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Abstract
De novo molecular generation is a promising approach to drug discovery, building novel molecules from the scratch that can bind 
the target proteins specifically. With the increasing availability of machine learning algorithms and computational power, artificial 
intelligence (AI) has emerged as a valuable tool for this purpose. Here, we have developed a database of 3D ligands that collects six 
AI models for de novo molecular generation based on target proteins, including 20 disease-associated targets. Our database currently 
includes 1767 protein targets and up to 164 107 de novo-designed molecules. The primary goal is to provide an easily accessible and 
user-friendly molecular database for professionals in the fields of bioinformatics, pharmacology and related areas, enabling them to 
efficiently screen for potential lead compounds with biological activity. Additionally, our database provides a comprehensive resource 
for computational scientists to explore and compare different AI models in terms of their performance in generating novel molecules 
with desirable properties. All the resources and services are publicly accessible at https://cmach.sjtu.edu.cn/drug/.

Database URL: https://cmach.sjtu.edu.cn/drug/.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Traditional drug discovery is a laborious, expensive and time-
consuming process, primarily due to the vast combinatorial 
complexity of the discrete molecular search space. The exist-
ing chemical space contains around 1060 drug compounds, 
which are more than the total number of atoms in the solar 
system (1). On average, it takes at least 10 years and costs 
$2.8 billion to develop a new drug, while only <10% of 
lead compounds become accessible through clinical trials and 
regulatory approval (2, 3).

In recent years, the advancement of deep learning meth-
ods has brought new opportunities to traditional drug design. 
Researchers have utilized deep generative models for de novo
molecular design. These models are designed to learn the 
joint distribution between protein targets and known ligands, 
enabling them to efficiently generate novel molecules that can 
bind to specific targets.

When utilizing these models to generate molecules, users 
are usually required to invoke the trained models via the 
command line interface. On occasions where such trained 
models are absent, they must train these models from scratch 
before the generation process. This poses challenges for 
users from biochemistry and medical domains as they typi-
cally have limited background in machine learning and com-
puter science. Additionally, the existing molecular generative 

models were evaluated on different test sets. Therefore, it 
is of great significance to conduct a fair and systematic 
analysis on the performance of these methods under a uni-
fied benchmark setting. Such analysis provides a practi-
cal guide for users on choosing an appropriate model for 
their task, as well as insights into the model generation
process.

To address these issues, we have constructed a database, 
called DrugGen, of 3D ligands designed for specific pro-
tein targets and selected six prevalent models for de novo
drug design. We have also developed a user-friendly website 
(https://cmach.sjtu.edu.cn/drug/) that enables users to easily 
access the database. By simply providing the Protein Data 
Bank Identifier (PDBID) and selecting the desired model, users 
can retrieve the corresponding ligand molecule information 
and download molecules either individually or in bulk. This 
website eliminates the need for expertise in deep learning and 
saves time on running models, thereby simplifying the process 
of generating molecules. Through these resources, we aim to 
facilitate the adoption of deep generative models in molec-
ular generation and enhance the development of de novo
drug design.

To the best of our knowledge, DrugGen is the first open-
source de novo–designed 3D drug database entirely composed 
of artificial intelligence (AI)–generated models.
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Results
Database
As mentioned in the Abstract, our current database includes 
1767 protein targets and 164 107 molecules. In the future, we 
aim to expand our database by incorporating more experi-
mental Protein Data Bank (PDB) structures from PDBBind (4). 
Completed evaluations can be found on the DrugGen website. 
To ensure fair evaluation of each deep generative model, we 
have constructed a comprehensive test set, which serves as the 
basis for all subsequent evaluations.

Test set
Target proteins
We have utilized the data preparation and selection strategy 
outlined in previous studies (5, 6). This process involves dis-
regarding poses with root mean square deviation (RMSD) of 
tied localization poses >1 Å, and extracting 100 proteins with 
<30% sequence identity as target proteins from CrossDocked 
(7), which is a protein–ligand database tailored for deep learn-
ing methods. In addition, as shown in Table 4, we have incor-
porated 20 widely recognized protein targets that are linked to 
various diseases, including targets for painkillers, antibiotics 
and those associated with coronavirus disease (COVID-19). 
Thus, we have constructed a test set containing 120 proteins 
in total to evaluate deep generative models.

