
An optimized relational database for querying structural
patterns in proteins
Renzo Angles 1,2,*, Mauricio Arenas-Salinas 3, Roberto García 2,4 and Ben Ingram 5
1Department of Computer Science, Faculty of Engineering, Universidad de Talca, Camino a Los Niches Km. 1, Curicó, Región del Maule
3340000, Chile
2Millennium Institute for Foundational Research on Data (IMFD), Vicuña Mackenna 4860, Macul, Santiago, Región Metropolitana 7810000,
Chile
3Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, Universidad de Talca, Av. Lircay s/n, Talca Región del
Maule 34600000, Chile
4Engineering Systems Doctoral Program, Faculty of Engineering, Universidad de Talca, Camino a Los Niches Km 1, Curicó, Región del Maule
3340000, Chile
5School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, England
*Corresponding author: Email: rangles@utalca.cl

Citation details: Angles, R., Arenas-Salinas, M., García, R. et al. An optimized relational database for querying structural patterns in proteins. Database
(2024) Vol. 2024: article ID baad093; DOI: https://doi.org/10.1093/database/baad093

Abstract
A database is an essential component in almost any software system, and its creation involves more than just data modeling and
schema design. It also includes query optimization and tuning. This paper focuses on a web system called GSP4PDB, which is used for
searching structural patterns in proteins. The system utilizes a normalized relational database, which has proven to be inefficient even
for simple queries. This article discusses the optimization of the GSP4PDB database by implementing two techniques: denormalization
and indexing. The empirical evaluation described in the article shows that combining these techniques enhances the efficiency of the
database when querying both real and artificial graph–based structural patterns.

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
A database is a crucial component in almost any software sys-
tem. However, a functional database is not only about data
modeling and schema design. It also involves database opti-
mization or tuning, which means making a database applica-
tion run faster. There are various methods available for opti-
mizing databases, such as query rewriting, denormalization
and indexing (33).

In the context of protein engineering and biotechnology,
structural patterns are three-dimensional structures found in
biological molecules, like proteins or nucleic acids. These
patterns play a crucial role in comprehending the function-
ality of these molecules (13). The discovery and characteriza-
tion of structural patterns is an important topic of research
as it provides fundamental details about the functions of a
protein and serves as a valuable tool for deciphering new
proteins (27).

Additionally, there is the representation of interactions in
protein–ligand patterns (38). Ligands are small molecules that
interact with the amino acids of a protein, and they can inter-
act, bind or control the biological functions of the protein.
Identifying common patterns among different proteins allows
for the discovery of new functions within them, as well as new

methods for drug discovery (21, 26). This knowledge can then
be applied in the treatment of diseases (9).

Numerous software solutions exist for identifying struc-
tural patterns in biological data, such as PyScoMotif (10),
GeoMine (12) and Motif (7). Each of these tools has its unique
interface and usability characteristics. For instance, PySco-
Motif operates via a command-line interface, offering robust
functionality for those comfortable with such an environment.
On the other hand, options like GeoMine provide a graph-
ical user interface, although they can be complex and less
intuitive for some users. In response to these varying usabil-
ity challenges, we developed a new software package, called
GSP4PDB, that not only encompasses the core functionali-
ties of these existing tools but also features a user-friendly
interface. This design aims to make the complex task of pat-
tern identification in structural biology more accessible and
efficient for a broader range of users.

GSP4PDB (4) is a web application designed to simplify
the search of protein–ligand structural patterns by utilizing a
graph-based representation. In order to manage protein infor-
mation, GSP4PDB employs a relational database hosted in
PostgreSQL. This database contains data taken from the Pro-
tein Data Bank (PDB) (29), a database of proteins organized

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

https://orcid.org/0000-0002-6740-9711
https://orcid.org/0000-0001-5143-1845
https://orcid.org/0000-0001-6466-4541
https://orcid.org/0000-0003-4557-4342
mailto:rangles@utalca.cl
https://creativecommons.org/licenses/by/4.0/

2 Database , Vol. 00, Article ID baad093

into files. These files pose a challenge when attempting to
represent them in a relational database (34).

Various performance tests were conducted using different
structural patterns in order to assess the performance of the
relational database. These tests revealed that the system either
could not provide a response or did so with long response
times. As a result, we concluded that the normalized design
employed in this implementation is inefficient and causes inad-
equate system response in certain scenarios, thus necessitating
database tuning.

The goal of this study is to identify, describe, analyze
and apply optimization techniques for relational databases
in order to enhance the efficiency of query resolution in
GSP4PDB. More specifically, two techniques were imple-
mented. The first technique involved denormalizing the
database tables, which means that redundant information was
included in each table to minimize the time taken for queries.
Second, indexes were added to the attributes of the tables that
are frequently used during the search for structural patterns.

The empirical evidence from this work demonstrated that
the optimization techniques employed effectively enhanced
the overall efficiency of the system. Additionally, we provide
evidence that a relational database system is capable of stor-
ing and querying intricate protein data presented in a graph
format.

The remaining part of the article is organized as follows:
Various concepts related to protein structural patterns are
presented in the ‘Structural patterns in proteins’ section. The
work related to this topic is presented in the ‘Related work’
section. A relational database for proteins, which has been
normalized, is described in the ‘Relational database for pro-
teins’ section. The optimization of the database is explained in
the ‘Database optimization’ section. The experimental evalua-
tion is presented in the ‘Experimental evaluation’ section. The
conclusions and future work are discussed in the ‘Conclusions
and future work’ section.

Structural patterns in proteins
Proteins (24) are large and complex molecules that consist of a
sequence of numerous units referred to as amino acids. Gener-
ally, proteins perform their biological functions by physically
interacting with other molecules called ligands. ‘Computa-
tional Protein Design’ is a relatively new approach, which
aims to merge physical chemistry models with state-of-the-art
computational algorithms in order to automate the process of
redesigning sequences of proteins (31). Some of the primary
challenges in computational protein design include handling
substantial amounts of biological data (14), as well as the high
computational expenses associated with searching through
various protein structures and patterns (15).

The notion of ‘structural pattern’ is employed to explain a
three-dimensional structure or shape that appears in the sec-
ondary structure of a protein (8). The structure with the same
pattern can be found in a group of proteins with a partic-
ular frequency and meeting specific criteria such as atomic
distance, composition and connectivity.

