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Abstract
Biomedical relation extraction (BioRE) is the task of automatically extracting and classifying relations between two biomedical entities 
in biomedical literature. Recent advances in BioRE research have largely been powered by supervised learning and large language 
models (LLMs). However, training of LLMs for BioRE with supervised learning requires human-annotated data, and the annotation 
process often accompanies challenging and expensive work. As a result, the quantity and coverage of annotated data are limiting 
factors for BioRE systems. In this paper, we present our system for the BioCreative VII challenge—DrugProt track, a BioRE system that 
leverages a language model structure and weak supervision. Our system is trained on weakly labelled data and then fine-tuned using 
human-labelled data. To create the weakly labelled dataset, we combined two approaches. First, we trained a model on the original 
dataset to predict labels on external literature, which will become a model-labelled dataset. Then, we refined the model-labelled 
dataset using an external knowledge base. Based on our experiment, our approach using refined weak supervision showed significant 
performance gain over the model trained using standard human-labelled datasets. Our final model showed outstanding performance 
at the BioCreative VII challenge, achieving 3rd place (this paper focuses on our participating system in the BioCreative VII challenge).

Database URL: http://wonjin.info/biore-yoon-et-al-2022

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Biomedical relation extraction (BioRE) is a text mining task to 
automatically extract relations between entities in biomedical 
literature. The BioRE task can be used as core components 
for building biomedical knowledge graphs or drug response 
in cancer (1–3).

Recently, supervised learning and large-scale biomedical 
language models have contributed substantially to advance-
ments in BioRE research (4–7). Models trained using these 
approaches can be considerably influenced by the quality 
and the quantity of training data. However, creating datasets 
for biomedical natural language processing (NLP) tasks is 
a challenging task owing to the complexity of biomedical 
information in the literature, which often results in low 
inter-annotator agreement (8). Consequently, the annota-
tion costs for BioRE datasets can be higher than those for 
general domain datasets, making it difficult to build a high-
quality large-scale BioRE dataset. Accordingly, researchers 
have attempted to explore approaches for data augmenta-
tion. Such an approach involves leveraging external resources 
by creating distantly supervised datasets with domain-specific 

knowledge bases (KBs) (9–11) and utilizing model-generated 
labels to augment the existing dataset (12, 13).

One of the data augmentation approaches, i.e. distantly 
labelling biomedical relations using KBs (14, 15), enables 
the automatic construction of large-scale datasets. However, 
this method can produce noisy labels, as most KBs are not 
specifically designed for NLP applications. Since KBs typi-
cally lack example sentences and entity location annotations 
within sentences, distant supervision relies on the assumption 
that if two entities with a known relation in a KB appear in 
a sentence, the sentence is labelled as having that relation. 
(Furthermore, a significant portion of biomedical relations are 
complex. These relations are not limited to two entities, nor 
can they be described in a single sentence within biomedical 
literature. Recent datasets, such as BioRED (16), tackle more 
complex settings for BioRE (please refer the Related works 
section). Nonetheless, this paper focuses on the more straight-
forward settings of DrugProt, in which we extract relations 
between drugs and proteins within a single sentence.) This 
assumption can lead to erroneous labels: a sentence contain-
ing a relation may be labelled as a negative example if the 
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relation is not listed in the KB (False Negative), and a sen-
tence may be labelled as a positive example even if the two 
entities merely coexist within it without semantically indi-
cating a relation (False Positive). For example, the relation 
‘acetaldehyde increases alpha 2(I) collagen’ is listed in the KB 
[we used the Comparative Toxicogenomics Database (CTD)], 
but this relation is not directly expressed in the sentence 
‘Effects of acetaldehyde on nuclear protein binding to the 
nuclear factor I consensus sequence in the alpha 2(I) colla-
gen promoter’. Simple distant labelling without any additional 
approach will mark the entities in the example sentence as 
having a relationship.

Another approach, known as (model-label-based) weak 
supervision, involves using pseudo-labelled datasets, or ‘weak 
labels’, which are generated from predictions made by a model 
trained on a small, high-quality dataset. (In the rest of this 
paper, we will denote model-label-based weak supervision as 
simply ‘weak supervision’.) The weak supervision approach 
has the potential to generate large-scale datasets with more 
diverse sentence and extended relation patterns than the orig-
inal dataset (17). This method has been shown to be effective 
in other research tasks in biomedical NLP (12, 13). However, 
labelling bias noises in the original dataset inherit the weakly 
labelled datasets, and the limited coverage of knowledge in the 
original dataset adds noises to the augmented datasets (12).

