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Abstract
High-throughput clonal tracking in patients under hematopoietic stem cell gene therapy with integrating vector is instrumental in 
assessing bio-safety and efficacy. Monitoring the fate of millions of transplanted clones and their progeny across differentiation and 
proliferation over time leverages the identification of the vector integration sites, used as surrogates of clonal identity. Although 𝛄-
tracking retroviral insertion sites (𝛄-TRIS) is the state-of-the-art algorithm for clonal identification, the computational drawbacks in 
the tracking algorithm, based on a combinatorial all-versus-all strategy, limit its use in clinical studies with several thousands of 
samples per patient. We developed the first clonal tracking graph database, InCliniGene (https://github.com/calabrialab/InCliniGene), 
that imports the output files of 𝛄-TRIS and generates the graph of clones (nodes) connected by arches if two nodes share common 
genomic features as defined by the 𝛄-TRIS rules. Embedding both clonal data and their connections in the graph, InCliniGene can track 
all clones longitudinally over samples through data queries that fully explore the graph. This approach resulted in being highly accurate 
and scalable. We validated InCliniGene using an in vitro dataset, specifically designed to mimic clinical cases, and tested the accuracy 
and precision. InCliniGene allows extensive use of 𝛄-TRIS in large gene therapy clinical applications and naturally realizes the full data 
integration of molecular and genomics data, clinical and treatment measurements and genomic annotations. Further extensions of 
InCliniGene with data federation and with application programming interface will support data mining toward precision, personalized 
and predictive medicine in gene therapy.

Database URL: https://github.com/calabrialab/InCliniGene
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Introduction
One of the most intriguing and challenging research direc-
tions in hematopoietic stem cell (HSC) biology is monitor-
ing in vivo the fate of millions of clones with the lens of 
genomics (1). Although several molecular biology technolo-
gies are approaching this aim, most of them are feasible only 
in animal models (2–5) due to ethical issues or uncontrolled 
off-target mutations such as gene editing with cellular barcod-
ing, whereas only few of them are viable in humans, such as 
gene therapy with viral vector gene addition strategy (6–8). 
In gene therapy, clinical applications based on engineered 
viral vectors (both γ-retroviral vectors or lentiviral vectors) 
(6, 9), HSCs are harvested from diseased patients and, upon 
genetic correction through integrating a functional copy of 

the defective gene using viral vector, are transplanted into 
patients to fully reconstitute the hematopoietic system and 
ensure life-long efficacy. Hence, the integration of the viral 
vector, which occurs semi-randomly along the genome of the 
target cells, is a stable genetic mark of each independent 
engrafted HSC, inherited by all its cell progeny and main-
tained in the process of differentiation and proliferation. For 
this reason, vector integration sites (ISs) can be used as identi-
fiers of the cellular identity of each transplanted and engrafted 
HSC clone to track its fate over time and tissues. More-
over, ISs allow for studying the safety and long-term efficacy 
of the treatment, excluding insertional mutagenesis (10, 11). 
Therefore, ISs have been recently exploited for dissecting the 
hematopoietic reconstitution in vivo as evolutionary processes 
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Figure 1. Data volume of clonal tracking studies in clinical trials for gene therapy applications at SR-Tiget by (A) integration sites, (B) sequencing reads of 
IS and (C) NGS file size (sequencing pools from several technologies). ‘Number of reads’ refers to the overall number of sequencing reads; ‘Number of 
IS’ refers to the number of integration sites identified in the samples, corresponding to clones. ‘File size’ corresponds to the size of the files of the NGS 
pools (gzip compression).

involving millions of clones and cells in distinct tissues at cel-
lular and molecular levels, enabling for the first time a deeper 
knowledge of the hematopoietic system after transplantation 
and long term in human (12–14). Unfortunately, the clonal 
tracking characterization in clinical trials is an expensive study 
generating huge amounts of genomic data to be processed, 
analyzed and interpreted, with consequently computational 
drawbacks to handle.

Gene therapy patients are monitored over decade-long life-
span post-autologous transplantation (13, 15–17). Peripheral 
blood and bone marrow samples are periodically collected at 
every predefined months (from 1 to 12) and samples are sub-
jected to PCR-based procedures (14, 18, 19) to retrieve vector 
ISs and sequenced with high-throughput platforms such as 
Illumina paired-ends technology. Indeed, the volume of data 
is constantly increasing together with the number of sam-
ples per patient and time (an example in Figure 1 is related 
to our ongoing clinical studies), generating scalability issues. 
Although in the early days of sequencing (roughly 10 years 
ago), the output file size was relatively large but <10 GB 
per file, nowadays each sequencing library is mainly pro-
cessed by the highest throughput platforms, like the Nova-seq, 
thus adding >250 GB of data for each update. These obser-
vations led us expecting a rapid data volume accumulation 
as we are experiencing in our clinical studies in which we 
reached > 7TB of raw data (Figure 1C) in the last years. Down-
stream raw sequencing reads processing, the scalability issue 
will be integrating and analyzing all data for longitudinal 
clonal tracking.

The most advanced tool for IS identification is γ-tracking 
retroviral insertion sites (γ-TRIS) (20), assessed by the 
best precision and recall compared to other tools. γ-TRIS 
can include clones landing in repetitive elements or low-
complexity regions beyond the IS mapping in single genomic 
loci which are returned by most of the other tools (21–27).

Briefly summarizing the main steps (Figure 2), the algo-
rithm of γ-TRIS is designed to process IS sequencing reads 
derived from each single sample, and starts by clustering
reads by their sequence similarity without aligning them to 

a reference genome, and generates the graph of the retrieved 
clusters (homogeneous sequences representing a putative IS) 
in which each node is a unique read and edges connect nodes 
by their observed similarity. As a result, the graph presents 
highly connected sub-graphs (putative ISs) that are then ana-
lyzed (decomposition step) to obtain the core sub-graphs and 
thus the final list of ISs (called subg). For simplicity, here-
after we will refer to synonymous ISs and clones as well as 
subg and sub-graphs. Once extracted the sub-graphs from all 
the samples, γ-TRIS moves to the next step of the analysis 
aimed at identifying the same clone (here represented by a 
subg) across all the distinct samples. This step is called track-
ing and the current approach is based on the comparison of 
each subg of a sample versus all the other subg of the other 
samples. At the end of the step, γ-TRIS returns a data matrix 
of ISs (rows) observed in each analyzed sample (columns) 
and quantified with the corresponding number of reads (cell
values).

The tracking step is the most computationally intensive 
phase of the whole analysis since (i) it is based on a combi-
natorial comparison of each subg of a sample against all the 
other subg in the other samples, (ii) all the data are stored, so 
far, in files, thus increasing I/O operations and overhead lead 
to huge execution times and (iii) it needs to be run at every 
insertion of new data (i.e. new sequencing libraries/pools and 
new patient’s follow-ups).

Indeed, in the tracking step of γ-TRIS, both the num-
ber of samples that can be analyzed and the number of 
IS retrieved [for example, highly polyclonal samples pro-
cessed with new efficient and sensitive methods of IS retrieval 
(14)] deeply limit the scalability of the tool and, there-
fore, the broader use of this method in whole clinical
trials.

To overcome this limitation, we propose a novel approach 
based on the use of graph databases (hereafter graph DB) in 
order to avoid the direct pairwise comparison of ISs to be 
analyzed.