Protein–ligand structural patterns
A ‘protein–ligand structural pattern’ (37) is described as the
union of a ligand and a group of amino acids. The arrange-
ment of these components in three-dimensional space can

Figure 1. Three-dimensional representation of the Zinc finger pattern
(20). Alt Text: A Zinc finger pattern.

be determined by three types of relationships: the distance
between two amino acids, the distance between an amino acid
and the ligand and the order in which amino acids appear in
the sequence relative to other amino acids. As an example, a
zinc finger (19) is a protein–ligand structural pattern in which
a zinc atom serves as the ligand and is surrounded by cysteine
(CYS) and histidine (HIS) amino acid residues.

Figure 1 shows a three-dimensional depiction of the zinc
finger of C2H2, showcasing the tetrahedral coordination of
zinc with two CYSs and two HISs.

Structural patterns are typically represented using text (i.e.
a textual notation). One example is the PA (Pattern) line
notation1 defined by PROSITE, which can be employed to
represent the zinc finger pattern mentioned earlier as C-x(2,4)-
C-x(12)-H-x(2,6)-H. Note that the graphical representation
(Figure 1) is well suited to visualize the protein–ligand inter-
action (including some structural details); however, it is not
useful to draw, modify and share.

Furthermore, the textual representation offers a straight-
forward syntax for describing the structure of the subsequence
that takes part in the binding site. However, it is unable
to describe certain aspects of the interaction, such as the
distances between the ligand and amino acid.

Taking into account the problems outlined earlier, we
will now introduce a graph-based model that can represent
structural patterns of proteins and ligands.

1https://prosite.expasy.org/prosuser.html#conv_pa

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

https://prosite.expasy.org/prosuser.html#conv_pa

Database, Vol. 00, Article ID baad093 3

Figure 2. Example of graph-based structural patterns. It shows a zinc ligand connected with two specific amino acids (CYS and HIS) plus an undefined
amino acid. Alt Text: A graph-based structural pattern.

Graph-based structural pattern
In simple terms, a ‘graph-based structural pattern’ (GSP) is a
graph in which the nodes depict the components of a protein
(such as amino acids and ligands) and the edges represent the
structural relationships (such as the distance between amino
acids) (3). An example of GSP is illustrated in Figure 2.

Formally, a GSP is a property graph. This refers to a
graph where nodes and edges can have properties repre-
sented as name–value pairs. A GSP permits four types of
nodes: Amino nodes, AnyAmino nodes, Ligand nodes and
AnyLigand nodes. Furthermore, GSP allows three types of
edges: Distance edges, Next edges and Gap edges.

As shown in Figure 2, nodes are represented as ellipses
whose label (inside a square) determines their type. An Amino
node represents a specific amino acid, whose name is defined
by the property name. An AnyAmino node represents the
occurrence of an unfixed amino acid (as a wildcard). Each
AnyAmino node includes the property polarity, whose
value can be ‘any’, ‘non-polar’, ‘polar uncharged’, ‘positively
charged’ or ‘negatively charged’. A Ligand node represents
the ligand of the pattern, whose three-letter identifier is
defined by the property code. An AnyLigand node repre-
sents an unfixed ligand (similar to an AnyAmino node).

Edges can be directed or undirected and are labeled with
their type. A Distance edge is an undirected edge which
represents the distance relationship between two amino acids
or between an amino acid and the ligand. A Distance edge
includes the properties min and max, which allow us to define
the minimum and maximum distances, whose default values
are 0.5 and 7 Angstroms (Å), respectively. A Next edge is a
directed edge which allows us to specify that a node X fol-
lows a node Y in the protein chain (i.e. they are neighbors). A
Gap edge is a directed edge which represents the occurrence
of a given number of amino acids between two specific amino
acids. The number of amino acids is defined by the properties
min and max, satisfying that min > 0, max ≥ min and max =
* represents an undefined number of amino acids.

Note that our representation based on graphs is a straight-
forward and intuitive method to describe the two-dimensional
structure of a protein–ligand pattern. Additionally, the model
has the potential to be expanded in order to accommodate
other forms of structural patterns.

GSP4PDB
GSP4PDB is a web application that allows users to create,
search and analyze structural patterns of protein–ligand inter-
actions. It is built on the graph-based representation method
described in ‘Graph-based structural pattern’ section.

GSP4PDB consists of three main components:
(i) GSP4PDB-parser, a Java tool that can be utilized to extract
and preprocess data acquired from the PDB; (ii) a relational
database (hosted in PostgreSQL) employed for storing and
querying protein data; and (iii) a web application2, which
offers a graphical interface for visualizing graph-based struc-
tural patterns and exploring the search results within the
relational database.

The web interface of GSP4PDB is divided into four main
areas: the Navigation Bar, the Design area, the Output area
and the About area (refer to Figures 3 and 4). The Naviga-
tion Bar is used for navigating through the elements of the
interface and displays the number of proteins in the database.
The Design area enables the user to create a GSP using a
drag-and-drop interface with buttons corresponding to the
types of nodes and edges allowed in a GSP. The Output area
presents the search results of the GSP in the database and
provides facets (filters) to further explore and analyze the
results.

The usability of GSP4PDB is determined by its graphical
user interface and how efficiently it can search for graph-
structural patterns. In this paper, we will focus on evaluat-
ing the system’s efficiency. Specifically, we will examine the

2http://dbg.utalca.cl/gsp4pdb/gsp4pdb2/

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

http://dbg.utalca.cl/gsp4pdb/gsp4pdb2/

4 Database , Vol. 00, Article ID baad093

Figure 3. Navigation bar and design area of GSP4PDB. The navigation bar contains the components that can be used to draw the graph-based structural
pattern in the design area. Alt Text: Navigation bar and design area of GSP4PDB.

Figure 4. Output area of GSP4PDB. Each solution is a match of the graph-based structural pattern in a specific protein. Alt Text: Output area of GSP4PDB.

design and optimization of the relational database system that
supports the graphical interface.

Related work
In this section, we will provide a literature review on the stor-
age methods employed for PDB data, alongside the database
optimization techniques utilized. Moreover, we will incorpo-
rate details pertaining to optimization techniques employed in
relational databases.

Systems for managing PDB data
The literature that was reviewed includes studies that use rela-
tional databases to store data related to protein structures,
including amino acids and ligands, among other data (2, 5, 11,
23). Alternatively, there are studies that store protein informa-
tion in graph databases, using engines like Neo4J, for instance
(1, 17).

Hooft et al. (18) describe a system that stores all PDB infor-
mation in ASCII files. In the works of Aslam et al. (5) and
Hooft et al. (18), the authors describe software applications
to analyze the elements and structures of proteins in a more
user-friendly way.