We propose a system for BioRE that combines some of 
the advantages of both weakly supervised learning and the 
utilization of external resources. Our approach consists of 
three phases: building a large-scale augmented dataset, pre-
training a transformer model using the augmented dataset 
and finally fine-tuning the model with the original human-
annotated dataset (such as DrugProt (18) or ChemProt (19)). 
The first phase is the step of preparing a training dataset for 
our system. Generation of weakly labelling corpus and fil-
tering of the generated dataset using KB are performed in 
this phase. Specifically, we train a model using the DrugProt 
dataset and predict relations in the selected MEDLINE arti-
cles. Predicted relations are then compared with drug–protein 
relation triples in the KB and are dropped if the labels from 
two sources disagree. The second and third phases are about 
how to effectively train our system using weakly labelled 
and human-labelled datasets. We trained a transformer-based 
sequence classification model on the augmented dataset and 
transferred the trained model weights to fine-tune the model 
using the original dataset, DrugProt.

The contributions of this paper are 3-fold. First, we pro-
pose a system for the BioRE using a weakly supervised data 
augmentation approach, which showed near state-of-the-art 
performance at the DrugProt challenge. Second, we perform 
an in-depth analysis of the predictions of our model and 
showed the robustness of our model on relatively scarce type 
relations. Finally, we have made our resources publicly avail-
able, including trained model weights and automatic annota-
tions on the 31 129 681 drug–protein entity pairs, of which 
6 355 642 pairs are predicted as potential relations.

Materials and Methods
In this section, we describe elements in our system for 
BioRE. We first describe our preprocessing steps (Figure 1), 
for preparing input sequences in our experiments. Then, 
we describe methods to build a large-scale augmented 
dataset (Figure 2), the first phase of our system. Finally, we 

describe our sequence classification model, the main part of 
the system, which classifies the type of the relation for an 
entity pair in the given sentence (Figure 3).

Preprocessing
We used an identical structure for the neural network model 
throughout all three phases of our system. (We will describe 
our neural network model, or sequence classification model, 
in the later part of the Methods section.) This allowed us 
to maintain a unified input sequence format across all three 
phases.

Figure 1 illustrates our preprocessing steps and examples. 
Our preprocessing starts by splitting documents (in our case, 
abstracts) into sentences using the Stanza library (20, 21). We 
then mark the entities by inserting special tokens to wrap 
before and after the drug/chemical and gene/protein enti-
ties. Note that whether to use a different token for each 
type or whether to wrap or replace the entity can be a 
hyper-parameter to choose. 

Building a large-scale augmented dataset
Training a model that can generalize to diverse relation 
expression patterns is a key factor to get a robust model. 
In order to expose our model to diverse patterns, we aug-
mented the dataset using the predictions of the model as 
weakly labelled data. In order to filter noises, we refined the 
weak labels with KB. 

The steps for preparing the source (unlabelled) dataset for 
the augmented dataset is analogous to the preprocessing steps 
for the DrugProt dataset (Figure 1). First, we collect docu-
ments that appear as reference articles in a KB for a targeting 
relation type. Then, we split the abstracts into sentences using 
the Stanza library. In the third step, we recognize Gene- and 
Chemical-type entities [also known as named entity recogni-
tion (NER)] within the sentences. To achieve this, we used 
both neural-network-based and dictionary-based methods for 
the NER. Specifically, we used BERN (22), a BioBERT-based 

Figure 1. Preprocessing steps. Entity markers wrap entities in input 
sequences.
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Figure 2. A system for building a large-scale augmented dataset:
(a) training model on DrugProt and (b) inference and filter.

Figure 3. A sequence classification model. The output of the [CLS] token 
is used for the classification head.

online NER tool. Then, we have also utilized the dictionar-
ies of the KB and external source HUGO Gene Nomenclature 
Committee gene set (23)) for additional steps to detect enti-
ties. Finally, we attached entity markers at the beginning and 
end of the entity.

