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Abstract
Food–drug interactions (FDIs) occur when a food item alters the pharmacokinetics or pharmacodynamics of a drug. FDIs can be clinically 
relevant, as they can hamper or enhance the therapeutic effects of a drug and impact both their efficacy and their safety. However, 
knowledge of FDIs in clinical practice is limited. This is partially due to the lack of resources focused on FDIs. Here, we describe 
FooDrugs, a database that centralizes FDI knowledge retrieved from two different approaches: a natural processing language pipeline 
that extracts potential FDIs from scientific documents and clinical trials and a molecular similarity approach based on the comparison 
of gene expression alterations caused by foods and drugs. FooDrugs database stores a total of 3 430 062 potential FDIs, with 1 108 429 
retrieved from scientific documents and 2 321 633 inferred from molecular data. This resource aims to provide researchers and clinicians 
with a centralized repository for potential FDI information that is free and easy to use.
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Introduction
Food and health are intimately related. Consumers are now 
more aware of the importance of following a proper diet 
and are willing to change their dietary patterns in order to 
maintain or improve their health status (1). This has led to 
a growing consumption of products such as food supple-
ments, functional foods or herbal medicinal products, which 
contain bioactive compounds that can affect human health
(2, 3). This shift in the perceived function of food supplements 
towards pharmaceutical products coincides with an increase 
in non-communicable diseases such as heart disease or can-
cer (2, 4). There is a growing number of patients that follow 
chronic pharmacological treatments, in many cases requiring 
the simultaneous intake of more than one medication (5). In 
this regard, the consumption of nutritional supplements with 
an active role to treat or prevent non-communicable diseases 
has increased during the last few years, raising concerns over 
the risk of interactions and adverse reactions between food 
items and pharmaceutical products (6).

Food–drug interactions (FDIs) are the consequence of a 
physical, chemical or physiologic relationship between a 
drug and either a product consumed as food or a dietary 
supplement (7). These interactions are frequent in orally 
administered drugs and can affect both their pharmacody-
namics and their pharmacokinetics (8). Pharmacodynamic 
interactions occur when foods interfere with the drug mech-
anism, while pharmacokinetic interactions affect its absorp-
tion, distribution, metabolism and excretion (ADME) sys-
tem. Although not all FDIs are clinically relevant, some can 
have serious effects on the patient’s health, reducing the 
clinical efficacy of their treatment or increasing its toxicity 
(9). A well-known example is grapefruit juice, which affects 
drug metabolism by inhibiting enteric cytochrome P450 3A 
isoform and has more than 85 described FDIs (10). This 
includes a variety of drugs such as statins, immunosuppres-
sants, corticosteroids, antihistamines or analgesics. On the 
other hand, FDIs can also improve drug access to the site 
of action, thus increasing its bioavailability, or prevent its 
toxic secondary effects (9). Therefore, knowledge of FDIs 
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in clinical practice would be valuable to personalize dietary 
guidelines for each patient based on their medication regimen, 
in order to avoid harmful FDIs and exploit those that could be
beneficial.

The broad variability in nutrition status, dietary habits, 
food composition and dietary supplement use, along with 
the widespread use of medicines, means that there is a vast 
amount of potential FDIs (11). However, knowledge of FDIs 
is scarce and mostly restricted to specific foodstuffs or bioac-
tive compounds. European guidelines for the investigation of 
drug interactions during drug development only encourage 
FDI research when in vivo evidence suggests so or for spe-
cific products such as grapefruit juice (12). Pharmacovigilance 
is based on spontaneous reporting systems, where underre-
porting is common (13). Even within known FDIs, current 
knowledge of them in clinical practice has been reported to be 
unsatisfactory (14–16). The need for a better understanding of 
FDIs has been stated by the ELIXIR Community in Food and 
Nutrition (17) as well as by the 2020–30 Strategic Plan for 
NIH Nutrition Research, which includes a specific objective 
(Objective 4.1) to identify interactions between drugs, disease 
states and nutrition (18).

This need is compounded by the lack of focused resources 
for FDIs. FDI studies, while picking up traction in the 
last few years, are still not common and lag significantly 
behind drug–drug interaction (DDI) studies (2, 19). Efforts 
to organize information on interactions have focused on pro-
viding information on DDIs. Some examples are DrugBank 
(20, 21), drugs.com (https://www.drugs.com), medscape.com 
(https://www.medscape.com/), Rxisk.org (https://rxisk.org/), 
Rxlist.com (https://www.rxlist.com/) or Webmd.com (https://
www.webmd.com), among others. These databases contain 
limited and incomplete annotations for FDIs with low over-
lapping between them, calling for better databases of known 
potential FDIs. Moreover, information on FDIs is mostly in 
the form of free text in scientific articles, knowledge bases not 
FDI-focused such as DrugBank (20, 21), case reports, clinical 
trials or even in patients’ discussion fora. The use of text min-
ing to extract relevant information from unstructured data 
sources is an essential asset in these cases, and in the area 
of FDIs, it has led to the creation of semantic resources such 
as FIDEO (22), an ontology for FDIs that describes potential 
FDIs automatically extracted from scientific literature with 
more than 1 700 interactions integrated from online knowl-
edge sources, POMELO (23), a manually annotated scientific 
corpus with information about FDIs from 639 Medline cita-
tions, corresponding to 5 752 sentences, or the Drug-Food 
Interaction (DFI) corpus (24), consisting of 2 271 abstracts 
of biomedical articles published by PubMed and 2 498 sen-
tences that contain FDI and/or DDI information. However, 
these resources are rare and isolated, without direct applica-
tions for the end user, leaving room for improvements and for 
the development of new applications.