Many of the studies mentioned earlier failed to prioritize
optimizing the database and evaluating the efficiency of the
system. However, (2, 17) presented some improvements to the
design of their systems. However, these optimizations are not
focused on relational databases but rather on databases for
graphs or XML.

Optimization of relational databases
Sanders and Shin (32) discussed a general methodology for
implementing optimization techniques in relational databases,
with a specific focus on denormalization. Denormalization
is described as a transitional phase between the logical and
physical modeling of a database, emphasizing the applica-
tion’s requirements. Furthermore, the article acknowledges
certain drawbacks, including compromised data integrity and
reduced user-friendliness, despite its advantages.

Hoffer et al. (16) explain a technique for optimizing a
relational database. Their method involves denormalization,
where multiple tables are combined into a single table to
minimize the need for data collection in each query. How-
ever, there are some drawbacks to this approach, such as
a higher probability of errors and data inconsistency. The
authors also discuss another form of denormalization called

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baad093 5

Figure 5. Entity-relationship diagram of the protein data used by
GSP4PDB. It shows the entities, relationships and attributes identified
and used to create the PostgreSQL database. Alt Text: Entity-relationship
diagram of the GSP4PDB database.

Table 1. Tables of the relational database used by GSP4PDB.

Table Number of rows

protein 194 461
chain 144 881
standard_amino 21
aminoacid 45 365 304
ligand 558 092
atom_amino 380 064 372
atom_ligand 5 824 698
distance_amino_amino 413 783 764
distance_ligand_amino 9 138 739
next_amino_amino 45 220 493

partitioning, which represents a relation as multiple tables.
Partitioning offers several advantages, including increased
efficiency, local optimization, improved security, recovery and
response time and load balancing. Nevertheless, there are also
disadvantages to partitioning, including inconsistent informa-
tion access time, modeling complexity and the need for addi-
tional space and time for updates. Additionally, the authors
describe the use of indexes and provide recommendations on
when it is advisable to use them.

Zhang et al. (39) introduce A-Store, an optimization
algorithm for relational databases based on denormalization
strategies to speed up the analytical processing of queries
on in-memory data. The researchers compared the use of
denormalization and analyzed the performance improvement
it offers for different database engines. Nevertheless, using
denormalization comes with some drawbacks, including the
potential to introduce errors and cause data inconsistency.

Tsai and Kwee (36) conducted a study on various optimiza-
tion methods for relational databases. The main goal of these

approaches is to enhance data mining processes. Addition-
ally, the study includes performance tests that utilize different
optimization techniques for both data insertion and queries.
The primary indexes employed are B-Tree and Hash, which
can significantly enhance processing time for large data sets
(around 500 000 records).

After reviewing the techniques, it is evident that denor-
malization and the use of indexes can enhance the perfor-
mance of the database. This is mainly beneficial due to the
substantial number of queries that are needed, and a nor-
malized design would not be able to adequately meet this
requirement. Moreover, implementing indexes would fur-
ther enhance the performance, particularly in large databases
with an abundance of queries. However, it is crucial to be
cautious when using these techniques, especially in the case
of denormalization. This is because it can result in dupli-
cated information, thus requiring careful attention to ensure
accurate updates and consistency of the information in the
tables.

Finally, after reviewing the relevant studies, we have
reached the conclusion that utilizing a relational database
can result in favorable performance compared to other avail-
able options. However, it is worth mentioning that despite
the extensive literature review, we did not come across
any studies that specifically tackled the problem of search-
ing for structural patterns within PDBs using a relational
database. Our findings were limited to methods of storing
PDBs in a database primarily intended for protein querying
purposes.

Relational database for proteins
GSP4PDB was designed to work with data acquired from
the PDB (6, 30), which is the universal repository for struc-
tural data on proteins and nucleic acids. PDB is among the
most extensively utilized resources in the fields of biology and
biomedicine. As of July 2023, PDB comprises information on
206 987 macromolecular structures, including proteins, DNA
and RNA.

The protein data are publicly available and can be down-
loaded from the PDB website3 in various formats. In this
section, we will explain the procedure for extracting the data
from the PDB files and how it is subsequently loaded into a
relational database.

Data extraction and pre-processing
The PDB dataset is organized as a set of data files, each one
containing information about a single macromolecular struc-
ture (e.g. a protein, DNA or RNA). These data files are avail-
able in three different formats4: a textual-based format called
PDB, a XML-based format called PDBML and a key-value
representation called PDBx/mmCIF (which is the standard
format since 2014). Some of the information included in a
PDB file includes details about the authors, chains, amino
acids, ligands, atomic coordinates and citation references.

We have developed gsp4pdb-parser, a command-line Java
application that processes PDB files and exports the protein
data either to comma-separated values files or to a relational

3https://www.rcsb.org
4https://www.rcsb.org/pdb/static.do?p=file_formats/index.jsp

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

https://www.rcsb.org
https://www.rcsb.org/pdb/static.do?p=file_formats/index.jsp

6 Database , Vol. 00, Article ID baad093

Figure 6. Structure (or relational schema) of the database for storing protein information. For each table, we show attributes (first row), data types
(second row) and a sample data tuple (third row). Primary keys and foreign keys are marked as [PK] and [FK], respectively.
Alt Text: Relational schema of the GSP4PDB database.

database system (PostgreSQL). gsp4pdb-parser utilizes the
biojava API5 to read the files. The current version of the parser
can only process files that are encoded using the PDB format.

At first, the gsp4pdb-parser software examines a specified
local directory chosen by the user to locate PDB files and
creates a list of these files to be processed. This list is then fil-
tered based on the proteins that are present in the PostgreSQL
database. Optionally, the user also has the ability to define
their own list of files to be processed. To ensure that the lat-
est proteins from the primary PDB repository are included,
we utilize rsync to maintain a local copy of the PDB dataset.
Consequently, whenever gsp4pdb-parser is executed, the Post-
greSQL database is updated with the most recent proteins that
have been released in the primary PDB repository.

For every file (or protein) in the filtered list, gsp4pdb-parser
reads the file and generates a protein’s object model. The main

5http://biojava.org/

classes of the model correspond to the entities and relation-
ships described in the entity-relationship diagram shown in
Figure 5. Note that the diagram is abbreviated as it does not
contain the attributes for entities and relationships (which will
be described later).

In general, a protein is made up of multiple chains. Each
chain consists of ligands and amino acids, and both are com-
posed of atoms. However, an amino acid is associated with
a particular standard amino acid. There are two types of dis-
tance relationships: one connecting amino acids and the other
connecting ligands with amino acids.