We first trained a sequence classification model with the 
DrugProt dataset and used the trained model to predict the 
potential label for the unlabelled dataset. A KB was used 
to check the validity of predicted labels. Since the labelling 
schema for the dataset and KB is different, we used KB to only 
check the presence of the relation between the two entities. For 
example, if a prediction for a sequence indicates that there is a 
relation between the entity pair in the sequence, the predicted 
label will only be used for the augmented dataset if the entity 
pair is listed as having a relation in the KB. Sequences with-
out agreement are dropped. Although this filtering may drop 
potentially useful samples, we believe that the drawbacks are 
marginal. With a large weakly labelled dataset, we can still 
obtain sufficient examples to capture diverse relation patterns. 
Moreover, by reducing noise through the filtering process, we 
expect to improve the precision of our model. Therefore, we 
consider the trade-off to be beneficial in improving the overall 
model performance.

Sequence classification model
Our sequence classification model applied a straightforward 
method. Following BERT (24) and BioBERT (4), we used the 
output of special token, [CLS], as the sentence representation 
for the classification head. A linear classification layer was 
used. Different from the experiments of BioBERT, we did not 

anonymize entities and used different entity markers for entity 
types and for the start and end of the entity. We registered four 
entity markers to the vocabulary file. We discovered through 
ablation experiments that using independent entity markers, 
registering markers and non-anonymized entities showed the 
best performance, showing ~0.5–1% performance gain for 
each element.

Experimental settings
In this section, we describe the implementation details of 
our study. We provide an overview of the datasets used, 
including statistics and details on their preparation, as well 
as our experimental settings, which include the parame-
ters and techniques used to train and evaluate our models. 
Furthermore, we analyse the computational costs of our
experiments.

Biomedical resources and datasets
Knowledge base
For our KB source, we used the chemical–gene interactions 
data from the CTD (25). CTD is a comprehensive database 
of scientific entities such as drugs/chemicals, proteins and dis-
eases, along with manually curated relations between them 
and the identifiers (specifically, PMIDs) of supporting doc-
uments. Please note that although CTD contains PMIDs of 
supporting documents, it does not provide enough detail to 
build a distantly labelled dataset, causing noises.

We collected documents from the CTD—Chem/Gene 
database that were cited as supporting evidence for relation-
ships between drugs/chemicals and genes/proteins (we used 
August 2021 version). To maintain the integrity of the eval-
uation, we excluded documents that were also present in the 
development dataset of DrugProt. After filtering, we collected 
68 392 documents, of which ~1% existed in both the develop-
ment set and the KB and were excluded from our augmented 
dataset resources. These documents were split into 686 885 
sentences. After the basic data-cleaning process, the total num-
ber of chemical and protein entity combinations was ~1.26 
million (352 000 combinations were excluded). Of these, 
875 000 combinations agreed with our model predictions and 
were used to create the augmented dataset, while 387 000 
combinations were filtered out owing to non-agreement with 
the model predictions.

DrugProt dataset and augmented dataset
The DrugProt dataset is a human-annotated dataset on rela-
tions between chemical/drug and gene/protein entities (18). 
Similar to the previous challenge dataset CHEMPROT of 
BioCreative VI (19), the DrugProt dataset provides valu-
able datasets for training and evaluating automatic prediction 
models of relation extraction.

Table 1 summarizes the statistics for the DrugProt dataset 
(18) and the augmented dataset. The DrugProt dataset itself 
is a rich source for training BioRE models and has 64 779 
training data points. When we apply our system, we were 
able to build an augmented dataset of 875 350 training 
data points, which is ~13.5 times larger than the original 
DrugProt dataset. Table 3 shows the statistics of the rela-
tions in the DrugProt dataset. Since the relation classes are 
skewed, some classes have a small number of training data
points.
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Table 1. Statistics of the datasets: the number of data points for the 
original dataset and augmented dataset

 Number of input sequences

Dataset Train Development

Original (DrugProt) 64 779 13 480
Augmented dataset 875 350

Hyper-parameters and language models
Our hyper-parameter settings and pretrained weights of lan-
guage models, or backbone models, are selected using the 
performance of the model on the development dataset. For 
accurate comparison between the settings and to minimize 
the effect of randomness by the parameter initialization 
step, we conducted multiple independent runs (mostly 10 
independent runs unless otherwise stated) using different 
random seeds and used the average performance for the
selection.