Other computational approaches such as physiology-based 
pharmacokinetic models, the identification of protein targets 
for a given food compound or bioactive, or the integration 
of high-throughput omics data might be useful to propose 
new putative FDIs for further in vitro or in vivo valida-
tion. The development of computational approaches based 
on molecular data that help the identification, extraction and 
organization of potential FDIs is needed to facilitate and 
accelerate the discovery and validation phases, reducing the 

time and cost of these studies. Moreover, the application of 
advanced omics techniques can help to better determine indi-
vidual responses to food in health and disease (25, 26) while 
also allowing a deeper understanding of molecular mecha-
nisms underlying FDIs (27, 28). Our approach towards this 
problem is based on molecular similarity, which allows to 
compare different molecular profiles and calculate measures 
to group samples or experiments with similar or divergent 
molecular profiles. Two profiles with different conditions are 
considered to be similar when there is a group of genes that 
are up- or down-regulated in the same direction in both con-
ditions, i.e. upregulated in Conditions A and B or downregu-
lated in both, while divergences occur when groups of genes 
are up- or down-regulated in opposite directions between both 
conditions, i.e. upregulated in Condition A and downregu-
lated in Condition B or vice versa. This approach builds on 
the assumption that the effects that two given conditions pro-
duce at the transcriptomic level can help determine whether 
those conditions interact. Transcriptomic similarities have 
been used to compare gene and drug perturbations for drug 
prioritization (29) or to explore comorbidities (30, 31). In the 
context of FDIs, a similar strategy can be followed to compare 
the transcriptomic signatures of food compounds and drugs to 
infer potential FDIs.

Our work describes the computational strategies to iden-
tify and extract information about potential FDIs that were 
used to develop FooDrugs, a database created with the aim 
to organize information about potential FDIs from scientific 
documents and gene expression data while making it freely 
and easily accessible. Natural language processing (NLP) tech-
niques were applied to identify and extract 1 108 429 poten-
tial FDIs for 50 960 foods and 161 809 drugs from the DDI 
corpus (32), PubMed (https://pubmed.ncbi.nlm.nih.gov/) and 
clinicaltrials.gov (https://clinicaltrials.gov/), while transcrip-
tomic similarity profiling approaches were applied to identify 
2 321 633 potential FDIs for 293 foods and 6395 drugs from 
gene expression profiles by combining data from the Gene 
Expression Omnibus (GEO) (33, 34) and the Broad Insti-
tute’s Connectivity Map (CMap) (35). This new database will 
give healthcare professionals (i.e. clinicians and nutritionists) 
better access to information about potential FDIs and will 
provide researchers in the area of nutrition, health and func-
tional foods with a resource to evaluate new hypotheses and 
investigate the molecular mechanisms of FDIs.

Materials and methods
Extraction of potential FDIs via NLP techniques
Data collection
Potential FDIs were mined from text documents using NLP 
techniques, as summarized in Figure 1.

The data collection method followed requires the genera-
tion of two lists of terms of foods in order to filter databases 
of documents. A list of food terms was generated by using 
different databases containing food compounds or bioactives 
and food descriptions. These databases include comprehen-
sive databases such as FooDB (www.foodb.ca, 916 terms), a 
resource on food constituents, nutrients and bioactive com-
pounds, or the Composition of Foods Integrated Dataset 
[(36), 946 terms], which stores data on the nutrient con-
tent of the UK food supply. Search terms were also obtained 
from more specific databases such as Phenol-Explorer [(37), 
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Figure 1. General overview of the NLP approach. (A) Data collection was performed by collecting documents containing at least one food and drug term 
in their titles and abstracts, as well as the whole DDI corpus. (B) Data preprocessing step is applied to the documents for better integration in the 
pipeline. (C) In the feature extraction step, different entities are recognized in the text via different methods, and entity overlap resolution is done when 
necessary. (D) Finally, for relationship extraction, entities are anonymized to work with the relationship extraction model used, and the resulting FDIs and 
documents are stored in the FooDrugs database.

493 terms], which focuses on polyphenols present in food, 
the KEGG phytochemicals subset of KEGG BRITE (https://
www.kegg.jp/brite/br08003, 2 882 terms) (38–40), Phyto-
Hub (https://phytohub.eu/, 2 625 terms), which stores dietary 
phytochemicals and their metabolites, and terms annotated 
as food or food compounds in the DFI corpus [(24), 2 408 
terms], the largest manually annotated corpus of biomedi-
cal articles published by PubMed for training models in DFI 
extraction. A full table of terms is available at Supplemen-
tary Table S1. The list of drug terms was collected from the 
Anatomical Therapeutic Chemical (ATC) classification system 
(https://www.whocc.no/, 5 863 terms), and terms annotated 
as drugs in the DFI corpus (5 500 terms). The whole collection 
of drug terms is shown in Supplementary Table S2.

Texts were obtained from different sources. First, texts with 
already annotated FDIs from the DDI corpus (32), a man-
ually annotated gold standard corpus for DDIs containing 
792 texts from DrugBank and other 233 Medline abstracts, 
were collected. Next, texts with potential DFIs were collected 
from PubMed (https://pubmed.ncbi.nlm.nih.gov/), a database 
of scientific articles, and from clinicaltrials.gov, a worldwide 
database of clinical studies (https://clinicaltrials.gov/). In order 
to collect the texts with potential FDIs from PubMed and 
clinicaltrials.gov, both lists of food and drug terms described 
earlier (Supplementary Tables S1 and S2) were used to select 
the documents that include at least one drug term and one 
food term in their description (i.e. title and abstract). To select 
these documents, a list of around 12 million texts containing 
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food terms and a list of around 8 million texts containing drug 
terms were generated. Then, texts present in both lists were 
kept for further analyses.