Ligands
We have generated 61 213 ligands for proteins in test sets, uti-
lizing six generative models, namely AlphaDrug (8), SBDD 
(5), Pocket2Mol (6), GraphBP (9), DiffSBDD (10) and Tar-
getDiff (11). As shown in Table 1, we have included a compa-
rable number of molecules for each method. Additionally, we 
assessed their performance using the following indicators:

(i) Vina score. The Vina score refers to the scoring func-
tion used in AutoDock Vina (12), a popular molecular 
docking software used to predict the binding poses and 
affinities of small molecules with its protein targets. The 
Vina score is a numerical value that reflects the predicted 
binding energy between the ligand and the receptor, 
with lower scores indicating stronger binding energy. 
The Vina score is a crucial metric in drug discovery and 
can serve as a key metric for virtual screening. In terms 
of the Vina score metric, AlphaDrug stands out from the 
rest and exhibits a significant improvement compared 
to other methods. The remaining methods, except for 
GraphBP, exhibit similar performance.

(ii) Quantitative estimate of drug-likeness (QED) (13). The 
QED is used to evaluate the drug-likeness of a small-
molecule compound, taking into account factors such 
as molecular weight, lipophilicity and polar surface 
area. The QED score ranges from 0 to 1, with higher 
scores indicating better drug-likeness. The QED score 
is used in drug discovery to filter out compounds with 
poor pharmacological properties. In terms of the drug-
likeness metric, Pocket2Mol exhibits the best perfor-
mance.

(iii) Synthetic accessibility (SA) (14). The SA score is a met-
ric used to indicate the level of difficulty in synthesizing 
a molecule, with values ranging from 0 to 1. A higher 
SA score indicates that the compound is easier to syn-
thesize, whereas a lower SA score suggests that the 

synthesis may be more challenging. In terms of the SA 
metric, AlphaDrug exhibits the best performance due 
to its chemically reasonable structures and appropriate 
ring sizes.

(iv) Octanol-water partition coefficient (LogP) (15). The 
LogP measures a compound’s ability to transfer between 
aqueous and organic phases. An ideal drug molecule 
typically exhibits a LogP value within the range of −0.4 
to 5.6.

Furthermore, we analyzed the distribution of various ring 
sizes of molecules generated by each method. As demonstrated 
in Table 2, AlphaDrug, Pocket2Mol and TargetDiff can gener-
ate molecules with a similar distribution of various ring sizes 
as the reference ligands. Here, the reference ligands denote 
the original ligands from the protein–ligand complexes. This 
suggests that these methods can generate molecules with the 
rational size of rings. On the other hand, other methods 
tended to generate molecules with an over-representation of 
three-membered and four-membered rings. 

To evaluate the bond length of generated molecules, we 
selected eight common types of chemical bonds and calcu-
lated the Jensen–Shannon divergence (16) between the bond 
length distribution of the generated molecules and that of the 
reference ligands as follows: 

JSD(P ||Q) = 1
2

DKL(P ||M) + 1
2

DKL(Q ||M),

where DKL(P ||Q) is the Kullback–Leibler divergence (17) 
between probability distributions P and Q, and M =
1
2

(P + Q) is the average of the two distributions. As shown 
in Table 3, TargetDiff achieves state-of-the-art performance 
on five of eight bond types, which demonstrates that the 
molecules generated by TargetDiff tend to have a reasonable 
bond length. 

We further evaluate whether all the methods can gener-
ate molecules with reasonable sub-structures (e.g. all carbon 
atoms within a benzene ring lie on the same plane.). Following 
TargetDiff (11), we break down molecules into several rigid 
fragments and optimize them with Merck molecular force 
field (18). As shown in Figure 1, AlphaDrug tends to generate 
more reasonable sub-structures, followed by TargetDiff and 
Pocket2Mol.

Overall, we have evaluated the molecules based on Vina 
score, chemical properties, distribution of various ring sizes 
and bond lengths of eight types. We also investigate whether 
generative models can produce reasonable sub-structures. We 
believe that this comprehensive evaluation enables users to 
make informed decisions based on their specific needs and 
requirements. 

Case study
All aforementioned evaluations have been analyzed from a 
statistical perspective. In this section, we will provide a 
more specific evaluation of each method from a biochem-
ical perspective, utilizing 20 concrete disease-related pro-
tein targets. By doing so, we aim to provide a deeper 
understanding of the performance of each method and its 
potential applications in the field of biochemistry and drug
discovery.