Our hyper-parameter searching was mainly focused on 
four variables: learning rate, training epochs, mini-batch 
size and special tokens for marking entities. A learning 
rate was selected among 5e-5, 2e-5, 1e-5 and 5e-6. We 
used a linear learning rate scheduler with a warm rate of 
0.05 which means that the scheduler dacays the learning 
rate after the warm-up steps and linearly decreases it to 
0 when the training reaches the max iteration steps. For 
training epochs, we monitored the training steps using the 
average F1-score (averaged across five independent experi-
ments for the development experiments and 10 for the test, 
or challenge, experiments). Mini-batch sizes of 16 and 32 
were used for training the models on the DrugProt dataset. 
We explored four different methods of marking entities as
follows:

(i) No marking (original string): ‘Alendronate’ was a slow-
binding inhibitor of ‘PTPmeg1’.

(ii) Masking entities (replace with marker): ‘CHEM’ was a 
slow-binding inhibitor of ‘GENE’.

(iii) Marking with entity types: ‘CHEM Alendronate 
CHEM’ was a slow-binding inhibitor of ‘GENE PTP-
meg1 GENE’.

(iv) Marking with entity types with different markers in-
front and after the entity: ‘CHEM-S Alendronate 
CHEM-E’ was a slow-binding inhibitor of ‘GENE-S 
PTPmeg1 GENE-E’.

Please note that the markers are registered as special tokens on 
the language model vocab lists. Hence, the embeddings of the 
marker tokens are trainable parameters. Based on our exper-
iments, Method (iv) showed the best performance. For the 
experiments throughout this study, we marked entities using 
Method (iv).

Language model candidates were BioBERTBASE (4), Pub-
MedBERT (5) and BioLMLARGE (RoBERTa-large-PM-M3-
Voc) (7). All three models are pretrained in the biomedical 
domain but show variations in details (Table 2). BioBERT 
and PubMedBERT are based on BERT and BASE size models, 
whereas BioLMLARGE is based on the RoBERTa structure and 
LARGE size model where the number of parameters is three 
times larger than the former models.

Utilizing training data and development data as training 
material
For our challenge participation, we trained some of our mod-
els (marked as Train+Dev in Table 5) using the development 
dataset. First, we merged the training dataset and develop-
ment dataset. Next, we split the merged dataset into 10 
partitions. Then, we created 10 reorganized train–develop 
dataset pairs by pairing a development set from one partition 
with the new training set derived from the other nine parti-
tions. We trained 10 models with the pairs. When combined 
with the ensemble method, we expect that this approach can 
virtually expand the size of training data, which is proven to 
be beneficial for the performance in the later part of this paper 
(see the Results section).

Computations costs
Generating the weakly supervised dataset
Preprocessing steps and the prediction steps took less than 12 
hours using a machine with one central processing unit (CPU) 
(16 cores) and one graphics processing unit (GPU) (TITAN 
RTX 24GB).

Inference
Based on our experiments on the large-scale text mining sub-
track (large track) dataset of ~2.3 million articles (~33 million 
sentences), preprocessing took ~3 h and 15 min with 15 par-
allel processes (single-thread process) and the inference took 
6 h and 30 min with a batch size of 512 (1 GPU with 24 GB 
GPU memory).

In total, the computation required ~10 h * 15 machines (1 
CPU, 1 GPU) = 150 unit-node h. This means that our model 
can predict relations in one article in 0.23 s (4.2 articles per 
second).

Results and discussion
In this section, we discuss our experimental results for the 
development dataset and the test data submission for the chal-
lenge. For the test dataset, we report scores received from the 
challenge organizers.

Performance of the model on the development 
dataset
Figure 4 shows the micro-averaged F1-score of the plain 
sequence classification model trained on the BC7DP dataset, 
the model trained solely on our KB-refined weakly labelled 
dataset and our full system (denoted as BC7DP-supervised 
(Transferred)). Note that the performance of our model (full 
system) is starting from 28 000 step point since the model 
is initiated from the 28 000th step of the weakly supervised 
model. To enhance the statistical robustness of our report, we 
plotted the micro-averaged F1 scores from five independent 
runs, each with different random seeds. Table 4 presents the 
best performance of our system on the DrugProt development 
dataset. We saved the checkpoints with 2000, 4000 or 10 000 
intervals and evaluated the saved checkpoints to find the best 
models. Experiments in this subsection report performance on 
BioLMLARGE as the backbone model.