Preprocessing
The Natural Language Toolkit (NLTK) (41) Python library 
was used to preprocess raw documents. NLTK is a leading 
platform for building Python programs to work with human 
language data. It provides easy-to-use interfaces to over 50 
corpora and lexical resources along with a suite of text pro-
cessing libraries for different steps, including tokenization and 
lemmatization of the documents. Tokenization allowed us to 
break text into individual units called tokens. Tokens are usu-
ally words or subword units like punctuation marks, numbers 
or symbols. A token normalization step was performed with 
the NLTK Tokenizer library, lowercasing the text, removing 
special characters and dividing strings into a list of substrings 
(tokens). Lemmatization allowed us to reduce words to their 
base or root forms (lemmas) while ensuring that the lemma 
belongs to the same language and makes sense in the con-
text (e.g. lemmatization converts the plural noun ‘tomatoes’ 
to the singular form ‘tomato’). This process is useful for stan-
dardizing and normalizing text, making it easier to analyze 
and extract meaningful information. NLTK Snowball and 
WordNetLemmatizer libraries were used for this step. In addi-
tion, two domain-specific libraries were used: ChemTok to 
tokenize chemical names (42) and BioLemmatizer for the 
morphological analysis of biomedical literature (43).

Feature extraction
The tokenized texts were further processed by assigning part-
of-speech tags to each token with NLTK. Named entity recog-
nition (NER) was performed using several approaches, includ-
ing classical methods based on word embeddings or gazetteers 
and deep learning methods based on neural networks.

First, the Schwartz–Hearst algorithm was applied to iden-
tify abbreviation definitions (44). Then, food NER was per-
formed by a dictionary-based approach consisting of string 
matching with the food term lists in Supplementary Table S1 
and a deep learning model based on the DistilBERT architech-
ture (43). DistilBERT is a distilled version of the Bidirectional 
Encoder Representations from Transformers (BERT) model 
(45–47). BERT is a transformer-based deep learning technique 
that learns contextual relations (46, 47), while DistilBERT is a 
smaller and faster version that pre-trains a smaller representa-
tion model that can be fine-tuned afterwards (45). For entities 
with partial overlaps, only the longest term was considered. 
The next step was the detection of chemical compounds 
using two deep learning models based on BERT architectures 
trained for the identification of chemical compounds present 
in the text.

Drug NER was done by training a deep learning model 
with a transformer based on the DistilBERT architecture (45) 
in the DDI corpus (32). DistilBERT is a distilled version of 
the BERT model (45–47). BERT is a transformer-based deep 
learning technique that learns contextual relations (46, 47), 
while DistilBERT is a smaller and faster version that pre-
trains a smaller representation model that can be fine-tuned 
afterwards (45). This corpus, along with some easy data 
augmentation techniques, was used to train a deep learning 
DistilBERT model, yielding a harmonic mean of the preci-
sion and recall (F1 score) of 0.88. After all NER methods 

had been applied, some entities were assigned to more than 
one category (food, chemical or drug), e.g. vitamin D. Par-
tial overlaps were resolved by maintaining the longest entity. 
Then, if an entity had been marked as multiple types (e.g. food 
and drug), the class was assigned according to the following 
criteria: food > food chemical > drug > chemical.

Relationship extraction
All possible food–drug entity combinations were obtained 
for food–drug relationship extraction. Then, a deep learning 
model based on the DistilBERT architecture (45) was pre-
trained on the DDI corpus for FDI relationships (32). The DDI 
corpus is a manually annotated gold standard corpus consist-
ing of 792 texts selected from the DrugBank database (20) 
and other 233 Medline abstracts. This fine-grained corpus 
has been annotated with a total of 18 502 pharmacological 
substances and 5028 DDIs, including both pharmacokinetic 
and pharmacodynamic interactions. Therefore, and assuming 
that the sentences used to describe DDIs will be similar to 
the ones describing FDIs, the DDI corpus is used to train a 
deep learning model to extract FDIs from documents. This 
model is entity agnostic, as entities are anonymized and only 
the context is relevant. This model had an F1 score of 0.77, 
obtaining a total of 1 108 429 potential FDIs from 439 338 
text documents.

The performance of FooDrugs NLP method was assayed 
with the DFI corpus (24). The DFI corpus contains 2270 
abstracts of biomedical articles accessible through PubMed 
and 2 498 sentences that contain DFI and/or DDI informa-
tion. On this corpus, 1 001 abstracts contain a DFI key-
sentence, and 1 269 do not include a DFI key-sentence. The 
FooDrugs NLP method was able to detect 4 998 interactions 
in 1 306 abstracts out of 2 270 (57.3%), 65% (654) of them 
in those annotated by DFI with key-sentence. In addition, an 
F1 score of 0.567 was obtained. These results are in concor-
dance with the previous approaches based on BERT models 
in the DFI corpus, ranging from 49.4 to 55.0 (24).

Inferring potential FDIs from gene expression data
A second approach was designed to infer potential FDIs from 
the publicly available gene expression data, which quantifies 
the activity or level of expression of genes within a biological 
sample. It provides insights into which genes are actively being 
transcribed at a given moment in a cell, tissue or organism. A 
summary of this approach is shown in Figure 2.