Even though a protein can have multiple chains, we only
focus on processing the chain that holds more information. In
other words, we prioritize the chain that has the highest num-
ber of amino acids and ligands. Note that a PDB file does not
contain the atomic distances between amino acids and ligands.
After conducting empirical tests, we have made the decision
to pre-calculate these distances. This is aimed at enhancing the
system’s performance since it involves intricate join operations

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

http://biojava.org/

Database, Vol. 00, Article ID baad093 7

Figure 7. SQL query template for a subgraph pattern of the form Ligand
⋯ distance ⋯ Amino. The parameters of the template are represented
using squared brackets (e.g. [AMINO_OID]).
Alt Text: SQL query template for a subgraph pattern.

[In the context of relational databases, a join operation is used
to combine tuples (rows) from two different tables based on
some common information. The Join is one of the most diffi-
cult operations to implement efficiently, as no predefined links
between tables are required to exist (28).] for the relational
database system.

The distance between two amino acids A and A′ is calcu-
lated as the minimum distance between each pair of atoms
(ai,aj) such that ai ∈ A and aj ∈ A′ (i.e. we compute the dis-
tance between each pair of atoms of A and A′). A similar
approach is applied to determine the distance between a lig-
and L and an amino acid A. Distances greater than 7.0Å
are not considered as we assume that there is no interaction
between the atoms. Furthermore, the object model defines the
class NextAminoAmino to store the adjacency relationship
between two amino acids, i.e. the sort between each pair of
amino acids in the chain.

After constructing the object model of the protein, the
gsp4pdb-parser loads the data into the PostgreSQL database
using a single bulk of SQL instructions. Next, we will explain
the relational model that is utilized for the storage and man-
agement of protein data.

Relational schema
GSP4PDB uses the PostgreSQL database system (version 15)
to store and retrieve protein data obtained from the PDB
repository. We created a relational database schema based on
the entity-relationship diagram presented in Figure 5. This
schema comprises the tables listed in Table 1. Figure 6 dis-
plays the attributes (columns), data types and sample data for
each table.

The main components of the database are represented
in the tables protein, chain, aminoacid, ligand,
atom_amino and atom_ligand. The tables distance_
amino_amino and distance_ligand_amino store infor-
mation about the distances between amino acids and ligands.
The table next_amino_amino maintains the sequential

relationship between amino acids. Note that the information
contained in these tables is not explicitly provided by PDB.
Instead, it is computed during the pre-processing phase.

Note that the database has been normalized to reduce data
redundancy and preserve data integrity. The attribute ID is
used as the primary key in most tables, and each attribute
that serves as a foreign key has a name that describes its pur-
pose. Both primary keys and foreign keys are clearly labeled
in Figure 6.

Note that the number of chains may not match the num-
ber of proteins, as certain PDB files contain nucleic acid
information. In such cases, we keep fundamental informa-
tion about the nucleic acid in the Protein table. The table
standard_amino is the smallest one because it only con-
tains information about the 20 standard amino acids and
also includes an ‘undefined’ amino acid. The symbol for this
amino acid is ‘U’, and its abbreviation is ‘UND’. The num-
ber of amino acids is greater than the number of ligands. The
above statement explains why the largest tables are named
atom_amino and distance_amino_amino.

The values used in the attributes named id are created (dur-
ing pre-processing) to describe the provenance of the data. For
instance, the tuple in table atom_amino having id equal to
‘1B38_A_1_4’ describes the atom number 4, which belongs to
the amino acid number 1, of Chain ‘A’, in the protein ‘1B38’.
Figure 6 also shows the attributes acting as foreign key, whose
name indicates the referenced table.

Translating graph-based structural patterns into
SQL queries
Since we are utilizing a relational database for protein data
storage, the conventional approach for searching and retriev-
ing information from this type of database involves utilizing
the SQL query language. Therefore, we have established a
technique to convert a protein–ligand structural pattern into
an SQL query expression.

In simple terms, the query translation method creates an
SQL query expression for each subgraph pattern (node-edge-
node) that appears in the main graph pattern. The final SQL
query, which represents the main graph pattern, is composed
of all these sub-expressions. These compositions can be easily
accomplished by utilizing the natural join operator. How-
ever, despite its simplicity, this method is inefficient because
it necessitates multiple join operations and comparisons for
computing the final SQL query. Next, we will present a more
in-depth explanation of the method and the issues it poses.

Consider the following subgraph patterns that can occur in
a protein–ligand structural pattern:

1. Ligand Distance ⋯ Amino
2. Ligand ⋯ Distance ⋯ AnyAmino
3. AnyLigand ⋯ Distance ⋯ Amino
4. AnyLigand ⋯ Distance ⋯ AnyAmino
5. Amino—Distance — Amino
6. Amino—Distance — AnyAmino
7. AnyAmino—Distance — Amino
8. AnyAmino—Distance — AnyAmino
9. Amino—Next → Amino

10. Amino—Next → AnyAmino
11. AnyAmino—Next → Amino
12. AnyAmino—Next → AnyAmino
13. Amino—Gap → Amino

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

8 Database , Vol. 00, Article ID baad093

Figure 8. Graph-based structural patterns representing real protein–ligand structural patterns. Alt Text: Real graph-based structural patterns.

14. Amino—Gap → AnyAmino
15. AnyAmino—Gap → Amino
16. AnyAmino—Gap → AnyAmino

where the symbols ‘⋯’, ‘—’ and ‘→’ are used to resemble
the three types of edges allowed by the graphical interface of
GSP4PDB.

For each subgraph pattern, there is a SQL query template
whose parameters are filled to generate a specific SQL query,
also known as an ‘instance query’. For example, the SQL tem-
plate associated with the subgraph pattern Ligand ⋯ Distance
⋯ Amino is shown in Figure 7.

Let P be a graph pattern formed by the subgraph patterns
P1,… ,Pn. The SQL query Q obtained from P will have the
structure:

SELECT *
FROM (SELECT * FROM protein) AS SQ
INNER JOIN ([Subquery_1]) AS SQ1
INNER JOIN

…
INNER JOIN ([Subquery_2$) AS SQN

where Subquery_i denotes the SQL instance query corre-
sponding to the subgraph pattern Pi.

For instance, the graph pattern shown in Figure 3 is formed
by the following subgraph patterns: ZN ⋯ Distance ⋯ CYS1,
ZN ⋯ Distance ⋯ HIS2, ZN ⋯ Distance ⋯ ANY3, CYS1
– Next → HIS2, HIS2 – Gap → ANY3, CYS1 – Distance
– ANY3. Therefore, the ultimate SQL query expression,
which represents the entire graph pattern, will consist of SQL
expressions formed for each subgraph pattern as described
earlier.