Table 4 provides a comprehensive overview of 20 disease 
protein targets, including the number of molecules generated 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad090/7502669 by guest on 02 M

ay 2024



Database, Vol. 00, Article ID baad090 3

Table 1. Numbers and properties of molecules generated by each deep learning model in the test sets

Methods Number of molecules Vina score QED SA LogP

AlphaDrug 9617 −9.77 0.42 0.80 5.65
SBDD 11 339 −5.62 0.52 0.63 0.57
Pocket2Mol 13 647 −4.53 0.58 0.78 1.40
GraphBP 10 383 134.12b 0.46 0.48 3.00
TargetDiff 7118 −5.26 0.50 0.58 1.63
DiffSBDDa 9082 −5.26 0.45 0.30 −0.10

The property values presented in the table are the medians. Best performances are highlighted with bold values.
aDenotes that the author does not provide a trained model, and thus all results are obtained from the model that we trained by ourselves.
bDenotes that during molecule generation, GraphBP fixes the binding site range to 15 Å around the known ligand, which may cause the generated molecules 
to deviate from the center of the binding pocket, resulting in a bad Vina score.

Table 2. Percentage of various ring sizes for reference and generated molecules

Ring size 3 4 5 6 7 >7

Ref. (%) 1.5 0.4 28.9 66.7 0.7 1.8
AlphaDrug (%) 1. 0.4 10.9 82.1 3.3 1.4
SBDD (%) 29.5 0.1 18.0 48.5 1.7 2.2
Pocket2Mol (%) 0.1 0 17.1 78.0 3.7 1.1
GraphBP (%) 51.5 17.8 9.1 8.5 5.7 7.4
TargetDiff (%) 0 2.7 29.2 49.6 12.0 6.6
DiffSBDD (%) 70.8 5.0 9.6 7.8 3.3 3.4

Table 3. The Jensen–Shannon divergence (JSD) between the bond length distributions of the reference ligands and generated molecules

JSD C–C C=C C@C C–N C=N C@N C–O C=O

AlphaDrug 0.43 0.83 0.46 0.64 0.83 0.38 0.59 0.60
SBDD 0.65 0.63 0.46 0.56 0.80 0.72 0.68
Pocket2Mol 0.59 0.60 0.51 0.68 0.75 0.63 0.63 0.68
GraphBP 0.37 0.53 0.76 0.53 0.83 0.50 0.64
TargetDiff 0.48 0.53 0.26 0.45 0.74 0.38 0.48 0.61
DiffSBDD 0.57 0.69 0.81 0.57 0.73 0.59 0.70

Single, double and aromatic bonds are represented as ‘–’, ‘=’ and ‘@’, respectively. A lower value indicates better performance. Best performances are highlighted 
with bold values.

Figure 1. The RMSD values between coordinates of rigid fragments before and after force field optimization. A smaller RMSD value denotes a more 
reasonable sub-structure.

Alt text: The image is a boxplot graph representing the median RMSD across different fragment sizes for various drug discovery methods. Each boxplot 
corresponds to a specific method, color-coded for identification, with fragment sizes on the x-axis and median RMSD values on the y-axis.
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Figure 2. Molecules from DrugGen database with the highest similarity to the original ligands on 20 disease-related protein targets. The even-numbered 
columns showcase the original ligand molecules, while the odd-numbered columns display the generated molecules with the highest similarity. The 
values in the odd-numbered columns indicate the Tanimoto similarity to the original ligand.

Alt text: The image depicts a collection of molecular structures, showcasing a comparison between known ligands from PDB entries and those generated by 
computational models such as TargetDiff, AlphaDrug, Pocket2Mol, GraphBP, DiffSBDD and SBDD. Each row presents a pair of molecules, with the known ligand on 
the left and the generated ligand on the right, along with the associated PDB codes and model performance metrics, i.e. the Tanimoto similarity.

by each method and the median Vina scores. The table is 
categorized into four parts: the first 10 rows focusing on pro-
teins related to severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), followed by 6 rows of non-steroidal anti-
inflammatory drugs, 3 rows of aniline antipyretic analgesics 
(paracetamol) and the final row dedicated to antibiotics (peni-
cillin). The majority of the deep learning methods produced 
valid molecules that were successfully evaluated by the Vina 
program, with TargetDiff and GraphBP achieving a 100% 
success rate. Besides, AlphaDrug achieves state-of-the-art per-
formance on Vina scores, which indicates that AlphaDrug 
tends to generate molecules with high binding affinities.