Data collection
Gene expression data were obtained from the GEO database 
(33, 34), a public functional genomics data repository. Each 
experiment on the platform includes information about the 
array or sequencing platform used (platform record), infor-
mation about each sample characteristics, i.e. cell type, tis-
sue, treatment or timepoint (sample records), and a series 
record that links together samples from the same submitter 
and provides a general description of the objectives of the 
study, together with other information like tables describ-
ing extracted data, summary conclusions or analyses. Each 
series record is assigned a unique and stable GEO accession
number.

The list of food terms in Supplementary Table S1 was 
used to look for GEO studies testing food compounds, in 
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Figure 2. Schematic representation of the overall transcriptomic approach. (A) Data collection consists of the search of food transcriptomic studies with 
food keywords. (B) Data processing and differential expression analysis are performed with limma to get 150 up- and down-regulated genes in food 
condition vs control. (C) Genes present in BING space sent to CMap to compute similarity scores with drug transcriptomic profiles.

addition to a collection of custom search terms that include 
‘nutrient’, ‘nutrition’, ‘diet’, ‘natural products’, ‘phytochemi-
cal’, ‘nutrigenomics’, ‘bioactive and extract’, obtaining 1 000 
studies. Later, these studies were filtered to avoid the word 
polysemy not related to food, e.g. transcription enrichment 
analysis, and keep those experiments referred to studies for a 
real food compound or bioactive effect.

An automatic selection strategy was defined to extract the 
treatment used in a study, the measurement of this treatment, 
the time point of each sample and the origin of sample, the 
information about the type of tissue essayed (cell line, tis-
sue or primary cell) and the name of this cell sample (cell 
line name, tissue name or primary cell name). This strategy 
was implemented for all GEO studies collected in order to 
keep only studies for which the treatment compound was 
detected as a food compound or bioactive, and the origin of 
sample information was detected. The studies were discarded 
in the following cases: if the origin of sample or the treat-
ment compound were not extracted and if the experiment 
did not contain two samples for controls and two samples 
for a given compound. A total of 150 studies were selected 
as potentially interesting and were therefore included in the 
FooDrugs database. For each study, the information stored in 
FooDrugs database is description (i.e. title and abstract), type 
of study, accession number, contributors, publication date and 
PubMed identifier. For each sample, the information stored 
is treatment compound, accession number, origin name and 
type, time point and concentration.

Data processing and differential expression analyses
Differentially expressed genes (DEGs), genes with changes in 
expression levels between two or more experimental condi-
tions or sample groups, were identified comparing treated and 
untreated samples, defining a condition as a specific food/bio-
component tested at a particular concentration, time point 
and origin of sample within a study. A full table of RNA-seq 
and microarray studies in the FooDrugs database is available 
at Supplementary Table S3.

Microarray studies
The normalized data matrices for microarray studies were 
downloaded directly from GEO, and the limma R package 
(version 3.50.3) was used to determine the DEGs in each 
condition (48). Conditions in each study were defined by join-
ing the variables time, concentration, treatment and origin of 
sample together. To obtain the DEGs in each experimental 
condition against the control, linear models were built within 
an empirical Bayes framework. Since each microarray tested 
around 40 000 probesets, adjusted P-values for multiple test-
ing were calculated with the FDR via the Benjamini–Hochberg 
procedure. Afterwards, probesets were mapped to Entrez gene 
IDs using the platform annotations provided by GEO. Probe-
sets that mapped to multiple genes were discarded, while genes 
that mapped to more than one probeset were represented only 
by the one with the largest average expression value. Aver-
age expression values were then ranked by adjusted P-values. 
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From this ranking, the top 150 up- and down-regulated 
genes (having a logFC >0 or <0, respectively) were stored in 
FooDrugs, while the top 150 up- and down-regulated genes 
included in the CMap (35) were sent to this resource for 
further analyses, as described in the ‘Similarity with CMap 
profiles’ section.

RNA-seq studies
Gene count matrix files were downloaded from GEO for 
all RNA-seq studies. The voom method implemented in the 
limma R package was chosen for matrix data normalization, 
due to its good performance compared to other RNA-seq pro-
cessing methods and because it fits directly into the limma
pipeline (49, 50). Briefly, voom aims to compensate for the 
differences in sequencing depth and for the count-variance
relation in the data, two properties of high-throughput tran-
scriptomics data that difficult their normalization (49). Taking 
the log counts per million reads (log2cpm, logarithm in base 
2) allows normalization for sequencing depth. It has been 
observed that larger counts have larger standard deviations. 
The log transformation counteracts this to some extent but 
overcompensates for small values. Then, smaller log2cpm 
counts may have higher variances, with technical variation 
decreasing with increasing log2cpm. To compensate for this 
effect, a gene-wise linear model that considers experimental 
design is fitted, generating a residual standard deviation per 
gene. Then, a lowess estimator is used to calculate the square 
root of the standard deviation with respect to the average 
log count for each gene. For each individual gene observa-
tion, based on its counts, its expected standard deviation is 
interpolated, and the inverse squared standard deviation for 
that observation is used as the weight for that observation 
log2cpm value in the limma pipeline described in the ‘Microar-
ray studies’ section (49). Normalized data are then analyzed 
similarly to microarrays with limma to obtain DEGs. Then, 
average expression values are ranked by their adjusted P-
value, and the top 150 up- and down-regulated genes are 
stored in FooDrugs database.