Evaluation of the normalized database
Although a normalized relational schema is suitable for
storage, it is not efficient for responding to queries. To
confirm this, we performed an empirical evaluation of the
normalized database. The query performance evaluation

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baad093 9

Table 2. Characteristics of the graph-based structural patterns shown in Figure 8.

Element/pattern RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 RP10

Amino 4 4 4 4 4 4 4 4 6 11
AnyAmino – – – – 2 1 – – – –
Ligand 1 1 – 1 1 1 1 1 1 1
AnyLigand – – 1 – – – – – – –
Next – – – – 3 – – – – 5
Gap – 3 3 3 2 4 3 3 5 5
DistLigan-
dAmino

4 4 4 4 4 5 4 4 6 9

#Elements 9 12 12 12 16 15 12 12 18 31

This table shows the quantity of elements present in each pattern.

Table 3. Runtimes of the normalized database with indexes.

Query Q1 Q2 Q3 Q4 Q5

Runtime – – – – 33.905
Query Q6 Q7 Q8 Q9 Q10
Runtime 49.507 – 8.027 15.545 206.046

For each SQL test query (e.g. Q1), we indicate its runtime (in milliseconds)
or a line (–) in the case of time-out (10 min).

Table 4. Tables of the optimized relational database.

Table Row count Size in hard disk

protein 194,161 42.21 MB
standard_amino 21 32 KB
distance_amino_amino 413,784,540 46.53GB
distance_ligand_amino 9,139,045 1.23 GB
next_amino_amino 45,220,448 7.79 GB

Table 5. Computer machines used in the experimental evaluation.

Machine 1 (M1) Machine 2 (M2)

CPU Intel Xeon E5-2609v3 Intel Xeon E5-2620
RAM 8 GB DDR3 96 GB DDR3
HDD 500 GB 2 TB
S.O. Ubuntu Server 22.04
DB PostgreSQL 14

was based on the protein–ligand structural patterns shown
in Figure 8. These patterns are actual use-cases discov-
ered in the literature and can be regarded as represen-
tative because they encompass all the elements identified
in a protein–ligand structural pattern. The particular char-
acteristics exhibited by each test pattern are displayed in
Table 2.

For every real pattern RPX, we have generated an SQL
query QX using the query translation method that is described
in the ‘Translating graph-based structural patterns into SQL
queries’ section. In the initial experiment, we performed all
the SQL queries on the normalized database without imple-
menting any kind of optimization. Surprisingly, the database
was unable to respond to the queries. In the second experi-
ment, we added B-tree indexes in the following attributes and
tables: (i) attribute symbol in table aminoacid; (ii) attribute
symbol in table ligand; (iii) attributes amino1_id
and amino2_id in table distance_amino_amino; (iv)

Table 6. Empirical evaluation of real graph patterns on machine M1.

Pattern Number of hits DB1 DB2 % Imp

RP1 84 528 8.782 10.570 -20.35
RP2 2906 5.350 2.231 58.29
RP3 793 5.180 1.468 71.66
RP4 755 5.189 0.893 82.79
RP5 8 14.778 1.422 90.37
RP6 61 6.885 1.248 81.87
RP7 39 5.188 3.490 32.72
RP8 6 5.125 0.746 85.44
RP9 32 8.347 0.991 88.12
RP10 1 28.493 1.602 94.37

For each pattern, we show the number of solutions (number of hits),
the runtime on database DB1 (in seconds), the runtime on database DB2
(in seconds) and the percentage of improvement (% Imp).

Table 7. Empirical evaluation of real graph patterns on Machine M2.

Pattern Number of hits DB1 DB2 % Imp

RP1 84 528 7.639 7.556 1.08
RP2 2906 5.025 2.037 59.46
RP3 793 5.087 1.422 72.04
RP4 755 5.051 0.903 82.12
RP5 8 13.671 1.276 90.66
RP6 61 6.571 1.134 82.74
RP7 39 4.799 3.075 35.92
RP8 6 4.958 0.697 85.94
RP9 32 7.995 0.922 88.46
RP10 1 25.944 1.056 95.92

For each pattern, we show the number of solutions (number of hits), the
runtime on database DB1 (in seconds), the runtime on database DB2 (in
seconds) and the percentage of improvement (% Imp).

attributes ligand_id and amino_id in table dista
nce_ligand_amino; and (v) attributes amino1_id and
amino2_id in table next_amino_amino. Indexes (i) and
(ii) can improve the search of amino acids and ligands by using
the attribute symbol. The rest of indexes were included to
improve the evaluation of joins.

The running times of the normalized database with the
aforementioned basic indexing schema are shown in Table 3.
Even though we received responses for certain queries, the
amount of time taken for execution was not satisfactory.
Next, we will discuss a proposal aimed at enhancing the
database through the implementation of denormalization and
indexing.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

10 Database , Vol. 00, Article ID baad093

Figure 9. Comparison of runtimes obtained for real graph-based structural patterns. Note that RPX = real graph pattern X, DB1 = Denormalized database,
DB2 = Denormalized and indexed database, M1 = Machine 1 (8-GB RAM) and M2 = Machine 2 (92-GB RAM). Alt Text: The runtimes for real graph-based
structural patterns.

Table 8. Ligands with the highest occurrence (number of hits) in the
database and amino acids related to the highest frequency.

Ligand Number of hits Amino acid 1 Amino acid 2

GOL 578 761 LEU ARG
EDO 570 850 LEU GLU
SO4 539 010 ARG LYS

Database optimization
At this point, we have explained how to use a relational
database to store protein data, and we have also proved that
this database is not sufficient for effectively searching for
protein–ligand structural patterns. In this section, we will dis-
cuss two methods that can enhance the performance of the
database: denormalization and indexing.

Denormalization
Denormalization optimizes database performance by includ-
ing redundant data, which minimizes the reliance on join
operations (25). This approach streamlines data retrieval
by consolidating the information into fewer tables, thereby
simplifying query execution (35).

There are several types of denormalization, including pre-
joined tables, report tables, mirror tables, split tables, com-
bined tables, redundant data, repeating groups, derivable data
and speed tables (32). While denormalization has been proven
to be useful in numerous cases, the authors suggested that it
should be cautiously implemented based on how the data will
be queried.