Figure 5 presents the confusion matrices for the model 
trained on the BC7DP dataset and our system. The figure high-
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Table 2. Comparisons on the language models pretrained on biomedical literature

Language model Architecture No. of parameters

Corpora 
for training 
(self-supervision) Vocab source Vocab size Case

BioBERT BERT 108 million (base) PubMed (con-
tinued from 
BERT)

Wiki+books 28 996 Cased

PubMedBERT BERT 108 million (base) PubMed PubMed 30 522 Uncased
BioLMLARGE RoBERTa 355 million 

(large)
PubMed, PMC 

and MIMIC-III
PubMed 50 008 Cased

Notes: BioBERT, PubMedBERT and BioLM in the ‘Language model’ column denotes checkpoints named ‘biobert-base-cased-v1.1’, ‘BiomedNLP-
PubMedBERT-base-uncased-abstract’ and ‘RoBERTa-large-p.m.-M3-Voc-hf’ from the official resource links of the original authors.
Uncased in the ‘Case’ column means that all the characters in the input string are lower-cased in the preprocessing steps, whereas Cased means that the original 
string is preserved.

Table 3. Statistics of the relation types in the DrugProt dataset: the number 
of data points and its proportion for each class

Type Train Development

INHIBITOR 5392 (31.3%) 1152 (30.6%)
DIRECT-

REGULATOR
2250 (13.0%) 458 (12.2%)

SUBSTRATE 2003 (11.6%) 495 (13.2%)
ACTIVATOR 1429 (8.3%) 246 (6.5%)
INDIRECT-

UPREGULATOR
1379 (8.0%) 302 (8.0%)

INDIRECT-
DOWNREGULATOR

1330 (7.7%) 332 (8.8%)

ANTAGONIST 972 (5.6%) 218 (5.8%)
PRODUCT-OF 921 (5.3%) 158 (4.2%)
PART-OF 886 (5.1%) 258 (6.9%)
AGONIST 659 (3.8%) 131 (3.5%)
AGONIST-

ACTIVATOR
29 (0.2%) 10 (0.3%)

SUBSTRATE_PROD-
UCT-OF

25 (0.1%) 3 (0.1%)

AGONIST-
INHIBITOR

13 (0.1%) 2 (0.1%)

lights the skewed nature of the model predictions, illustrating 
the challenging aspects of the relation prediction task. Please 
note that predictions labelled as ‘None’ are omitted from the 
matrices to enhance visibility. Both matrices represent the best 
results achieved by each model (corresponding to the same 
checkpoints as in Table 4).

For our challenge participation, we explored the potential 
performance gain of the ensemble method. In our experiment 
with the ensemble method where 10 models are ensembled, 
we observed an increase of 1.5% (F1), showing 0.789 and 
0.795 for the ‘1-RoBERTaLarge’ (runID 1) model and the 
‘3-RoBERTaLarge_CTD’ (runID 3) model, respectively, on 
develop set.

Results on the test data submission (BioCreative VII 
challenge)
Table 5 shows the performance of our models for the main 
track of the challenge. For evaluating our model on test data 
(main track submission), we used ensembles of models. For 
runID 1 and 2, we trained 10 models without the augmented 
dataset. For runID 3 and 4, we trained five models, which 
were also pretrained on the augmented dataset.

We used five models for runIDs 3 and 4, the submis-
sions using augmented data, due to the lack of time to train 

Figure 4. The performance (F1-score) of models by the total training 
steps. The solid line (BC7DP-supervised) represents the performance of a 
model trained using the original dataset. The line starting with dotted line 
and soon changed into solid line, denoted as BC7DP-supervised 
(Transferred), represents the performance of our system. The line 
strarting with solid line but soon changed into dotted line, denoted as 
Weakly-supervised, represents a model trained only on weakly 
supervised datasets (without the third phase of our system). Note that 
the solid part of BC7DP-supervised (Transferred) linestarts at the 
28 000th step of the Weakly-supervised line as it is transferred from the 
28 000th step of the weakly supervised only model. For the 
BC7DP-supervised and BC7DP-supervised (Transferred), F1-scores are 
averaged across five independent runs.

the models. This may have led to a relatively lower perfor-
mance of our augmented dataset models. The fact that aug-
mented dataset models perform better than the plain model 
for the large track, where we submitted predictions of equal 
condition (i.e. single models), supports our assumption.