Similarity with CMap profiles
The top 150 up- and down-regulated genes obtained from 
the differential analysis pipeline with an Entrez ID, sorted 
according to P-value, were used to connect with the CMap 
from Broad Institute, according to the CMap guidelines 
(35). This resource houses over 1.5 million expression pro-
files with the transcriptional response to a large collection 
of small-molecule compounds as well as genetic reagents 
such as libraries of clustered regularly interspaced short 
palindromic repeats (CRISPR)/Cas9 constructs or short hair-
pin RNAs (35). These compounds and genetic constructs 
used to alter the cell transcriptome are referred to as ‘per-
turbagens’. One thousand hallmark transcripts are mea-
sured, from which it is claimed that around 81% of total 
transcripts can be inferred. The set of genes included in 
this database are called Best INFerred Genes (BING) fea-
ture space, a set of 978 landmark genes and 9 196 well-
inferred genes. A more detailed explanation of the CMap 
tool and its data is given in the original manuscript by
Subramanian et al. (35).

Thus, to build a CMap query, DEGs that were not in 
the BING space were filtered out. Then, the BING space 
DEGs were split into an overexpressed gene set and an under-
expressed gene set according to their logFC. For gene sets 

with more than 150 genes, the top 150 were chosen based 
on their P-value. Experiments with <10 overexpressed or 
underexpressed genes were discarded.

The gene sets obtained from GEO food compound or 
bioactive transcriptomic experiments were used to query the 
CMap in order to determine gene similarity scores that could 
lead to potential interactions between each compound or 
bioactive (gene sets) and the drugs with expression profiles in 
CMap (35). Potential interactions are inferred by performing 
a Gene Set Enrichment Analysis (GSEA) on the overexpressed 
and underexpressed gene sets from the GEO experiment of 
interest. A GSEA is performed per query gene set to determine 
if it correlates positively or negatively with a given expres-
sion profile from CMap, obtaining two enrichment scores. 
Both enrichment scores are then used to calculate a weighted 
connectivity score, which is subsequently normalized per con-
dition and cell type. Then, this score is compared to a reference 
database, finally obtaining the tau score, which ranges from 
−100 to +100. The sign of the tau score indicates the sign 
of the interaction, and its absolute value serves as a mea-
sure of its statistical significance. An absolute tau score of 
90 indicates that 90% of the reference perturbations had a 
connectivity weaker than the query (Figure 2) (35). A more 
detailed description of the technical methodology is given by 
Subramanian et al. (35).

After performing the analysis, putative interactions are 
returned at various levels using a hierarchical data format. 
Results from pert cell annotation were selected to be included 
in FooDrugs database, meaning that the results correspond to 
a given perturbagen and cell line combination.

Binomial analysis of CMap compound labels
To perform binomial analysis on a list of CMap compounds, 
first a list with the relations of each CMap compound with 
its labels was generated or downloaded from CMap. Then, a 
binomial test was done followed by a Benjamini–Hochberg 
correction to get the over- and under-representation coef-
ficients and their adjusted P-values for each of the CMap 
compound labels. This analysis was done using a custom 
script written in python2.

Results
FooDrugs is a freely available database for potential FDIs 
composed of two sources of information: a text document 
component, where potential FDIs were extracted from a 
collection of texts from the scientific literature via NLP tech-
niques, and a molecular-based component, where poten-
tial FDIs were inferred based on gene expression data. In 
total, the FooDrugs database contains 1 108 429 potential 
FDIs described in 439 338 scientific documents and 2 321 633 
potential molecular interactions with an absolute tau score 
>90, integrating 3 923 GEO samples testing 462 different 
experimental conditions (defined as a specific food com-
pound or bioactive tested at a particular concentration, 
time point and origin of sample) with 6 395 CMap per-
turbagens. The database is freely and publicly accessible at 
https://zenodo.org/records/8192515 (DOI: 10.5281/zenodo.
6638469), under a Creative Commons Attribution 4.0 Inter-
national License.

FooDrugs was built using MySQL (http://www.mysql.
com) version 8.0.32-0. The relational model representing the 
database is shown in Figure 3. It is composed of 10 tables 
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Figure 3. Relational model for the FooDrugs database. Primary keys for each table are marked in bold and underlined. Foreign keys are marked by an 
arrow pointing upwards. The database is formed by two independent components: (A) a molecular component, built from GEO studies involving food 
compounds or bioactives, and (B) a text mining component, built using NLP.

divided into 2 separate modules: the transcriptomic module, 
with 8 tables, and the text document module, with 2 tables. 
Tables in the text document module describe information 
about the texts in FooDrugs and all potential FDIs detected 
with the NLP pipeline. As for the transcriptomic module, 
tables ‘study’ and ‘sample’ describe information about the 
studies and samples retrieved from GEO, respectively. Infor-
mation stored in the ‘study’ table includes the study descrip-
tion and citation information, while information stored in 
the ‘sample’ table contains the experimental condition used 
in each sample together with its accession number. Tables 
‘misc_study’ and ‘misc_sample’ store additional information. 
The rest of the tables in the transcriptomic module are used 
to store the DEGs obtained using limma, as well as the gene 
sets that were sent to the CMap and information about their 
potential interactions with CMap transcriptomic profiles.