In fact, ISs, genomic positions and labels can be stored as 
nodes and linked together depending on the results of the 
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Figure 2. γ-TRIS main steps: (1) clustering, (2) decomposition, and (3) tracking. Steps 1 and 2 are performed for each sample in the sequencing library, 
whereas step 3 only generates the tracking matrix (indeed it may be run at the library level or even as collections of several libraries, as expected in 
clinical trial monitoring).

decomposition step. With this modeling approach, we can 
consider only IS pairs that share at least a genomic position 
(pos node) or one label (label node). A graph DB is able 
to provide this information straightforwardly compared to 
a relational database approach. This is due to the fact that 
a graph DB makes links between nodes as first class citizens 
(28) instead of using join operations as realized in relational 
databases. The consequence is that tracking an IS across con-
nected samples requires only the navigation of existing links, 
and indeed, from a theoretical point of view, this approach 
could scale-up very rapidly.

In the following sections, we describe how we designed 
and developed a new graph DB solution for clonal tracking 
and validated our approach on in vitro data, here gener-
ated to replicate real-case ISs. In particular, our validation 
dataset is composed of a mix of known ISs with random 
unknown ISs at several proportions designed to mimic a 
wide range of datasets from a high diversity (that is, many 
clones with an equal distribution abundance) to a low diver-
sity (that is, few clones dominating in terms of abundance). 
If correctly structured, the queries to our graph DB would 
return the same known IS tracked across all the distinct 
samples, independently of the abundance of the IS and the 

number of samples. We called our graph DB InCliniGene
(integrated clinical genomics database), and we released it on 
GitHub together with all the necessary documentation and 
tools for importing new data (https://github.com/calabrialab/
InCliniGene).

In the field of computational biology, only a few exam-
ples of graph DB have been already proposed, for example, 
to efficiently integrate heterogeneous repositories (29), or for 
specific application domains such as chemical informatics 
with Bio4j (30), biomolecular pathways analysis with 
Reactome (31) or chromatin conformation capture experi-
ments (32).

The Neo4j (https://www.neo4j.com) graph database man-
agement system has been adopted in nearly all these works 
because it represents today the de facto standard for this 
data model. For this reason, we exploited Neo4j in our
solution.

Data description
The dataset structure has been directly derived from the appli-
cation domain in which DNA samples are collected from gene 
therapy patients at different time points. When patients are 
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enrolled in a gene therapy clinical trial, they are visited by 
clinicians and a set of clinical variables (such as patient age, 
type of mutations, ethnicity, etc.) are collected by assign-
ing a unique identifier to each patient and anonymized in all 
subsequent procedures. Then, each patient undergoes bone 
marrow harvest that is treated with ex vivo gene therapy 
and, during this process a small amount of DNA material 
(usually left-over after transplantation) is used for clonal 
identification. After the time of transplantation, patients are 
monitored in predefined months by blood and bone marrow 
harvest, followed by IS analysis. In detail, the blood sample 
is processed to isolate specific cell lineages, and the cellular 
DNA is extracted for IS retrieval, accounting ∼ 12–18 samples 
per harvest. Then, each piece of information of the biological 
sample is linked to the source patient, with the corresponding 
treatment details, and the experimental details (e.g. amount 
of DNA, PCR method used to capture viral/host cellular junc-
tions, etc.). Finally, samples undergo PCR amplification and 
sequencing by the multiplexed library with Illumina platform, 
to produce a large file of reads in FASTQ format (extended 
version of the FASTA format to embed Quality data per base, 
acquiring the name by the original FASTP program) that is 
analyzed with γ-TRIS to identify ISs.

In the first step of γ-TRIS, for each sample, sequences are 
connected in a graph structure according to their similarity, 
that is, nodes are the input reads and edges represent the edit 
distance among the corresponding sequences, and then the 
graph is decomposed to produce highly connected clusters 
(called subgraphs or subg) representing ISs. For each sub-
graph, a consensus sequence is computed, and all the genomic 
annotations after alignments are added. Moreover, genomic 
labels are processed to annotate the IS as unique or landing in 
repetitive elements. In the latter case, the subgraph presents 
several hits on the target genome and no unique genomic 
regions can be used as representative. The decomposition step 
will then consolidate the IS identity by analyzing all connected 
components of each subg to eventually decompose the cluster 
into distinct ones, thus obtaining independent ISs. The final 
step of γ- TRIS, tracking, compares all the subgs by process-
ing their features (genomic and repeat labels) to identify the 
same subg observed in different samples and thus to track the 
same IS across observations.

The tracking step of γ-TRIS is based on specific rules, pre-
viously designed to correctly assign two subg, belonging to 
distinct samples, to the same IS. Here we summarize the rules 
implemented in γ-TRIS to assign two subgs of distinct sam-
ples to the same IS: given two samples, A and B, and one IS 
for each sample, ISA and ISB, the two ISs will be assigned to 
the same clonal identity if and only if:

i. ISA and ISB correspond to the same single genomic 
position;

ii. ISA and ISB share at least 50% of the genomic positions;
iii. ISA and ISB share at least one label and one genomic 

position;
iv. ISA and ISB share the same genomic position having max

alignment score.

Since our database is designed to handle the tracking phase 
of γ-TRIS, and potentially of all other IS software, we needed 
to port the same rules into our import procedure, enabling the 
generation of all the links in the graph connecting independent 

subgs identified from different samples. These rules need to be 
translated during the data import phase into the graph DB.

The clonal tracking graph structure
To archive the results of a gene therapy application, we first 
need to design a database schema that collects all the main ele-
ments of the experimental, clinical procedure and molecular 
observations (in this context, the vector IS) after the analysis 
of the requirements. Our main observation (entity) is a sam-
ple that also inherits the information about the source Project, 
PatientID, Tissue, Timepoint and all the other experimental 
details connected to a single sample. A sample is identified by 
a key. Each IS is observed in one sample and potentially can be 
observed (recaptured) in different samples, thus leading to a 
shared IS across samples. Each IS is identified by the genomic 
coordinates, orientation and by alternative alignments. More-
over, each IS retails the quantification of the source number of 
sequencing reads or DNA fragments. Once γ-TRIS returned 
the list of IS as subg, a series of technical information is 
added as fields including the consensus sequence, the align-
ment scores for each hit, the number of alignments, the value 
of each distinct clonal quantification approach (for example, 
sequence count as weight), the consensus sequence, the list of 
alignments (insertion) with their scores and genomic positions 
(pos) among which a main insertion is selected as a representa-
tive if not recognized as a repeat (labeled and classified by the 
repeat source family). In the tracking phase of γ-TRIS, addi-
tional features are added, such as the connections between 
two samples (with the name gtrissample) if they share at least 
one subg; if two subg are connected in the tracking phase 
then the gtris link is created among subg. Given the descrip-
tion of these entities and their connections, we have been 
able to design our database schema for the graph DB struc-
tured. Given the analysis of the requirements, we designed 
the graph DB as a directed graph composed of four types 
of nodes (namely, sample, subg, label and pos) and having 
relationships connecting nodes that share the same feature
(Figure 3).