In this case, we implemented data redundancy to mini-
mize the need for joining and merging tables. Specifically,
we duplicate the attributes protein.id, aminoacid.s
ymbol, aminoacid.class, aminoacid.number, ligan
d.symbol and ligand.number in tables distance_
amino_amino, distance_ligand_amino and next_am
ino_amino. This creates the denormalized tables below,
where the repeated attributes are indicated with +:

distance_amino_amino (protein_id+,
 amino1_id, amino1_symbol+, amino1_class+,

 amino1_number+, amino2_id, amino2_symbol+,
 amino2_class+, amino2_number+, dist)

distance_ligand_amino (protein_id+,
 ligand_id, ligand_symbol+, ligand_number+,
 amino_id, amino_symbol+, amino_class+,
 amino_number+, dist)

next_amino_amino (protein_id+, amino1_id,
 amino1_symbol+, amino1_class+,
 amino1_number+, amino2_id, amino2_symbol+,
 amino2_class+, amino2_number+)

The schema aforementioned offers the following advan-
tages: the attribute protein_id avoids the join with table
protein; the attributes with postfix _symbol, _class
and _number avoid the joins with tables aminoacid and
ligand. Thus, the three tables mentioned earlier contain
the necessary data to search for structural patterns of any
protein–ligand type.

To assess the influence of denormalization, we examined
the test graph patterns described in ‘Evaluation of the nor-
malized database’ section. Note that the corresponding SQL
queries require fewer joins and fewer tables than the ones
created for the normalized database. In this situation, the
database was able to respond to all the SQL test queries,
although the execution time remained high when handling
complex patterns. Thus, through experimentation, we con-
firmed that by employing denormalization, we can partially
enhance the database. However, this approach must be sup-
plemented with other optimization techniques, which we will
soon discuss in detail.

Indexing
An index is a data structure plus a method of arranging the
data tuples in the table being indexed (25). An index helps
to find and retrieve specific tuples much faster than without
an index. B+-trees and Hash structures are the two types of
indexes that are most commonly used in practice.

Based on the literature (22, 33) and the technical docu-
mentation of PostgreSQL6, we decided to introduce B+tree

6https://www.postgresql.org/docs/current/indexes.html

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

https://www.postgresql.org/docs/current/indexes.html

Database, Vol. 00, Article ID baad093 11

Figure 10. Generic graph-based structural patterns. These were used to create many artificial graph patterns. Alt Text: Generic graph-based structural
patterns.

indexes in two cases: (i) in attributes working as foreign
key, so PostgreSQL can use an efficient join implementation
when necessary and (ii) in attributes used for filtering node-
edge-node patterns. The specific indexed attributes are the
following:

• Attributes amino1_id, amino1_symbol, amino2_id
and amino2_symbol in table distance_amino_
amino;

• Attributes amino_id, amino_symbol, het_id and
het_symbol in table distance_ligand_amino; and

• Attributes amino1_id, amino1_symbol, amino2_id
and amino2_symbol in table next_amino_amino.

It is worth noting that although indexes are beneficial for
enhancing query speed, it is also widely recognized that they
can affect database manipulation such as insert, update and
delete operations due to the need for index reconstruction.
However, this is not a concern in our case since protein
data remain constant over time. Next we will present the

experimental evaluation of the denormalized and indexed
database.

Experimental evaluation
This section presents an empirical evaluation of the opti-
mized database described in ‘Database optimization’ section.
In particular, we assess the performance of the database
that has been denormalized and indexed by conducting
tests using both real and artificial protein-ligand struc-
tural patterns on two separate machines. Following that,
we outline the methodology of the evaluation, present
the experimental results and provide the corresponding
analysis.

Methodology
Our empirical evaluation includes multiple experiments,
where each experiment involves executing a SQL query on
a database hosted on a specific computer machine. In this
context, each experiment represents a specific combination

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

12 Database , Vol. 00, Article ID baad093

Table 9. Coverage of the generic artificial graph patterns shown in Figure 10.

Element/pattern GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10

Amino 1 – 2 2 1 2 2 2 2 2
AnyAmino 1 2 1 1 2 2 2 2 2 2
Ligand 1 1 1 1 1 1 1 1 – –
AnyLigand – – – – – – – – 1 1
Next 1 1 2 2 2 3 3 3 3 2
Distance 2 2 3 3 3 4 4 4 4 5
#Elements 6 6 9 9 9 12 12 12 12 12

of three variables: the database, computer machine and the
query.

Databases
We are assessing two databases: DB1, which is the
denormalized database, and DB2, the denormalized and
indexed database. Both databases have the same relational
schema. The tables, number of rows and storage size are sum-
marized in Table 4. Please be informed that we have not taken
into account the normalized database in our analysis as it was
incapable of responding to the test queries.

Computer machines
We utilized two machines, the computational specifications
of which are specified in Table 5. When it comes to process-
ing power, Machine 1 (M1) can be regarded as a standard
computer as it possesses a hardware configuration suitable
for general purposes. On the other hand, Machine 2 (M2)
is a computer optimized for memory usage. It is capable of
handling substantial datasets in the main memory.

Queries
Our empirical evaluation includes both real (‘Evaluation
of real graph-based structural patterns’ section) and artifi-
cial (‘Evaluation of artificial graph-based structural patterns’
section) protein–ligand structural patterns. For each pattern,
we have created a SQL query based on the query transla-
tion method described in ‘Translating graph-based structural
patterns into SQL queries’ section.

Query test
A query test is a procedure that involves running a SQL query
on a computer machine M, which hosts a database D. The
terminal-based interface of PostgreSQL is utilized to perform
each query test. The fastest running time achieved after run-
ning the query three times will be recorded as the result, with
a maximum time-out limit of 10 min. The effectiveness of a
database’s query performance will be indicated by the running
times of the query tests performed on it.

Evaluation of real graph-based structural patterns
This section describes our evaluation of the optimized
databases by using the real protein–ligand structural pat-
terns shown in the ‘Relational database for proteins’ section.
Remember that these patterns were used to test the normalized
database described in the ‘Relational database for proteins’
section, revealing its poor performance. Table 6 shows the
query runtimes obtained for DB1 (denormalized database)
and DB2 (denormalized and indexed database) running on

Table 10. Specific artificial graph patterns.