We further evaluate the molecules generated by differ-
ent methods from the aspect of pharmacophoric pattern
(19, 20). We computed the similarity between molecules in our 
database and the original ligands of all 20 proteins. As shown 
in Figure 2, deep learning methods can generate molecules 
with high similarity to original ligands with small molecu-
lar weight. For example, in the case of PDBID 4YJI, the only 
difference between the original ligand and the molecule gener-
ated by TargetDiff is the replacement of a methyl group with 
an amino group. Note that Pocket2Mol successfully generated 
the original ligand aspirin for PDBID 6MQF.

DrugGen website
In this section, we provide a brief guide on how to use our 
website. As illustrated in Figure 3, the first image with a deep 

blue background displays the homepage of our website, while 
the second image shows the protein list page, and the third 
image aims to provide more detailed information across each 
protein.

Home page
On the homepage, we have highlighted main interfaces with 
red boxes. The first interface is the search box which enables 
users to input a PDBID to navigate to the protein details page 
or click on ‘Database’ on the navigator bar to access the pro-
tein list page. Below the search box, a brief overview of our 
database and the quantity of available data are provided.

Dataset page
The dataset page lists all the proteins in the database, includ-
ing their PDBIDs, 3D structures and general descriptions. 
Users can search proteins using the search box located at the 
top right corner. Clicking on a row, such as the row where 
‘1AI4’ is located, leads to the third page, where the left view-
port displays the 3D structure of the protein ‘1AI4’, and the 
right table lists the simplified molecular input line entry speci-
fication and 2D structures of molecules generated by different 
models. Clicking on a row shows the corresponding molecu-
lar binding pose in the left viewport. The ligand checkbox in 
the left side of the viewport can be checked to visualize the 
original ligand. Besides, users can select the ‘Download all’ or 
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Figure 3. Quick tutorials about utilizing the website to obtain molecules on specific protein targets. We highlighted main interfaces with rectangular 
boxes. The bottom image displays part of the ‘overview’ page, which delivers a comprehensive evaluation of each method.

Alt text: The image shows a guide for navigating the database, detailing the steps to search for and visualize the binding pose between a molecule and a target 
protein.
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‘Download selected’ buttons above the table to download all 
molecules or only the chosen ones, respectively.

Overview page
The overview page gives detailed information about the num-
ber of molecules generated by each method. Furthermore, 
it displays the distributions of diverse molecular properties, 
including Vina score, QED, SA and so on. Additionally, we 
conducted statistical analysis of bond angles and dihedral 
angles and subsequently plotted their kernel density estima-
tion diagrams on this page. Besides, we have provided the 
download links for all trained models and the open-source 
codes at the end of this page. Moreover, a brief sugges-
tion for model selection is given at the end of the page. 
Please refer to https://cmach.sjtu.edu.cn/drug/target/ for more 
detailed information.

Materials and Methods
Protein target-based molecular generation models can be 
classified into two groups: autoregressive models and non-
autoregressive models, following the paradigm of molecu-
lar generation. Common examples of autoregressive mod-
els are recurrent neural networks, transformers and graph-
based models. These models generate molecules sequentially, 
atom by atom or fragment by fragment. In contrast, non-
autoregressive models, such as diffusion models, generate 
molecules with a predefined number of atoms. Diffusion 
models are trained to generate valid molecules by gradually 
denoising them from random noise. The subsequent section 
will provide a comprehensive overview of these models.

AlphaDrug
AlphaDrug (8) is a cutting-edge approach to de novo drug 
design that generates high-affinity molecular drug candidates 
for a given protein in an autoregressive manner. The model 
excels in representation learning on protein target and lig-
and information and employs an efficient heuristic search 
via Monte Carlo tree search (MCTS) to reduce the com-
putational complexity of exploring the vast search space 
of possible drug molecules. To co-embed protein targets 
and molecules, an improved transformer network has been 
designed. In the transformer variant, AlphaDrug employs a 
hierarchical skip-connection structure from protein encoders 
to molecular decoders to enhance feature transfer. The trans-
former variant calculates the probability of the next atom 
based on the protein target and molecular intermediates, 
which guides MCTS to model the molecule generation pro-
cess symbol by symbol. Additionally, MCTS is guided by 
a value function implemented by the docking program, 
reducing the likelihood of selecting paths with low docking
values.