Each sample, along with patient and experimental infor-
mation, is represented by a node of type sample. These nodes 
are involved in two types of relationships: sample2subg and 
gtris_sample. The first one connects each sample to all the 
identified ISs (subg nodes) during the first step of γ-TRIS, 
while the gtris_sample relationship connects different sample
according to the tracking step of the γ-TRIS workflow. Sub-
graphs are represented by subg nodes, which collect informa-
tion about the source IS and the consensus sequence. Subgraph 
annotations/labels are identified by label nodes. The relation-
ship connecting subg and label is called repeat. Each subg is 
connected to pos that represent the genomic loci of the ISs 
on the reference genome. Two distinct types of relationships 
connect subg and pos nodes: insertion and main_insertion. 
If the consensus sequence of a subgraph aligns to several 
genomic regions (thus describing a repeat) that cannot be 
disambiguated through the selection of the representative ele-
ment, the node subg connects many pos nodes through the 
relationship insertion. On the other hand, if a subgraph aligns 
a single genomic region or has a single dominant alignment 
(corresponding to the best alignment in terms of length and 
score, with values that are at least twice the second hit), the 
relationships among the corresponding subg and pos nodes 
are called main_insertion.
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Figure 3. Schema of the graph database archiving clonal data obtained from ISs using γ-TRIS. A node subg represents a subgraph and collects 
information about a source IS and the consensus sequence. One sample node is connected to many subg nodes, while a subg node is linked to one 
and only one sample. Subgraph annotations/labels are represented by label nodes, as well as the genomic loci of the ISs on the reference genome are 
represented by pos nodes. The relationship connecting a subg and a label is called repeat, while the link between a subg and a pos is called insertion. 
This information is all included in the files representing the input of the tracking step. On the other hand, γ-TRIS links are computed during the tracking 
step using the rules described in ‘Data description’ section and incrementally, i.e. new gtris links are computed and added only when a new sample is 
inserted in the database. These links represent the novel approach for speeding up and scaling the tracking step analysis.

All the information except gtris and gtris_sample and are 
already present in the file produced by γ-TRIS for each sam-
ple and are processed by a Java application to be inserted 
in the graph DB, the starting point to speed-up the tracking 
step (see ‘Methods’ section ‘Data Import into InCliniGene’ for
details).

On the contrary, the relationships gtris and gtris_sample
are computed during the insertion of a sample with respect 
to the samples already present in the DB. A further descrip-
tion of the process implemented in the abovementioned Java 
application for creating these two types of links is present in 
the ‘Methods’ section.

Large-scale validation assay
Here we present an experimental dataset as a real-case sce-
nario in which γ-TRIS struggled to perform the tracking step 

and to finalize the data matrix for downstream clonal tracking 
analyses. The dataset’s extensive size, including the number 
of columns (samples), data volume, and the count of clones 
(independent ISs or subg) significantly affected γ-TRIS’s com-
putational capabilities. This impact necessitated all-versus-all 
comparisons and ultimately rendered the process unfeasible. 
Addressing this challenge with our innovative solution will 
demonstrate the practical application of the graph DB.

Gene therapy clonal tracking data may present two oppo-
site scenarios: (i) an extreme polyclonal case, in which many 
clones (>500) are present in the sample(s) and each one has 
a relatively small number of cells (<10–20); (ii) an extreme 
oligoclonal scenario, in which very few clones are present 
(<50) and some of the clones has the vast majority of cells, 
thus fully dominating the population. In the first case, the 
population diversity, often measured with the Shannon/Renyi 
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Table 1. Experimental design of the large-scale validation assay (14). The three cell lines are reported with their names (CEM1, CEM3 and JY) and the 
number of known or random IS. The standard conditions (mixes of the cell lines) are reported in the next columns, in which the cell line with a known IS 
(CEM1) is diluted in the random JY cell line. We classify a dilution as oligoclonal, marked with a star * symbol close to the mix ID, if the proportion of JY 
cells is <50%, otherwise polyclonal. The number of expected ISs varies from 7, in the dilutions with 0% of JY cells, to several hundreds of ISs, where JY 
cells are close to 50%, or >5 ISs00 if JY cells are >50%

 Standards (dilutions)

Cell line N. IS L* M* N* O* P Q R S T

CEM1 1 known IS 70% 60% 50% 25% 12.50% 7.50% 0.75% 0.08% 0%
CEM6 6 known IS 30% 30% 30% 30% 30% 30% 30% 30% 30%
JY (Random) N. random IS 0% 10% 20% 45% 58% 63% 69% 70% 70%

diversity index (33) will be maximum, while in the latter case 
will be minimum (close to zero).

To mimic the real-case range of clonal tracking data, from 
a highly polyclonal condition to a highly oligoclonal one, we 
designed an experimental dataset in which we mixed two cell 
lines with known ISs in a population of random ISs (Table 1). 
The proportion of the mixes (that we can hereon call sam-
ples) has been designed to replicate the polyclonal condition, 
thus the abundance of the ISs derived from the cell lines was 
similar to the random ISs. Then, we increased the abundance 
of the known IS up to completely dominating the sample, 
and thus these samples will contain only a few ISs beyond 
the known ones whose abundance is much higher than the
random ISs. 

The experimental set-up of the mixed cell lines and dilu-
tions was then tested on 10 independent PCR methodologies 
to identify the best approach to retrieve ISs and quantify their 
clonal abundance. Moreover, each sample was performed 
in three biological replicates and three technical replicates. 
Indeed, all the different samples compose a particularly large 
dataset in which known ISs are well-tracked at different 
abundances across dilutions. Each sample was sequenced by 
Illumina platform and processed with γ-TRIS.

Given the need of analyzing this dataset and producing 
the clonal tracking matrix to be processed for downstream 
analyses [e.g. by using ISAnalytics (34)], we decided to use 
this case study as a limiting scenario to be addressed by our 
graph DB solution. The number of samples included in the 
experimental data was 856, sequenced in 2 lanes with HiSeq 
Illumina paired-end technology, obtaining a total number of 
324 495 807 reads, corresponding to >130 GB of data. The 
average number of final reads belonging to ISs was 67 469 
(excluding low-quality samples, with number of reads < 10). 
The number of final ISs identified by the graph DB was 
1 151 671, having an overall number of 71 879 749 reads 
supporting them.

Unfortunately, due to the size of the data, in terms of the 
number of samples and clones, the computation of the track-
ing matrix required combining all ISs from all the samples 
(second step of clonal tracking), resulting in unfeasible for 
γ-TRIS.

The graph DB
The instance of the resulting Neo4j graph DB for our vali-
dation assay dataset is composed of 13 200 373 nodes and 
22 276 481 links between them. The size of the dump in 
graphML format is 6.1 GB.

On the DB graph nodes, the number of samples with valid 
read alignments and successfully imported is 765, resulting in 

1 153 970 subg. The remaining missing samples are related to 
failed PCRs due to experimental problems in which no DNA 
fragments were present to obtain valid reads, thus return-
ing empty sequencing files. The number of distinct pos is 
12 044 596, with 1042 labels. In detail, each sample contains 
from 11 up to 7767 subg, while the number of samples with 
>1000 subg is 346. Every subg is associated with at least 
1 pos, but, in the most redundant case, it shows 205 975 
possible matches. In general, 91% of the subg is associated 
with a single genomic position, but 4380 have more than 100 
correspondences.

The number of gtris links computed during the data import 
is 4 513 646. Among them, 89% are links between subg and 
a single pos, resulting unique genomic loci directly associated 
with a single IS. The remaining 501 096 links connect subg
with more complex patterns, obtained by translating the γ-
TRIS rules for the database import procedure. More in detail, 
we designed the four main cases as described in the ‘Data 
description’ section, and our matched results on the dataset 
are the following: Case (i): 4 012 548 nodes (89%); Case (ii): 
211 712 nodes; Case (iii): 270 120 nodes; Case (iv): 19 264 
nodes. Moreover, these links are unequally distributed: only 
311 651 subg are connected to each other and, among them, 
57% subg have a single connection with another subg, while 
7501 have more than 100 connections. The maximum value 
is 896 connections.

The numbers of pos nodes and gtris links are reciprocally 
related but not linearly. For example, the subg having 896 
connections has only 15 genomic positions, while the subg
having 205 975 possible matches has no gtris links.