Artificial
pattern Ligand (LIG)

Aminoacid 1
(AM-1)

Aminoacid 2
(AM-2)

AP1 ZN CYS
EDO LEU
GOL LEU
SO4 ARG

AP2 ZN
EDO
GOL
SO4

AP3 ZN CYS CYS
EDO LEU GLU
GOL ARG LEU
SO4 LYS ARG

AP4 ZN CYS CYS
EDO LEU
GOL LEU
SO4 ARG

AP5 ZN CYS
EDO LEU
GOL LEU
SO4 ARG

AP6 ZN CYS HIS
EDO LEU GLU
GOL LEU ARG
SO4 LYS ARG

AP7 ZN CYS
EDO LEU
GOL LEU
SO4 LYS

AP8 ZN CYS HIS
EDO GLU LEU
GOL LEU ARG
SO4 LYS ARG

AP9 ZN CYS HIS
EDO GLU LEU
GOL LEU ARG
SO4 LYS ARG

AP10 ZN CYS HIS
EDO GLU LEU
GOL ARG LEU
SO4 ARG LYS

machine M1. Table 7 shows the results obtained with machine
M2.

When comparing the runtimes of the normalized database
(Table 3) and the optimized database DB1 (Table 6), one
notable difference is that DB1 provided a response for every
query, while the normalized database failed to answer five
queries. We can observe that DB1 reduced the runtime for the
queries that are supported by the normalized database.

If we compare the performance of DB1 and DB2, both run-
ning on machine M1 (Table 6), we can see that DB2 reduces

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baad093 13

Table 11. Empirical evaluation of artificial graph patterns on Machine 2. For
each pattern, we show the evaluated ligand, the number of solutions (#
Hits), the runtime on database DB1 (in seconds), the runtime on database
DB2 (in seconds), and the percentage of improvement (% Imp). AEach
pattern was executed three times with a maximum execution time of six
minutes (marked as >360).

Artificial pattern Ligand # Hits DB1 DB2 % Imp

AP1 ZN 44,865 4.905 2.563 47.75%
EDO 26,848 4.831 1.623 66.40%
GOL 25,084 4.673 1.8 61.48%
SO4 24,517 4.516 1.682 62.75%

AP2 ZN 244,187 15.067 61.029 -305.05%
EDO 338,033 18.759 79.079 -321.55%
GOL 341,293 18.645 87.771 -370.75%
SO4 299,455 17.14 63.596 -271.04%

AP3 ZN 1,974 >360 0.845
EDO 1,598 >360 0.9
GOL 1,020 >360 1.2
SO4 759 >360 1.145

AP4 ZN 1,169 >360 2.42
EDO 1,325 >360 2.357
GOL 1,150 >360 2.235
SO4 1,029 6.618 2.061 68.86%

AP5 ZN 34,262 >360 2.989
EDO 18,616 10.656 2.26 78.79%
GOL 17,717 10.432 2.406 76.94%
SO4 13,415 >360 2.323

AP6 ZN 1,567 20.125 1.99 90.11%
EDO 709 19.175 1.486 92.25%
GOL 660 20.041 1.673 91.65%
SO4 588 16.589 1.773 89.31%

AP7 ZN 1,479 >360 1.124
EDO 889 >360 1.393
GOL 1,005 >360 1.485
SO4 470 >360 1.136

AP8 ZN 1,034 >360 7.982
EDO 777 >360 1.344
GOL 650 27.178 4.173 84.65%
SO4 503 >360 3.651

AP9 ZN 2,917 16.238 3.176 80.44%
EDO 8,589 45.868 >360
GOL 8,530 50.487 >360
SO4 4,375 31.928 >360

AP10 ZN 14,866 >360 90.177
EDO 8,837 >360 311.341
GOL 3,138 >360 146.916
SO4 5,660 >360 303.239

Table 12. Runtimes for the same SQL query (i.e. a protein-ligand pattern),
but changing the order of the subqueries.

Order Runtime (sec.)

1 Ligand ⋯ Distance ⋯ Amino
Amino — Next → AnyAmino
Ligand ⋯ Distance ⋯ AnyAmino

2.206

2 Amino — Next → AnyAmino
Ligand ⋯ Distance ⋯ AnyAmino
Ligand ⋯ Distance ⋯ Amino

2.361

3 Ligand ⋯ Distance ⋯ Amino
Ligand ⋯ Distance ⋯ AnyAmino
Amino — Next → AnyAmino

2.348

4 Amino — Next → AnyAmino
Ligand ⋯ Distance ⋯ Amino
Ligand ⋯ Distance ⋯ AnyAmino

2.359

the query runtime in most cases, with an improvement reach-
ing up to 94 percent for pattern RP10. A similar trend can be
seen for the patterns executed on machine M2 (Table 7).

Figure 9 shows a graphical comparison of the runtimes
obtained during the evaluation of real graph patterns. It is
evident that DB2 consistently has lower runtimes compared
to DB1. The only exception is in the evaluation of RP1 on
Machine 1, where DB1 performs better, but this is not the case
for Machine M2. This suggests that RP1 requires a sufficient
amount of main memory in order to be executed efficiently.
Notably, patterns RP5 and RP10 have the longest runtimes,
but their performance can be enhanced by utilizing indexes.
This also applies to the majority of other patterns.

It is important to note that the experiments conducted on
both machines revealed a common factor: the response time of
each pattern depends on two factors. First, it is conditioned
by the number of results retrieved from the database when
queried. Second, it is dependent on the complexity level of the
pattern. It is observed that pattern RP1 is the least complex
in terms of the relationships it uses. However, because it is a
more commonly found pattern in proteins, it returns a higher
number of results due to the abundance of matching data.
Even though RP1 takes longer to process due to the larger
result set, other patterns that return fewer results are not sig-
nificantly affected by response time when indexing is used as
an optimization, as mentioned before. Conversely, more com-
plex patterns like RP5 and RP10 return fewer results, but their
performance is influenced by different optimizations. The use
of indexes in these cases improved their resolution time by
more than 90 percent, regardless of the machine being used.

Evaluation of artificial graph-based structural
patterns
This section presents our evaluation of the optimized
databases using artificial protein–ligand structural patterns.
The aim was to create a set of patterns that would sufficiently
challenge the databases. We first explain the process used to
create the artificial patterns, followed by the presentation of
the experimental results.

The artificial graph patterns were created by following the
following process. First, we execute a query on the table to
retrieve three ligands in the database with the highest preva-
lence in proteins. Next, for each chosen ligand, we retrieve the
associated amino acids, determine their frequency and select
the two amino acids with the highest frequency.

Table 8 displays the ligands that were chosen and their cor-
responding amino acids. The selected ligands are GLYCEROL
(GOL), ETHANEDIOL (EDO) and SULFATE ION (SO4).
The selected amino acids are LEUCINE (LEU), ARGININE
(ARG), GLUTAMIC ACID (GLU) and LYSINE (LYS). Note
that these ligands and amino acids can be utilized for con-
structing patterns that have a high likelihood of generating
a substantial quantity of outcomes. However, we also con-
sider the zinc ligand (ZN) and the CYS and HIS amino acids,
as they were used in the real graph patterns evaluated in the
‘Evaluation of real graph-based structural patterns’ section.

