific treatment can be implemented and 
the patient’s chances of improvement are increased. In some 
cases, as in infectious diseases of the CNS, the time to diag-
nosis is decisive in the outcome of the clinical case. The faster 
it occurs, the greater the chances of cure. The combination of 
several matching acceleration algorithms can be the key to the 
efficiency in the search for etiological agents in a large mass 
of genetic data.

In the last few years, clinical metagenomics has jumped 
from ∼70 publications on PubMed in 2010 to ∼540 pub-
lications in 2019, probably as a result of the advances on 
computational methods and development of new sequencing 
technologies. While the mainstream factories are spreading 
genetic sequencers through the biotech laboratories, some 
companies are developing pocket sequencers (22) at a cost 
of ∼U$4 500 00 that produce up to 30 Gb of data. In 
the near future, it may allow the self-diagnosis of some dis-
eases with effective confidence, thus it will result in a massive 
amount of data to process, turning the analysis even more
challenging.
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Conclusion
In some preliminary experiments, with use of functional mas-
sive parallel processing, it was possible to observe an interest-
ing gain of performance in comparison with the very same 
structure running standard algorithms, using the reduced 
mass of data, although it is not yet parametrized or precisely 
measured because of the different metrics involved. Through 
the years, the researchers are evolving their techniques to 
speed up the analysis process and produce results faster 
(23–25). Computer technology is also evolving, increasing 
speed and capacities in new processor generation. However, 
the genomic databases are also growing in an exponen-
tial way. Consequently, it is necessary for a faster solu-
tion able to deal with large amounts of data comparisons, 
enabling the use of clinical metagenomics as an impor-
tant weapon against infections of difficult diagnosis and
treatment.
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