Clonal expansion dataset
Here we present another experimental dataset designed to 
replicate clonal expansions, called VA20. In this case, we 
mixed four cell lines, each of them with known ISs, with the 
JY cell line with a random and unknown number of IS. The 
mixes were generated at different proportions (Table 2) to 
replicate several hypothetical situations of expanding clones 
with different numbers of ISs per clone (named Vector Copy 
Number). We here introduce this experiment since γ-TRIS 
correctly computed both the steps and returned the output 
clonal matrix. Indeed, we will use this dataset to validate the 
output of InCliniGene by performing a direct comparison. 

For our in vitro dataset VA20, we obtained 54 DNA sam-
ples which were then sequenced by NovaSeq Illumina paired-
ends chemical reagents, producing a total of 522 791 964 
reads corresponding to a file size (gzip compressed) of > 106 
GB, then processed by γ-TRIS to identify the list of ISs, each 
one with its abundance. The sequencing raw reads files were 
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Table 2. Experimental design of the clonal expansion (VA20) assay. The five cell lines are reported with their IDs (A–D, and JY) and the number of known 
or random IS. The standard conditions (mixes of the cell lines with the mix ID as column header) are reported in columns. Each cell line is diluted in 
proportion to the corresponding percentage reported in its column. The oligoclonal mixes are marked with a star * symbol close to the mix ID, using the 
same classification criteria previously reported: if the proportion of the JY cells is <50% is considered oligoclonal, otherwise polyclonal

 Standards (dilutions/mixes) [%]

Cell line N. IS 1* 2 3 4 5 6 7 8* 9* 10* 11* 12* 13* 14* 15* 16* 17

A 1 25 5 1 0.5 0.1 0.05 5 5 5 100 0 0 0 40 3 8 25
B 3 25 5 1 0.5 0.1 0.05 25 50 75 0 100 0 0 3 40 25 8
C 6 25 5 1 0.5 0.1 0.05 5 5 5 0 0 100 0 8 25 40 3
D 10 25 5 1 0.5 0.1 0.05 5 5 5 0 0 0 100 40 25 3 8
JY N 0 80 96 98 99.6 99.8 60 35 10 0 0 0 0 9 7 24 56

filtered by quality and then were subjected to the removal 
of non-informative data (such as sequences belonging to the 
internal control band or not presenting vector sequences) for 
a total of 117 241 081 reads. The distribution of the raw reads 
per sample showed an average of 2 171 131 reads with a stan-
dard deviation of 862 538 sequences. The final number of 
reads belonging to the identified ISs was on average 882 057 
(std. dev. 366 997). The size of this dataset and its data vol-
ume, in particular in the number of samples, allowed γ-TRIS 
to perform all the three steps, generating both the list of ISs 
(by the clustering and deconvolution steps) and the track-
ing matrix (via the tracking step). The overall number of ISs, 
summed along the distinct 54 samples, was 86 173 (from 20 to 
6063), with a variable IS abundance from 1 to 1 658 159 reads 
based on the specific dilution. The final data matrix resulted 
in sparse data with a modest file size (<1 MB) after running all 
steps of γ-TRIS. Given the small size of the output, we used 
this case scenario for precision assessment.

The clonal expansion dataset (VA20) imported into InClin-
iGene resulted in the following number of nodes and arches: 
node sample were 120, pos 829 589, label 860, subg 86 061; 
edges among nodes were 86 061 for relation sample2subg, 
1331 for gtris_sample, 871 113 for insertion, 44 231 for 
repeat, 51 795 for gtris and 1763 for main_insertion. In terms 
of data comparison with the results obtained by γ-TRIS, we 
used one sequencing lane, thus analyzing 54 samples instead 
of the whole database of 120 nodes.

Results
We analyzed the graph DB solution under distinct perspec-
tives: (i) to validate the method in terms of tracking accuracy 
using the small validation assay (called VA20) for which γ-
TRIS returned the output matrix, thus allowing us to perform 
a direct comparison between γ-TRIS output and InCliniGene
output; (ii) to measure the feasibility and to assess the scal-
ability of InCliniGene with the large-scale validation assay 
towards clinical applications; (iii) to test the performance in 
terms of data retrieval using an equivalent and alternative 
solution based on relational database.

Validating the graph DB approach
To validate if our solution was in agreement with the output 
of γ-TRIS, we used a small in vitro dataset, VA20, for which 
γ-TRIS could complete the overall analysis and return the list 
of ISs. The choice of using an in vitro dataset for this aim is 
based on the purpose of (i) having a real-case ground truth, 

not just a simulated dataset, and (ii) exploiting a dataset gen-
erated to cover a wide range of real-case scenarios contained 
in small and controlled scale (likewise, the large validation 
dataset previously described).

We compared γ-TRIS and InCliniGene by analyzing the 
final list of ISs tracked among all the samples of the dataset, 
separating ISs landing in repeats and ISs with unique mapping. 
This choice followed two main reasons: (i) ISs in repeats are 
marked with a random ID by each software, indeed linking the 
random numbers between γ-TRIS and InCliniGene is mean-
ingless; (ii) nevertheless, we needed to quantitatively compare 
both the locus identity (operation valid only in ISs with unique 
genomic positions), and the IS abundance (precisely for IS in 
unique genomic loci whether with summary statistics for ISs 
in repeats). The comparison exploited the same sparse matrix 
file format, typically returned by IS identification tools having 
clones as rows and samples as columns, see ‘Methods’ section 
for the query to build the matrix from InCliniGene. For the ISs 
labeled with a genomic locus, we compared both the number 
of those returned by the tools, their ID and their quantifica-
tion. For the ISs labeled as repetitive elements, we compared 
the overall amount of ISs and their cumulative abundance.

Our results (see the GitHub repository for the code generat-
ing the comparative analysis, folder compare_dataset) showed 
that the number of ISs was almost identical between the two 
softwares with an average percentage difference < 0.2%, and 
showed a perfect match on the overall number of sequencing 
reads (IS abundance) < 0.35% of the unique reads was differ-
ent in terms of selected representative genomic position while 
the remaining > 99.65% of clones was exact at the identical 
genomic base.

These results validate the solution of using the graph DB 
as a method for archiving and querying clonal data, and the 
module for generating the final clonal tracking matrix, the aim 
of the project. Having assessed the precision of the graph DB 
method, we can move to the larger dataset presented above 
to test the scalability and the challenge of the computational 
performances.

Testing clonal tracking in in vitro large-volume 
datasets
We measured the running time to import all data of samples 
from the large-scale in vitro dataset in the graph DB, exploit-
ing the import script (see ‘Methods’ section for the query 
and the computational infrastructure details). This operation 
was accomplished in ∼ 80 h. The most time-consuming step 
was related to the creation of gtris links, because gtris_sam-
ple ones are a consequence of connecting one or more 
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Table 3. Characteristics of some samples and import times in the graph DB. The import time is mainly proportional to the number of subg nodes together 
with the sum of insertion links created by a sample. This is due to the fact that, for each subg, there is the need to query the graph DB in order to extract 
subg candidate to be linked with it with a gtris link. The execution time of these queries is proportional to the number of insertion links

Sampl/e Time subg nodes New links insertion New links gtris

1 10 s 28 129 0
2 12 s 31 121 2686
3 26 s 68 105 8528
4 11 min 2305 27 156 6532
5 12 min 3052 12 112 760
6 122 min 3025 361 314 6978

subg belonging to two samples. The creation of nodes and 
links of the other types (e.g. pos and insertion) instead was 
driven by the parsing of the file containing the data for each
sample.