SBDD
SBDD (5) consists of a 3D graph-based generative model and 
an autoregressive sampling algorithm that work together to 
generate valid and diverse molecules with high binding affinity 
to specific targets. Given 3D information about a binding site 
as context, the model estimates the probability distribution 
of atomic positions in 3D space. To ensure that the distribu-
tion is rotationally invariant to the context, SBDD employs 

rotationally invariant graph neural networks to extract infor-
mative representations of the atoms. The autoregressive sam-
pling algorithm generates 3D molecules by starting with a 
context consisting of only binding sites. At each step, it 
samples one atom from the distribution and adds it to the 
context for the next step until there is no space for new
atoms.

Pocket2Mol
Pocket2Mol (6) is an E(3)-equivariant network that utilizes 
vector-based neurons and geometric vector perceptrons as 
basic building blocks for learning chemical and geometric con-
straints imposed by protein pockets. It consists of two parts: 
(i) a new graph neural network that captures spatial and 
bonding relationships between bound pocket atoms; (ii) an 
efficient conditional 3D coordinate sampling algorithm that 
samples 3D coordinates directly from the learned Gaussian 
mixed distribution without relying on Markov chain Monte 
Carlo. First, the model predicts the frontier atoms of the cur-
rent molecular fragments. Second, it samples an atom from 
the frontier set as the focal atom. Third, it predicts the relative 
position of the new atom using the model’s position predictor 
based on the focal atom. Finally, the model’s atom element 
predictor and bond type predictor predict the probabilities of 
the element types and bond types with existing atoms, and a 
new atom is added to the current molecular fragments until 
no frontier atom can be found.

GraphBP
GraphBP (9) is a method used to generate 3D molecules that 
can bind to a given protein. The process involves placing 
atoms of a specific type and location one by one in a given 
binding protein pocket. A 3D graph neural network is utilized 
at each step to extract intermediate contextual information, 
which includes the given binding site and the atoms placed 
in the previous steps. A local reference atom is then selected 
based on the designed auxiliary classifier, and a local spherical 
coordinate system is constructed to maintain ideal equivari-
ance properties. Finally, GraphBP generates the atomic type 
and relative position with respect to the local reference atom 
to place the new atom. This method can capture the 3D geom-
etry and chemical interactions of protein–ligand complexes, 
place atoms without discretization of 3D space and maintain 
equivariance during generation.

TargetDiff
TargetDiff (11) is a diffusion-based model that gener-
ates molecules that can bind to a given target in a 
non-autoregressive manner. The model employs an E(3)-
equivariant network to learn the joint denoising process of 
continuous atomic coordinates and discrete atomic types by 
utilizing atomic-scale context. Moreover, the model has global 
translation and rotation-invariant likelihood with respect to 
binding complexes. TargetDiff can also serve as an unsuper-
vised feature extractor, allowing for the extraction of repre-
sentative features for molecules without requiring retraining. 
These features can provide robust signals for estimating the 
binding affinity between sample molecules and the target 
protein of interest.
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DiffSBDD
DiffSBDD (10) is also a diffusion-based model, which uti-
lizes an E(3)-equivariant graph neural network to learn the 
denoising process. Two schemes are proposed to generate 
novel molecule conditioning on protein pockets: protein-
conditioned generation and ligand-inpainting generation. The 
former treats proteins as a fixed environment, and then the 
model learns to denoise valid molecules from Gaussian noise. 
The latter mimics the joint distribution of protein–ligand com-
plexes without fixing the proteins. Specifically, the authors 
trained a diffusion model to denoise noisy molecules and noisy 
proteins simultaneously. To regulate the denoising process for 
proteins and align it with the target proteins, at each denois-
ing step, the latent representations of the protein pockets are 
replaced by the predefined noise of the given protein pockets. 
In this way, molecular generation of a specified protein pocket 
can be achieved. We adopt the protein-conditioned generation 
scheme in our database due to the comparable performance 
between two schemes.

Discussion
We have established a comprehensive drug database con-
taining 3D protein–ligand pairs, with all molecules in the 
database being generated by six popular deep learning
models.

Our aim is providing easy access to novel leading com-
pounds for researchers in the fields of bioinformatics and 
pharmacology and offering a comprehensive benchmark for 
computational scientists to explore and compare the perfor-
mance of various AI models in generating novel molecules. 
We hope that our platform can assist researchers in accelerat-
ing the molecular design process. In the future, we will keep 
on updating our database with state-of-the-art deep genera-
tive models, broaden the range of protein targets and provide 
more in-depth analysis on the performance of each model. 
We believe that the field of AI-designed molecules has great 
potential and is still in its early stages of development.

Data availability
All data are available for free online viewing through the 
DrugGen website https://cmach.sjtu.edu.cn/drug/.
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