Potential FDIs extracted from scientific documents
After an initial search for texts mentioning a series of food 
and drug terms, which retrieved over 1 000 000 texts, the 
NLP approach explained in the ‘Materials and methods’ 
section retrieved a total of 1 108 429 FDIs from 439 338 
texts. Of these texts, 425 023 were retrieved from PubMed, 
13 778 from ClinicalTrials.gov, and 537 from the DDI corpus. 
Figure 4 shows the PubMed articles distribution by publica-
tion date. These documents describe potential FDIs between 
50 960 food compounds or bioactives and 161 809 drugs, 
with 632 358 unique interactions between them.

Food gene expression data
A total of 150 GEO series for human experiments were 
retrieved, including 29 RNA-seq and 121 microarray stud-
ies. Regarding sample origin, 86 experiments were performed 
in cell lines, 27 in primary cultures and 36 in biopsies, with 
2 studies being performed in both cell lines and biopsies. A 
summary of the series characteristics is shown in Table 1. A 
full table with basic information of these series is available in 
Supplementary Table S3. 

Transcriptomic analyses were carried out on these series in 
order to identify DEGs between treated and untreated sam-
ples. Within each GEO series, a condition was defined as a 
food compound or bioactive tested at a specific time point, 
concentration and origin of sample. According to this defini-
tion, the database stores a total of 462 experiments for food 
compounds or bioactives. Each node contains information of 
an average of 2 451 DEGS (P-value < 0.05) ranging from 19 
to 30 492 (median: 730).

Potential FDIs inferred from transcriptomic profile 
similarity
A differential expression analysis was performed for each of 
the experiments in the database. Out of the 462 conditions in 
FooDrugs, 297 yielded upregulated and downregulated gene 
sets that could be used to query the CMap. As described in the 
‘Materials and methods’ section, an interaction was inferred 
when both gene sets from the same condition correlated with 
a CMap expression profile in different directions, measuring 
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Figure 4. FooDrugs PubMed articles distribution by publication date. Articles with publication dates between 1980 and 2023 are shown. 779 articles 
published before 1980 are excluded from the figure. Search date was 28 July 2023.

its statistical significance by a tau score. This analysis allowed 
to retrieve 2 321 633 potential FDIs (absolute tau score > 90) 
with a total of 70 895 CMap profiles, which assayed 6 395 
perturbagens from 5 different classes, including 2 545 drug 
compounds.

Case studies
Two case studies are presented to demonstrate the usefulness 
of the FooDrugs database.

Looking for interactions with a specific food compound: 
resveratrol
A clear example for the exploitation of FooDrugs database 
is when a user is interested in the possible FDIs involving a 
particular food compound or bioactive without any previous 
assumptions or biological knowledge. A good example for this 
application might be a well-known compound such as resver-
atrol. This plant polyphenol is found in grape skin and seeds, 

and it has been shown to offer various health benefits, includ-
ing antioxidative, anti-inflammatory and anticancer proper-
ties (51, 52). It may also play a positive role in autoimmune 
and inflammatory diseases, as well as cancer, diabetes or obe-
sity (52). The potential health benefits of resveratrol and the 
interest to use it as a pharmaceutical drug make it crucial to be 
aware of potential drug interactions (51, 53). For instance, in 
vitro studies suggest that resveratrol might be a potential can-
didate against drug resistance in bladder cancer chemotherapy 
(54). However, resveratrol was also found to reduce the effi-
cacy of paclitaxel both in vitro and in vivo, showing a possible 
contraindication (55). Instead of delving into scientific arti-
cles and databases to search for these specific examples, users 
can access the FooDrugs database to quickly and easily find 
potential FDIs through two different approaches:

(i) NLP-based approach. This approach returns potential 
mentions of FDIs in scientific texts, clinical trials and 
databases.
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Table 1. Characteristics of the retrieved GEO series. First column displays 
the characteristics and the second column the number of studies following 
the characteristics

Characteristics
Number of studies following 
the characteristics

One-color arrays 110
Two-color arrays 11
RNA-seq 29
Number of different GEO 

platforms
63

Studies conducted on cell lines 86
Studies conducted on primary 

cultures
27

Studies conducted on biopsies 36
Series which study more than 

one compound
50

Series which study more than 
one concentration

102

Series which study more than 
one time point

38

(ii) Transcriptomics-based approach. The molecular com-
ponent of the database can be used to search for an 
experimental setting testing resveratrol and compare 
it to the CMap expression profiles, inferring possible 
interactions from GEO-CMap edges with an absolute 
tau score >90.

First, the user could search for FDIs involving resveratrol 
that have been defined in the scientific literature. This returns 
220 citations, with 154 unique potential FDIs. 198 of these 
citations come from PubMed articles, while the remaining 
22 were found in clinicaltrials.gov. Many of these citations 
involve terms related to glucose metabolism and diabetes. For 
instance, ‘d-glucose’ and ‘insulin’ are two of the most repeated 
terms among the 220 citations. Other terms that can be found 
are ‘metformin’ or ‘hypoglycemic agents’, which are used to 
lower glucose levels in Type 2 diabetes mellitus patients, ‘sir-
tuin 1’, a protein involved in glucose metabolism and insulin 
sensitivity (56), and drugs to lower cholesterol levels such as 
‘simvastatin’ or ‘HMG-CoA reductase inhibitors’. Moreover, 
other terms relevant to metabolism or metabolic disorders 
are found in this list, including ‘cholesterol’ or ‘triglycerides’ 
as well as the metabolic disorders ‘Type 2 diabetes melli-
tus’, ‘non-alcoholic fatty liver disease’ or ‘peripheral artery 
disease’.