The first sample was inserted in 10 s, the last one in 12 min 
(Table 3). The first sample creates 28 subg related to 129 pos, 
the last one 3052 subg related to 12 112 pos. The first sample 
did not have any gtris link, the last one 760. These numbers 
seem to suggest that the processing time is proportional to all 
three elements, but the number of pos is particularly relevant. 
The creation of all the elements different from the gtris links 
(as stated above we can disregard the gtris_sample ones) has 
a nearly constant time. This is because the creation of a new, 
single node or a new, single link requires a nearly constant 
amount of time in the graph DB. On the contrary, the analysis 
for possibly creating the gtris links requires considering all the 
subg that share at least one pos with the subg we are insert-
ing. Therefore, the complexity of the query is proportional to 
the number of retrieved results, which can vary from a few 
up to several thousand. This is because more pos nodes are 
linked to the subg of a sample, and more subg nodes already 
present in the graph DB need to be extracted and analyzed for 
calculating gtris links. This is shown by the characteristics of 
the most time-consuming sample, which required >2 h to be 
inserted. It was composed of 3025 subg and 361 314 pos. This 
last number was mainly due to a single subg, which was linked 
to 205 975 pos. However, the number of gtris links involving 
the subg of this sample was only 6978. Another sample, pro-
cessed in 11 min, was composed of 2305 subg and 27 156 pos, 
but it was involved in a comparable number of gtris links (i.e. 
6532). 

Table 3 summarizes the above data. We can conclude that 
the insertion time is mainly proportional to the number and 
the complexity of the queries necessary to create possible new 
gtris links. The number is proportional to the number of subg
contained in a sample, while the complexity is proportional to 
the number of insertion links. In general, if we exclude excep-
tional situations, the time to process a file containing a sample 
ranges from a dozen seconds up to a few minutes.

It is further clear that inserting a new sample in the 
database requires more time with respect to the first sam-
ples already inserted, because of the presence of more subg
sharing with the available pos. However, we would like to 
stress the fact that it mainly depends on the number of the 
pos involved. For example, let us consider two comparable 
samples, one inserted as second, one as 564th. The first one 
composed of 31 subg, 121 pos and 2686 gtris links, while the 
second one having 68 subg, 105 pos, and 8528 gtris links. The 
first one requires 12 s to be inserted, while the second one 26 s, 

considering that the number of resulting gtris is much bigger 
than the sample requiring 2 h.

We also measured the export time using our query script 
(see ‘Querying the graph DB to extract IS matrix’ section) 
to obtain the final data matrix for tracking clones, and we 
obtained a total time of 12 h. This time remained constant 
even after having added new samples. We are currently devel-
oping optimization strategies to speed up this evaluation by 
storing some partial results in the database and calculating 
the rows in parallel.

Under the biological lens, the experimental design of the 
large-scale validation assay shows in each dilution a cell line 
(CEM6) at a constant proportion (30%), meaning that the 
six known ISs of the CEM6 will be equally represented at the 
same abundance for each mix and across all samples. Indeed, 
we can check the consistency of the results in terms of (i) intra-
sample abundance for the 6 ISs, and (ii) tracking efficiency and 
inter-sample abundance. Moreover, since only with InClini-
Gene will be possible to analyze the results of this experiment 
including ISs landing in repeats, we will further validate 
and compare the results of IS abundance with the output of 
another common tool, VISPA2 (23), demonstrating the advan-
tage of using γ-TRIS and the importance of analyzing the data 
with InCliniGene.

We compared our results with one of the most recent 
IS retrieval tools, VISPA2 (23), in terms of clonal quantifi-
cation for the IS landing in a low-complexity region. The 
clonal abundance in VISPA2 was realized through the esti-
mate of the number of cells per clone by SonicLength (35), 
since it represents the most accurate quantification method; 
the quantification is called fragment estimate. In γ-TRIS and 
InCliniGene, we used the number of distinct shearing sites 
(that is, the number of different genomic fragments per clone) 
and the attached unique molecular identifier (UMI). In both 
cases, we then applied a relative percentage of each IS to 
the total amount of observed/estimated cells in each sample. 
Querying InCliniGene for the CEM6 ISs, we obtained all 
six distinct known ISs that were tracked among the distinct 
experiments and across the different experimental conditions. 
Five out of six resulted mapped in unique genomic loci, thus 
not requiring the label repeat, whereas only one IS resulted 
mapped into a repetitive element.

The summary tables with all the IS abundance quantifi-
cations are available in the folder validation_assay_large of 
the repository. The expected abundance of each CEM6 IS is 
9.4%, independent of the experiment or replicate. We con-
sidered here the most accurate experiment (called LMv2-I), 
to run our comparative analyses. Our results showed that 
the CEM6 IS at the genomic locus chr16:28 497 498 was
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Figure 4. Schema of the relational database MySQL archiving clonal data obtained from integration sites using γ-TRIS. Similarly to the Graph DB 
structure (3), the entity-relationship diagram of the requirements described in the ‘Data description’ section has been converted in this table schema.

quantified by VISPA2 with an average of 2.4% (std. dev. 
0.64) across the reliable dilutions (meaning above the detec-
tion limit of the experimental procedure). On the other hand, 
γ-TRIS combined with InCliniGene quantified the same IS at 
an average abundance of 8.4% (std. dev. 0.89). These results 
confirmed that γ-TRIS improved the precision in IS quantifi-
cation by including all read landing in low-complexity regions 
which instead are discarded by VISPA2. These findings led us 
to confirm the hypothesis that InCliniGene overcome the ini-
tial computational challenges of γ-TRIS maintaining the same 
precision.

Furthermore, we released in the repository (within the 
folder utils) an additional plugin to convert any clonal track-
ing data, in the form of a sparse matrix, in the JSON file 
format and import the data into InCliniGene. This feature 
enables a broader usability and flexibility of our graph DB, not 
only restricted to γ-TRIS but rather extended to all potential 
IS tools and their output.

Graph DB or relational DB?
In order to provide a further quantitative demonstration of 
the efficacy of the graph DB paradigm in clonal tracking 
applications, we compared our solution with the use of the 
traditional relational database. Here we selected a MySQL 

database system (release details in ‘Methods’ section) since 
other tools for IS retrieval already adopted this solution (19).

We designed and tested specific ad hoc queries for distinct 
operators on both the graph DB and the relational DB, and 
we benchmarked the performances, inspired by the work of 
Cheng (36). This is because our goal was to assess the per-
formance in data retrieval using the explicitly stored links 
between nodes with respect to the need to perform multiple 
joins. We disregarded the aspects related to data import, and 
in particular we created the relational DB assuming that the 
gtris and gtris_sample relationships were already calculated. 
The resulting database structure is described in the entity 
relationship (ER) diagram of Figure 4. 

The queries used to test the performances on both datasets 
are representative of the most common primitive operations, 
including projection, aggregation, join, filter, and order by. 
Projection queries are used for selecting which attribute(s) 
the queries should return. Join queries combine data columns 
from one or more tables in the relational database, whereas 
in the graph database the join operations are not needed 
because relationships are embedded within the data as an 
entity. Aggregation queries are designed for grouping together 
the values of multiple rows, and Order by queries allow 
custom sorting of the results (36). In Table 4, we reported 
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Table 4. Queries on clonal data both for relational DB and graph DB

Queries  Operations  SQL language  CYPHER language

01 projection
join
filter

select U.clu_id
from ((subg U join sample S on U.sample_id = S._id) 

join insertion I on U._id = I._start) join pos P on 
I._end = P._id

where P.searchlabel = ‘chr2_24546570′ and S.DNAnum-
ber = ‘R’

match (s:sample)—(u:subg)-[:insertion]-(p:pos) 
where p.searchlabel = ‘chr2_24546570′ and 
s.DNAnumber = ‘R’

return u.clu_id

02 projection
join
aggregation

select S.DNAnumber, count(U._id)
from subg U join sample S on U.sample_id = S._id
group by S.DNAnumber

match (s:sample)—(u:subg) return s.DNAnumber, 
count(u)