For runID 2 and 5 models, we utilized both train-
ing and development dataset as training material for the 
challenge main track (please see the Experiments section 
for details). Since we were using the ensemble method, 
we assume that the ensembled model is trained on the 
knowledge of both train and develop datasets. Submission 
names under ‘2-RoBERTaLarge-10-traindev’ (runID 2) and 
‘4-RoBERTaLarge_CTD-5-traindev’ (runID 4) were trained 
using this strategy and showed superior performance than 
models only trained on the training dataset. This would sug-
gest that increasing the size of the training set further still 
would yield additional gains.

‘5-Best-CTD’ (runID 5) was an ensemble of 10 checkpoints 
across all settings and steps that showed the best performance 
for the develop dataset.
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Figure 5. The confusion matrix of the model trained using the BC7DP dataset (left) and our proposed method (right) on the development dataset.

Figure 6. The performance (F1-score) of our system (KB-refined weak 
supervision) and the model trained using simple weak supervision (weak 
supervision without KB refine).

Large-scale text mining subtrack dataset
For the large-track inference, we used single models instead of 
ensemble methods due to the computational cost. ‘1-BioLM-
CTD-lr1e5-filter’ and ‘2-BioLM-CTD-lr5e6-filter’ are models 
pre-trained with augmented data, and ‘3-BioLM-lr2e5-filter’ 
is trained without augmented data. The difference between 
runIDs 1 and 2 is the learning rate during training.

Discussion on the proposed weakly supervision 
method
From Table 4, the overall performances (micro-average) of 
models trained using our proposed system are better than 
models without the augmented dataset (denoted as Baseline).

Limitation
The overall performance gain using our system was marginal, 
especially when compared with the model trained with simple 
weak supervision. Figure 6 shows the performance compared 
with the model trained with simple weak supervision. The per-
formance using a simple approach was better for the first few 
steps. However, as training proceeds, the performance of our 
approach scored higher than weak supervision without KB.

Table 6. The performance of the model on large-scale text mining subtrack 
test data (evaluated by the organizers)

 Settings  Performance (test)

runID 
(large) Augmented

F1 % 
(All)

F1 % 
(INHI)

F1 % 
(DIR)

F1 % 
(SUBS)

1 O 75.76 85.22 66.98 65.42
2 O 75.82 84.66 66.91 64.07
3 X 75.18 84.76 65.74 62.98

Notes: The base model (language model) for all submissions was 
BioLMLARGE. The runIDs of the large-track models do not correspond to 
the runIDs of the main track models.

We assume that pretraining the model on the augmented 
dataset is beneficial for predicting relations with underrepre-
sented training examples. However, our model did not show 
better performance for the very poorly represented relation 
types (i.e. <5% of the total dataset). All of our approaches 
struggled to learn these relationships, suggesting that a mini-
mum number of examples of these types needs to be present in 
the training data for a machine learning strategy to be viable. 
Discovering this minimum example number remains a topic 
of further work.

Similar results are observed for the large-track submis-
sion (Table 6). The results for the large track were lower than 
the expectation based on our experiments on the develop-
ment dataset. During the challenge, we had a technical issue 
with our preprocessing system, and this led to the suboptimal 
performance for predicting at a scale.

Related works
Biomedical relation extraction
Hand-labelled BioRE datasets are essential and valuable
resources for BioRE researches as they provide high-quality 
annotations. The DDI corpus (26) is a dataset about the 
drug–drug interaction and developed for the SemEval 2013-
DDIExtraction 2013 task (27). The dataset is created from 
792 DrugBank texts and 233 MEDLINE abstracts (http://
www.mavir.net/resources/179-ddicorpus). The chemical–
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protein interaction (ChemProt) (19) is a rich resource for 
chemical–protein interactions, annotated on 2432 PubMed 
abstracts: train, dev and test datasets of 1020, 612 and 800 
abstracts, respectively.