Following the transcriptomics-based approach, the user’s 
questions would be: (i) which drugs could possibly interact 
with resveratrol and (ii) which changes resveratrol produces 
on gene expression patterns. Querying FooDrugs for GEO 
series where resveratrol is used as treatment returns nine 
different series, with seven experiments performed in one 
channel microarrays and two series with experiments per-
formed using RNA-seq. For example, in the study with the 
GEO accession number GSE25412 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE25412), concentrations of 
150 mM and 250 mM were tested on MCF7 cells after 
48 hours of treatment, and nine samples are retrieved. The 
user can then find the DEGs related to a condition of interest, 
for instance, a resveratrol concentration of 150 mM. Querying 
FooDrugs database returns 28 significantly upregulated genes 
and 34 significantly downregulated genes. The result of query-
ing the CMap with those DEGs included in the BING space 

retrieves potential interactions (i.e. with an absolute tau score 
>90) with a total of 2 779 CMap conditions, including 2 086 
perturbagens: 607 drug compounds, 1 301 shRNAs and 871 
cDNAs.

These results can be then used for further analyses. For 
instance, a binomial analysis on the mechanism of action 
labels for the 607 compounds that could potentially interact 
with resveratrol in the selected conditions reveals a significant 
overrepresentation of terms such as c-Jun N-terminal kinase 
inhibitors and cell cycle inhibitors (Benjamini–Hochberg 
adjusted P-value < 0.05), both of which have been described 
as candidates for anticancer therapies (57, 58). On the 
other hand, the significantly underrepresented terms include 
Src activators, CDC-like kinase (CLK) inhibitors, electrolyte 
reabsorption inhibitors and bile acid inhibitors. Interestingly, 
both Src and CLKs can have oncogenic roles, specifically 
in breast cancer; although through different mechanisms of 
action, Src is a tyrosine kinase, while CLKs are part of the 
splicing machinery (59, 60).

Looking for drug groups that interact with a specific 
compound: vitamin D
Fracture events are a major problem in elderly individuals 
and a serious public health problem that affects the quality 
of life of these people (61). Vitamin D, a fat-soluble vitamin 
essential for maintaining bone health, is a food supplement 
recommended to reduce the risk of fractures in elderly people 
(62); however, different trials have shown inconsistent results 
(63). Absorption of vitamin D from dietary sources is impeded 
in senior age due to various reasons, one of which might 
be the application of medications. A researcher interested in 
FooDrugs database information raised the assumption that 
different types of drugs can interrupt absorption of vitamin D 
in the gut, or consume it, as a derivative of cholesterol, causing 
vitamin D deficiency. Therefore, she was interested in a list of 
potential drug types that could deplete ingested or synthesized 
vitamin D, to enable interpreting patients’ vitamin D status 
results. This list will support the creation of a questionnaire 
for patients to further investigate the potential interaction of 
these drugs with vitamin D and its relationship with the pos-
sible loss of effectiveness of vitamin D in the prevention of 
fractures in elderly people.

First, a manual search in the literature by the researcher 
found a scientific revision (64) with 21 drugs classified by the 
authors as anti-inflammatory (9/21), antineoplastics (3/21), 
antiretroviral, antihypertensives, antibiotics and antiepileptics 
(2/21 each), and endocrine (1/21) drugs. In addition, a web-
site (https://www.stlukes-stl.com/health-content/medicine/33/
000724.htm) provided information for five potential drug 
categories interacting with vitamin D, being barbiturates, 
hydantoin derivatives, bile acid sequestrants, lubricant laxa-
tives and histamine H2 antagonists. The FooDrugs database 
was used to test whether these lists of drug types were 
exhaustive and to verify the validity of the information 
found, by being able to track down the reference to the
publications.

Querying FooDrugs for citations of possible vitamin D–
drug interactions returns 878 texts from different sources, 
containing 1 146 interactions of vitamin D with 238 drugs. 
It might be interesting to assess whether the 238 drugs 
that were found to interact with vitamin D have simi-
lar properties or mechanisms of action. This was done 
by performing analyses with the ATC classification codes, 
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Figure 5. Classification of drugs found to interact with vitamin D in FooDrugs database, according to ATC classification. Only ATC Level 1 categories 
were considered for this comparison.

which are based on therapeutic, pharmacological and chemi-
cal properties (https://www.who.int/tools/atc-ddd-toolkit/atc-
classification). Among those drugs with potential interactions 
for vitamin D found in FooDrugs database, majority of them 
are implicated with the alimentary tract and metabolism ATC 
category, but many others are detected (Figure 5 and Sup-
plementary Table S4). In conclusion, FooDrugs database has 
supported the work required by the researcher expanding the 
initial list of drug candidates and categories without complex 
and tedious manual search queries. In addition, FooDrugs 
database offers researchers access to the original publications 
to explore the potential mechanisms of degradation, if one 
is interested to know, which proves the traceability of the 
finding.

Implementation of the FooDrugs web application
The FooDrugs database was implemented in a web applica-
tion using a three-tier system architecture, i.e. a client–server 
software architecture that has three tiers or layers, namely the 
presentation, application and data tiers (65). The system is 
in a LAMP (Linux, Apache, MySQL and PHP/Perl/Python) 
environment (66). The data tier is linked to other external 
databases via PHP. The web application is available at http://
imdeafoodcompubio.com/index.php/foodrugs/.