03 projection
join
aggregation

select S.DNAnumber, count(P._id)
from ((subg U join sample S on U.sample_id = S._id) 

join insertion I on U._id = I._start) join pos P on 
I._end = P._id

group by S.DNAnumber

match (s:sample)—(u:subg)-[:insertion]-(p:pos)
return s.DNAnumber, count(p)

04 projection
join
aggregation
order by

select P.target_id, count(distinct U.clu_id)
from (pos P join insertion I on P._id = I._end) join subg U 

on I._start = U._id
group by P.target_id
order by P.target_id

match (u:subg)-[:insertion]-(p:pos)
return p.target_id, count(distinct u.clu_id)
order by p.target_id

05 projection
join
filter
aggregation

select count(B.clu_id)
from subg B
where B.clu_id in
 (select U.clu_id from (pos P join insertion I on 

P._id = I._end) join subg U on I._start = U._id
 group by U.clu_id
 having count(P._id) > 2)

match (u:subg)-[i:insertion]-(p:pos) with u.clu_id 
as uci, count(p) as num_i where num_i > 2 return 
count(uci)

06 projection
join
filter
aggregation

select S.DNAnumber, count(B.clu_id)
from subg B join sample S on B.sample_id = S._id
where B.clu_id in
 (select U.clu_id from (pos P join insertion I on 

P._id = I._end) join subg U on I._start = U._id
 group by U.clu_id
 having count(P._id) > 2)
group by S.DNAnumber
order by S.DNAnumber

match (s:sample)—(u:subg)-[i:insertion]-(p:pos)
with u.clu_id as uci, count(p) as num_i, s.DNAnum-

ber as sample_type
where num_i > 2
return sample_type, count(uci)
order by sample_type

both the SQL query and the Cypher translation, referring to 
the MySQL and Neo4j solution, respectively.

The performances of MySQL and Neo4j databases were 
measured using the computational infrastructure described in 
the ‘Computational environment’ section under the following 
metrics:

• Execution time: the query processing time of the same 
queries, in SQL or Cypher language;

• Memory utilization: the difference in terms of memory 
occupied, between the query execution state and the resting 
state.

The value of these metrics is computed as the average of 
five repeated (independent) measurements in order to have the 
most accurate results. The details of the computational envi-
ronment and software version are reported in ‘Computational 
environment’ section.

Executed the queries in both databases, Neo4j resulted 
much faster and with lower memory requirements (Figure 5). 
In both DBMS, the performances depend on the amount of 
data traversed by the query. Nevertheless, MySQL query time 
and memory usage increase faster than Neo4j. For this reason, 
query 2, which requires a join of only two tables in MySQL, 
performed better than the other queries. The same behavior 
is observed in Neo4j, although the join operations are not 
executed. Queries 1 and 3 traverse the same volume of data, 
but query 1 has a filter operation while query 3 an aggrega-
tion operation. Our results from the performances obtained 

by executing queries 1 and 3 suggest that the filter opera-
tions are less demanding than the aggregation, both in terms 
of time and memory. Queries 4, 5 and 6 traverse the whole 
database (more than 13 million entities) and perform a combi-
nation of complex operations like filter, aggregation and order 
by. The time ratio (Figure 5B) is much lower (indicating a 
major improvement in Neo4j) than in queries 1–3 since the 
amount of data is larger, leveraging on the performances with 
a negative impact in the MySQL instance.

Discussion
In current gene therapy applications, we are now facing 
critical data management and processing issues due to the 
accumulation of terabytes of genomics data, as represented 
in 1. Computational challenges have indeed risen and must 
be addressed with state-of-the-art technologies, such as social 
networking and new database structures. In this work, we 
presented InCliniGene, a new solution to overcome the com-
putational limitations in tracking clones according to the 
results achieved with γ-TRIS, the most comprehensive tool for 
IS identification in gene therapy datasets based on integrat-
ing viral vectors. Moreover, InCliniGene represents the first 
database of whole sample ISs in in vivo applications, collecting 
all IS rather than a selection of curated clones (37–40).

With InCliniGene, we were able to scale up the usage of 
γ-TRIS to large-volume data such as the validation assay here 
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Figure 5. Comparative benchmarks of the computational performances between Neo4J and MySQL databases applied to real-case queries, here 
reported with five instances covering different operations. (A) Time in seconds, with variance (whiskers) for the replicates, scaled to log10; (B) time ratio 
between Neo4j and MySQL (query time Neo4j/MySQL); (C) the memory utilization in megabytes.

illustrated that is composed of > 850 samples. Indeed, our 
solution is finally making practical performing clonal tracking 
studies in whole clinical trials and potentially comparing the 
dynamics of the hematopoietic reconstitution in vivo after 
transplantation, characterizing the stem cell activity in terms 
of differentiation and proliferation (HSC biology) also using 
ISs landing in repeats.

The key aspect of InCliniGene is the adoption of a graph 
DB data model. Why to use it for clonal tracking? The whole 
world of big data is moving towards dynamics solutions to 
both archive data and connect the corresponding structures 
to minimize all the downstream efforts in data mining or 
simply querying. In this context, graph DB deeply supported 
social networking systems, requiring high scalability, to both 
store and query data. Similarly to social networks, γ-TRIS 
composes genomic sequences in a graph that is further pro-
cessed to identify ISs. In fact, the corresponding clones will 
have their own evolution and dynamics in vivo in patients 
under gene therapy and followed-up for many years. This 
scenario can be approached to a population in which the 
transplanted stem cell clones are the entities (species) that 
naturally compete for their survival and progression through 
differentiation and proliferation during the hematopoietic 
reconstitution. The parallelism between the two application 
domains, combined with the native structure of the clonal 
data in γ-TRIS, oriented our choice to use the same tools of 
social networking systems, starting from the graph DB. Only 
with a graph-based approach, all nodes (IS or clones) are con-
nected to each other via links that are computed once and 
explicitly stored. Querying this data structure resulted in fast 
and highly scalable operations. These characteristics hold true 
also for a dynamic scenario as the presented one, i.e. where 
new data are constantly imported in the graph DB and the 
whole graph is updated to connect the new data instances. In 
fact, in our application domain of gene therapy, we need to 
follow up with patients even for more than a decade, process-
ing at predefined time intervals a set of samples, potentially 
including all newly enrolled patients in the study/protocol. 
Moreover, the graph DB will process more insert/import oper-
ations than other transactions. Once the import is completed 

and once all new connections are drawn, all ISs are automat-
ically connected, and tracking clones across samples (time, 
tissues, lineages, etc.) is directly returned by querying the 
data (as we described in the query ‘Querying the graph DB 
to extract IS matrix’).

Whether Neo4j is the best graph database management sys-
tem rather if better solutions exist is out the scope of this work 
and will be addressed in further studies.

Another important aspect that we figured out is related to 
network analysis: what types of biological questions can we 
effectively address with network-based metrics? Is it possible 
to derive any biological readouts for the assessment of safety 
and efficacy using clonal tracking data and their connectivity? 
Any new proprieties of HSC evolution or activity?

We used our validation dataset to identify potential direc-
tions. Results from these analyses (data not shown) were not 
satisfactory and we identified the potential explanation for 
the type of data. In particular, here we used in vitro data 
design to answer specific questions on the most precise PCR 
method for IS retrieval and quantification, with replicated 
samples and in a serial dilution setting. Beyond these ques-
tions, no further conclusions could be expected in terms of 
safety assessment or HSC biology. Indeed, centrality eigen-
vector or community structure metrics could at most confirm 
the expected highest connectivity of the known ISs across all 
samples, providing weak suggestions on how to setup and 
configure the centrality indexes in time-series clonal tracking 
gene therapy applications to identify any potentially expand-
ing worrisome clones, or on how to study lineage restriction 
during the hematopoietic reconstitution.