Distant supervision for relation extraction
Given the cost associated with creating hand-labelled BioRE 
datasets, researchers have turned to distant supervision 
approaches for training and evaluating relation extrac-
tion models. An example of a distantly labelled dataset 
is the Genetic Association Database corpus (GAD) (10), 
generated using the Genetic Association Archive (https://
geneticassociationdb.nih.gov/) database. However, it is impor-
tant to note that the GAD dataset has suboptimal quality 
and should be considered as a supplementary measure, as 
highlighted in recent studies evaluating the performance of 
language models (4). BEEDS by Wang et al. (28) is one of the 
recent research studies on BioRE using distant supervision. 
BEEDS utilizes question answering and distant supervision 
to mine event structures including relation extraction from 
PubMed articles.

Complex BioRE
Recent research has highlighted the limitations of representing 
certain biomedical relations solely as binary relations involv-
ing two entities or within a single sentence. This has led 
to an increased demand for models and resources capable 
of handling more complex biomedical relations. Address-
ing this need, BERT-GT (29) was proposed to utilize Graph 
Transformer with the BERT model to predict cross-sentence 
n-ary relation (i.e. relations with multiple entities) extraction. 
The other work by Giorgi et al. (30) proposed a genera-
tive approach for relation extraction, enabling the model to 
naturally predict n-ary relations and cross-sentence relations. 
Another notable effort in modeling complex biomedical rela-
tions is BioRED (16). BioRED focuses on annotating relations 
among six commonly described entities, namely genes, dis-
eases, chemicals, variants, species and cell lines. The annotated 
relations in BioRED can be asserted within or across sen-
tence boundaries, necessitating machine reading across entire 
documents.

Other models from the BioCreative VII 
challenge—DrugProt track
In the BioCreative VII challenge—DrugProt track, the Hum-
boldt team’s approach (31) detected drug–protein relations 
in scientific abstracts using pretrained transformer-based lan-
guage models and additional side information from biomed-
ical KBs. The NLM-NCBI team (32), on the other hand, 
employed a sequence labeling framework for drug–protein 
relation extraction, improving efficiency and performance by 
recognizing all relevant entities simultaneously.

Model-generated label-based weak supervision
In the absence of labeled data, a potential method is to 
employ weak supervision to automatically generate labels 
from domain KBs. One such example is a work by Shang 
et al. (33) where they match segments of unlabelled biomed-
ical documents to a biomedical dictionary to create weakly 
labeled data. Jiang et al. (12) pointed out the shortcomings of 
model-generated labels and proposed noise-aware continual 
pretraining for biomedical NER task. Another example of this 

example is a work by Yoon et al. (13) where they used model-
generated weakly labelled dataset to train the final model and 
showed better generalizability.

Limitation and further works
Our primary objective in this study was to develop a BioRE 
system specifically designed for the DrugProt dataset. The 
DrugProt dataset is characterized by relations that exist within 
a sentence and involve two entities. The entity types in this 
dataset are defined as drug and protein.

As a future direction of our research, we intend to extend 
our approach to encompass relation extraction datasets that 
involve multiple entity types, such as the BioRED dataset. By 
incorporating datasets with diverse entity types, we aim to 
enhance the versatility and applicability of our approach.

Conclusion
In this paper, we present a BioRE system that utilizes a 
language model structure and a combination of weak super-
vision methods, known as KB-refined weak supervision, to 
enhance its performance. Our system comprises three phases: 
the preparation of weakly labelled data, initial training of the 
model on weakly labelled data and fine-tuning using human-
labelled data. We developed the weakly labelled dataset by 
combining two approaches. First, we trained a model on the 
original dataset to predict labels on external literature, gen-
erating a model-labelled dataset. Subsequently, we refined the 
model-labelled dataset using an external KB.

Our experiments demonstrated that our approach, which 
employs refined weak supervision, exhibited significant per-
formance gains over models trained using standard human-
labelled datasets.

Our source code and automatically annotated drug–
protein relation predictions on 31 million entity pairs (based 
on the DrugProt large task data) are available online for 
further research, such as for building knowledge graphs.

Supplementary data
Supplementary material is available at Database online.
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