Discussion
FDIs are a matter of concern in current clinical practice. With 
a greater consumption of dietary supplements and functional 
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foods, coupled with a rise in non-communicable diseases and 
a growing number of polymedicated patients, the risk of 
adverse FDIs is at an increase (2, 4–6). Despite their relevance 
in clinical practice, the information regarding these interac-
tions is scarce and scattered across the scientific literature, 
hampering its access by the research and the medical commu-
nities. FooDrugs database has joined the efforts to mine FDIs 
from the scientific literature with the development of an NLP 
workflow for FDI extraction. Additionally, the database also 
includes information for potential FDIs inferred from publicly 
available gene expression data. The result from combining 
these two approaches is an extensive database with a total of 
318 133 unique potential FDIs, 142 885 from the molecular 
part and 175 248 from the text mining component.

The implementation of an automatic NLP pipeline has 
allowed the extraction of interactions from unstructured data 
sources, including scientific articles as well as clinical trials. 
Although more than 100 000 potential interactions have been 
obtained through this pipeline, it is important to note that 
these potential interactions collected do not encompass all 
possible drugs and foods. This limitation is a result of the 
method employed in the selection of relevant texts, based on 
lists of food and drug terms.

FDIs were also inferred by comparing gene expression pro-
files caused by food compounds or bioactives and drugs. 
Molecular similarity is an approach that allows to compare 
different molecular profiles and calculate measures to group 
samples or experiments with similar or divergent molecular 
profiles. FooDrugs molecular approach builds on the assump-
tion that the effects that two given conditions produce at the 
transcriptomic level can help determine whether those con-
ditions interact. With the same underlying hypothesis, the 
Connectivity Map has been used for purposes such as drug 
repositioning or the search for DDIs (67–70). In the context 
of drug repositioning, the aim is to find a drug with a tran-
scriptomic effect opposite to that of the disease. This approach 
has been successful for repositioning the anticonvulsant topi-
ramate in inflammatory bowel disease (67) and the antiulcer 
cimetidine in lung adenocarcinoma (68), as in both studies, the 
results were validated in vivo. DDIs have also been inferred 
from the CMap by performing GSEAs on every pair of drugs 
in the database. This was done to build the network in the 
Mode of Action by NeTwoRK Analysis tool (69, 70). Here, 
the principle of transcriptional similarity is used to build a 
network connecting CMap drugs to each other based on their 
expression profiles. Then, the authors identified communi-
ties in the network where most compounds shared a similar 
mechanism of action. Based on this work, the mechanism of 
action of nine anticancer compounds was predicted correctly 
(69, 70). The success of these studies supports the rationale 
behind the molecular component of the FooDrugs database, 
where an interaction between a food and a drug is assumed 
if their transcriptomic profiles are similar or different enough 
as measured by the tau score. This manuscript demonstrates 
how FooDrugs can be used to generate new hypotheses on 
the mechanism of action behind potential FDIs based on this 
reasoning. For instance, the case study involving resveratrol 
suggests that potential interactions with antineoplastic drugs 
might be more likely to happen through the disruption of 

processes such as cell cycle regulation rather than by altering 
RNA splicing.

Working in the context of FDIs implies a series of chal-
lenges intrinsic to these interactions: they might occur directly 
within the gastrointestinal lumen; foods can interact with 
drugs by indirectly affecting drug ADME (8, 9); and even 
dietary changes that affect the gut microbiota might alter drug 
pharmacokinetics (71). In addition to this, there are medica-
tions whose bioavailability or side effects change depending 
on whether they are administered together with any meal or 
on an empty stomach (8). Therefore, some FDIs might not 
be reflected at the transcriptional level and therefore would 
not be revealed by molecular similarity analyses, while it is 
also possible that not all interactions that can be inferred at 
the molecular level can happen in practice, or that they do, 
but by a different mechanism. In other cases, some FDIs have 
multiple underlying mechanisms (9), and thus, FooDrugs can 
help discover some of them. It should also be noted that, even 
if a real FDI is found, it might not be clinically significant (9). 
Keeping the complexity of this problem in mind, FooDrugs 
database can help researchers interested in the FDIs involv-
ing a specific bioactive compound, drug or a group of them, 
as demonstrated in the user case for vitamin D, to build rea-
soned hypotheses for their research or toeasily and quickly 
access data for further research.

Conclusions
To our knowledge, FooDrugs is the first centralized database 
with textual and molecular information focused on potential 
FDIs. These complementary approaches provide the user with 
a wide range of information, from the transcriptional level 
up to the phenotypic level, without requiring any prior bio-
logical knowledge. This is achieved by gathering data from 
gene expression studies as well as information sourced from 
various scientific texts, including research articles and clinical 
trials.

FooDrugs provides users that are interested in the FDIs that 
involve a certain food compound or bioactive with: (i) texts 
that mention any drugs the compound might interact with; (ii) 
GEO studies where this compound was used as a treatment; 
(iii) how this treatment affects gene expression, by retrieving 
the DEGs compared with the control samples; (iv) the tau 
score for all the CMap chemical compounds after comparing 
the DEGs with their transcriptional effects; and finally, (v) the 
possible FDIs the compound is involved at the transcriptional 
level.

FooDrugs is a useful resource that perfectly complements 
the previous developments and will lead to an improvement 
of knowledge about FDIs, providing the basis to apply com-
plex analytical approaches to deepen the understanding of 
the molecular mechanisms behind these interactions. Thus, 
this resource will help improve how FDIs are addressed from 
bench to bedside.

Supplementary material
Supplementary material is available in Database online.
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Data availability
The FooDrugs database is fully available in Zenodo at https://
zenodo.org/records/8192515, and can be accessed with DOI 
10.5281/zenodo.6638469.
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