Nevertheless, we can figure out some interesting direc-
tions while using our solution in a whole clinical trial, in 
particular using genes and their structural or functional anno-
tations. The reason why using genes is directly connected to 
the application domain. In gene therapy, safety issues are 
mainly related to insertional mutagenesis, meaning that the 
viral vector, originally engineered to release the therapeu-
tic transgene in the genome of the diseased cells, integrates 
and deregulates the closest gene favoring genotoxic events 
(41) that could lead to oncogenesis. The clones harboring 
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the ISs in deregulated genes are positively selected over time 
and are tracked with abnormal growth. Indeed, gene network 
analysis would support readouts of genotoxicity by generat-
ing a gene network of the targeted genes, connected as they 
are close by topological proximity by nuclear architecture, 
thus the popularity of a gene would be directly related to 
the conformation of the nucleus. The main reason for this 
choice is that some viral vectors, such as lentiviral vectors, 
integrate close to the nuclear membrane (42–44) and cur-
rent tools for studying genomic hotspots of integration are 
still missing the topological data in humans, although some 
studies in murine models have already demonstrated how to 
combine ISs with chromosomal architecture for genotoxicity
(45, 46). Only by using a graph database it would be possible 
to integrate not only genomic annotations and features (such 
as genes and functions) but also additional high-throughput 
genomic data such as Hi-C conformation capture sequencing. 
Likely, graph database tools already exist embedding and ana-
lyzing Hi-C data (47–49), enabling easier integration with our 
InCliniGene solution.

An alternative use of the gene network is exploiting the 
already known structure of gene regulatory networks (50) 
and using each patient gene dataset over time to identify the 
progression of the patient genes (that is, in case of a clonal 
selection, only a few ISs harbored by the expanding clones 
will be recaptured) and thus studying the clonal selection pro-
cess. Clonal selection can be seen as network perturbation and 
the analysis of the (gene) network centrality would eventually 
suggest if critical genes are selected and worrisome trajectories 
towards oncogenesis.

Beyond the gene networks, can we use the eigenvector 
centrality to study the importance of single clones instead 
of functional genes? Translating this question in the field of 
HSC biology, can we identify any relevant stem cell clone 
(or pool of clones) that is mainly sustaining the hematopoi-
etic reconstitution or the homeostasis after transplantation? 
This question is moving our perspective even further of using 
the graph database and its properties, and these answers will 
be concretely useful not only for the assessment of the safety 
but also to unravel paramount goals of in vivo human stem 
cell research, finally improving the protocols for gene therapy 
treatment. Some studies already approached transcriptomics 
analysis of single-cell datasets using network centrality for cel-
lular heterogeneity (51), regulation of hematopoiesis (52) or 
plasticity (53). Indeed, we envisage using InCliniGene and 
the graph metrics (eigenvector centrality, community struc-
ture detection, etc.) for unraveling hematopoietic lineage 
dynamics.

Conclusions and perspectives
In gene therapy, no publicly available human databases exist 
for clonal tracking although IS analysis is instrumental for 
the registration and commercialization of the treatment as 
requested by regulatory authorities. Only some instances 
of manually curated databases of ISs have been released 
(37–40) with major limitations such as (i) containing very 
few ISs and not the whole repertoire observed in patients, 
(ii) the ISs are not tracked over time, thus their infor-
mation cannot be used for data progression, and (iii) no 
treatment information is reported rather only some genomic
annotations.

InCliniGene instead overcomes these limitations and a 
future public exposition with a web interface and API would 
allow extensive use not only for clonal tracking studies 
within the same institute but also favoring data integration 
of multiple institutes and organizations, thus creating the 
first resource collecting molecular data of several cohorts of 
patients and diseases. Neo4j is already predisposed to be data 
federated with the fabric component.

Moreover, the combination of genomic data of clones 
with other high-throughput sequencing data (such as Hi-C 
data or expression data, as previously discussed), and with 
clinical and treatment data, will fully realize the vertical 
data integration. The final aim of vertical data integration 
will be clinical genomics, moving clonal tracking studies 
toward personalized and predictive medicine. A direct conse-
quence of the clinical genomics perspective is having a unique 
resource to be used in combination with machine-learning 
methods to improve precision medicine in targeted thera-
pies, such as gene therapy, and support new findings in HSC
biology.

Methods
Experimental datasets for in vitro validation
The method for vector IS retrieval, called Sonication Linker 
mediated (SLiM)-PCR, was tested on 9 ad-hoc DNA stan-
dards. DNA standards were generated by mixing the genomic 
DNA extracted from two cell line clones, named CEM1 
and CEM6, carrying one and six different Lentiviral Vector 
(LV) IS, respectively in known genomic positions, with the 
genomic DNA of a cell line, named JY, harboring lentiviral 
IS randomly distributed in unknown positions of the genome, 
with average vector copies per cell (diploid genome) of 1.8. 
CEM6 was maintained at 30% across the DNA standards, 
while CEM1 was diluted from 70% to 0% and, conversely, 
JY from 0% to 70% to simulate oligoclonal to polyclonal
conditions.

The procedure, applied in nine replicates for each of the 
DNA standards, consists of the following steps: (i) fragmen-
tation by sonication of the DNA, (ii) ligation of the fragments 
to a linker cassette (LC), (iii) two consecutive rounds of PCR, 
to specifically amplify vector/cellular–genome junctions, by 
using primers annealing to the vector genome end (Long 
Terminal Repeats, LTR) and the LC. Primers contain DNA 
barcodes, that allow univocal barcoding of all the SLiM-PCR 
replicates, and sequencing adapters that allow multiplexed 
sequencing on Illumina sequencers.

Sequencing data was then analyzed by VISPA2 (23) and 
γ- TRIS (20) to identify ISs by their genomic coordinates 
(and labels if landing into genomic positions with repeti-
tive elements) and to quantify their abundance. Since the 
genomic DNA of the cells sharing the same IS will be sheared, 
the resulting genomic fragments will likely have different 
lengths, one per cell. Indeed, counting the number of differ-
ent fragment lengths will reflect the abundance of the clone, 
unless two or more cells will have the same fragment length. 
SLiM-PCR can retrieve and identify single genomic fragments 
thanks to the LC attached prior amplification. Neverthe-
less, no experimental procedures can avoid the quantification 
problem of having the same fragment length for two cells of 
the same IS. We used the statistical method SonicLength (21) 
to estimate the size (abundance as number of cells) of each 
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clone. For all the DNA standards we measured the abundance 
of each of the CEM IS and we calculated the deviation from 
the expected values, to evaluate the SLiM-PCR performance 
and sensitivity.

Computational environment
The performance comparison has been performed on a work-
station with the following specifications: CPU Intel Xeon 
with 2.4 Ghz processor 8 core; 125 GB RAM, 1000 GB hard 
disk; operating system CentOS Linux 7; MySQL Community 
Server 8.0.30; Neo4j 4.4.9–1. Tests have been realized with 
the default configuration settings in both DBMS, with minor 
parameter editing: innodb_buffer_pool_size = 16384 M in 
MySQL; dbmsmemory.heap.max_size = 16384 M in Neo4j.

Benchmark procedure required in MySQL to free memory 
before each query, repeating the database restart procedure 
for each query. The MySQL restart procedure has not been 
included in the evaluation of the computational resources. 
This approach was required to prevent MySQL from caching 
useful data for reducing the computation time of the next 
queries. Query execution time in MySQL was measured using 
Linux time command, whereas in Neo4j it is automatically 
printed along with the query results.

Data import into InCliniGene
Here we summarize the import procedure of the γ-TRIS out-
put into InCliniGene. γ-TRIS output is a JSON file containing 
information about the IS identified, along with their align-
ment positions on the reference genome and their labels. Since 
γ-TRIS processes the first two steps (clustering and decom-
position) by sample, the import program is designed to run 
for each sample, thus for every update (new samples) all the 
corresponding results can be imported into the InCliniGene
database. We developed the procedure in Java application 
described below and the workflow consists in parsing the 
output file and building the graph at run-time.

Parsing
The class CluParser includes the commands to parse the file; 
the process consists in reading one IS at time and saving all 
the information in an Java object of the class Insertion, which 
collects IS data that will constitute the subg attributes, the list 
(named targetlist) of all the genomic positions the insertion 
aligns and the insertion labels (string masked). targetlist is a 
list of objects of the class Target, these objects collect the iden-
tifier of each position along with their information (namely 
centroid, offset, alignment score).

Graph building
The generation of the graph is carried out by the AddInser-
tion method of the Insertion class. At the first instance of 
the import, related to the first IS, a node of type sample is 
created, describing the sample analyzed by γ-TRIS. This sam-
ple node has a UniqueID at-tribute, which is an identifier 
retrieved from the γ-TRIS output file name. Further informa-
tion is retrieved from a separate metadata file and added to 
sample node. Then, the parsed data are added to the graph 
database, creating one node of type subg for the insertion, sev-
eral pos nodes for each genomic position collected in targetlist 
and label nodes for each label. The relationships connect-
ing nodes are then created: sample2subg between sample and 
subg nodes, repeat between subg and label nodes, insertion

between subg and pos nodes. Whenever the subg node con-
nects several pos nodes (thus becoming a repeat) through 
several insertion relationships, a predominant pos node is 
searched, and, if present, it is connected to the subg node 
also with the relationship main_insertion. This search process 
parses the pos attribute aln_score: in the targetlist, if the high-
est value of aln_score differs for more than 30% from the 
next score, the pos node of the top hit is connected through a 
main_insertion relationship to the subg node. The code here 
reported shows a scratch to open a connection to Neo4j and 
run the query in Cypher.

command1 = ''MATCH(ss:sample {UniqueID: 
\''+id+''\''})\n'';
command1 = command1.concat(''MERGE
(s:subg {clu_id: \'''' + cluid + ''\'', 

'' + ''cons_seq: \'''' + cons_seq + ''\'', 
''+ ''num_aln: '' + num_aln + '', '' + 
''cons_seq: \'''' + cons_seq + ''\'', '' 
+ ''max_aln_score: '' + max_aln_score + 
'', '' + ''seq_len: '' + seq_len + '', 
'' + ''weight: '' + weight + ''})\n''); 
command1 = command1.concat(''MERGE (ss)-
[:sample2subg]->(s)''); 
try (Session session = d.session()) { 
session.run(command1); }

At the end of this step, all the information has been 
retrieved from the γ-TRIS output file. Relationships among 
subg nodes, (named gtris) are subsequently built from scratch, 
comparing IS (subg) from all the samples in the database. This 
comparison is carried out following the γ-TRIS rules men-
tioned earlier. When two subg nodes are connected through 
the gtris relationship, consequently also the sample nodes they 
derive from are connected by the relationship gtris_sample.

Querying the graph DB to extract IS matrix
We designed and implemented a query to obtain a data matrix 
of ISs in the data format commonly used to clonal track-
ing in which samples are in columns, clones are in rows and 
are annotated with their genomic coordinates or repetitive 
labels (in the case of IS surround- ing a repetitive element), 
and cell values are the quantification of the IS observed in 
that sample. The available clonal quantifications are based 
on (i) sequencing reads count, (ii) counts of shearing sited 
(that is, the number of distinct observed fragment lengths from 
sequencing reads), (iii) the number of UMI observed and (iv) 
the combination of counts of UMI and shearing sites.

To generate the matrix of IS, we developed a Java appli-
cation that executes several query loops for each IS in which 
InCliniGene follows the graph and all IS connections. Most 
part of the matrix construction is done by the table method of 
the TableCreator class. This method requires three arguments: 
driver, threshold and wlabel. The driver allows the connection 
to the Neo4j database; threshold is a float variable to shrink 
the main_insertions definitions (default set to 0.3) and wla-
bel defines the type of quantification desired among ‘weight’, 
‘shear’, ‘tag’, ‘combo’ or ‘all’. In case the wlabel parameter 
is equal to ‘all’, the four matrices will be implemented, oth-
erwise just the one specified. In detail, in every step of the 
table method, wlabel defines the data to be retrieved from 
the database and the quantification type (a specific one or all) 
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to be built. The first query retrieves the UniqueID of all the 
samples in the database, these data are then used to build the 
header of the four matrixes, which is: ID, Chr, Pos, Strand, 
numsubg, numexp, subg, plus all the samples UniqueID.

Then, data regarding the IS (subg) is retrieved: if wlabel is 
equal to ‘all’ are retrieved the following subg attributes: clu_id
(the unique identifier), weight, shear (accounting for the num-
ber of distinct shearing sites per IS, that is the distinct fragment 
lengths), tag (accounting the unique molecular identifiers) and 
combo (accounting both the UMI and the number of shearing 
sites); otherwise are retrieved clu_id and only the specified 
attribute. These data are saved into four hash-tables, each 
one collecting the clu_id and the associated specific attributes 
(stored in an array).

Once collected, all the IS (subg) data, the connections 
among subg nodes are explored. Given a subg node, in this 
example called ‘candidate1’ and obtained by extracting one 
clu_id from the array, the query retrieves all the subg nodes 
directly connected to candidate1 through the gtris relation-
ship. Each of the subgnodes identified in this way is then 
compared to ‘candidate1’, looking at the pos nodes they 
are connected to, in order to see if both align on the same 
position or a different one. If the subg node has only one 
connection to pos nodes, the link is straightforward, other-
wise the main_insertion (if present) is considered. This process 
is repeated propagating the comparison also for the subg
nodes which connect ‘candidate1’ through a second-degree 
connection (subg—[gtris]—subg—[gtris]—candidate1).

At the end of the propagation, all the subg nodes retrieved 
are removed from the array, avoiding reconsidering the same 
node twice, in this way the array size reduces drastically at 
every propagation. Finally, the hash tables collecting the data 
are saved as one row of the IS matrix, and the propagation 
process is repeated for each next subg.

Analysis and comparison of the tools
The comparison of the validation assay dataset was done by a 
custom R script that allowed (i) to import both the γ-TRIS 
matrix and the InCliniGene matrix; (ii) to adjust the data 
formatting by converting the chromosome nomenclature, and 
minor edits; and (iii) to intersect the raw names and column 
names of both solutions to analyze the overlap by dplyR. 
The code of the R script together with the data is available 
in the GitHub repository of the project (https://github.com/
calabrialab/InCliniGene).

Availability of source code
Lists the following:

• Project name: InCliniGene (Integrated Clinical 
Genomics).

• Project home page: https://github.com/calabrialab/InClin
iGene.

• Operating system(s): Platform independent.
• Programming language: Java, Cypher, R.
• License: GNU GPL. Any restrictions to use by non-

academics: license needed.

Availability of supporting data and materials
The datasets supporting the results of this article are avail-
able in the GitHub repository (https://github.com/calabrialab/
InCliniGene) and in the NCBI SRA archive (BioProject: 
PRJNA886489).
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