Next, we created the set of generic graph-based structural
patterns shown in Figure 10. Each generic pattern contains a
subset of all the possible elements allowed in a graph-based
structural pattern. For example, the generic graph pattern
GP1 contains a Ligand Node (LIG), an Amino node (AM-1),
an AnyAmino node (ANY-2), a Next edge and two Distance
edges (both with a distance range between 0.5Å and 7.0Å).
The elements that are covered by each individual generic
graph pattern are displayed in Table 9. Note that Gap edges

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

14 Database , Vol. 00, Article ID baad093

and fixed distances were not included in the generic graph pat-
terns because they do not impose any additional stress on the
database.

To create a specific artificial graph pattern for query test-
ing, we started with a generic graph pattern and replaced the
elements with the most commonly found ligands and amino
acids that were identified at the beginning of the process. As a
result, we generated 10 distinct artificial graph patterns, and
their respective elements can be seen in Table 10.

The empirical results derived from evaluating the artificial
graph patterns on databases DB1 and DB2, while running on
machine M2, are presented in Table 11. We can observe a
significant improvement in the runtimes of patterns AP1, AP3-
AP8 and AP10 when denormalization was utilized in conjunc-
tion with the implementation of indexes (DB2). Specifically,
artificial patterns AP3, AP4, AP5, AP7 and AP10 demonstrate
that the utilization of indexes resulted in significant improve-
ments. These improvements include timely response within
the defined response time and considerably reduced durations
for the majority of cases. The problem of pattern AP10 is chal-
lenging to solve because of the range of its elements, where
the distance relationship holds importance. This is different
from cases where denormalization was the only approach
used, but it failed to provide results within the designated time
frame.

The artificial patterns AP2 and AP9 display the most favor-
able behavior in the database DB1. This occurs because
a significant number of comparisons are necessary when
employing the ligand of type ANY. This is the case with
pattern AP9 or when selecting all amino acids as ANY, as
seen with pattern AP2. The use of indexes becomes ineffi-
cient due to the large number of comparisons that need to
be made. Additionally, the clustering methods result in a
longer query processing time, which, in some cases, leads
to no responses being generated. This is the case of pattern
AP9, for three out of the four cases, in which the presence
of a higher number of amino acids linked to ligands leads
to a decrease in the speed of query processing when indexes
are employed, contrary to the anticipated improvement. It is
important to recognize that although some patterns had worse
performance when indexes were used, this does not imply that
the use of indexes is a bad optimization. In general, using
indexes led to improved performance for most of the tested
queries.

Conclusions and future work
This article demonstrates that employing denormalization
and indexing enhances the query performance of a rela-
tional database designed for storing protein data and querying
graph-based structural patterns. Compared to the original
normalized database, the denormalized database was capa-
ble of computing all the actual and artificial patterns utilized
in our experimental evaluation. Additionally, the implemen-
tation of indexes also enhanced the database’s performance,
although this was only observed in certain cases. By combin-
ing both techniques, we were able to get 90% of improvement
for some real patterns.

Because our database is continuously expanding due
to the delivery of new proteins every week, it is neces-
sary to explore alternative optimization methods. Currently,
we are in the process of testing the rewriting of nested
queries.

We noticed that the time it takes to execute a SQL query
(created for a specific graph pattern) is affected by the order
of the related subqueries (each one corresponding to a sub-
pattern of node-edge-node). For instance, Table 12 displays
the execution times achieved for the identical query, albeit
with different arrangements of the subqueries taken into
account. Note that each of the runtimes varies. The first
combination displayed signifies the shortest runtime. There-
fore, we aim to establish a method for selecting the opti-
mal combination and, consequently, diminish the query’s
runtime.

Acknowledgements
R.A. was supported by ANID FONDECYT Chile
through grant 1221727. R.G. was supported by CONICYT
PFCHA/BECA DE DOCTORADO NACIONAL/2019 under
Grant 21192157.

References
1. Dhifli Abdoulaye,W. (2015) PGR: a novel graph repository

of protein 3D-structures. J. Data Mining in Genomics &
Proteomics, 6, 1–4.

2. Anders,G. and Nicola,M. (2011). Managing the Protein Data Bank
with DB2 pureXML IBM developerWorks, Technical Library.

3. Angles,R. and Arenas,M. (2018) A graph-based approach for
querying protein-ligand structural patterns. In: Lecture Notes in
Bioinformatics, 10813, Springer, Cham, pp. 235–244.

4. Angles,R., Arenas-Salinas,M., García,R. et al (2020) GSP4PDB: A
web tool to visualize, search and explore protein-ligand structural
patterns. BMC Bioinform., 21, 1–15.

5. Aslam,N., Nadeem,A. and Ellahi Babar,M. et al (2016) RPDB: A
relational databank of protein structures. Pak. J. Agric. Sci., 53,
129–134.

6. Berman,H.M., Westbrook,J. and Feng,Z. et al (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

7. Bittrich,S., Burley,S.K. and Rose,A.S. (2020) Real-time structural
motif searching in proteins using an inverted index strategy. PLoS
Comput. Biol., 16, 1–17.

8. Branden,C. and Tooze,J. (1998) Introduction to Protein Structure,
2nd edn., Garland Science, USA.

9. Cassandri,M., Smirnov,A., Novelli,F. et al (2017) Zinc-finger pro-
teins in health and disease. Cell Death Discov., 3, 17071.

10. Cia,G., Marc Kwasigroch,J., Stamatopoulos,B., Rooman M. and
Pucci F. (2023) pyScoMotif: Discovery of similar 3D structural
motifs across proteins. Bioinformatics Advances 3, 1.

11. Davis,F.P. and Sali,A. (2005) PIBASE: a comprehensive database
of structurally defined protein interfaces. Bioinformatics, 21,
1901–1907.

12. Diedrich,K., Graef,J. and Schöning-Stierand,K., et al (2020)
GeoMine: interactive pattern mining of protein-ligand interfaces
in the Protein Data Bank. Bioinformatics, 37, 424–425.

13. Ehrt,C., Brinkjost,T. and Koch,O. (2016) Impact of binding
site comparisons on medicinal chemistry and rational molecular
design. J. Med. Chem., 59, 4121–4151.

14. Galperin,M.Y., Rigden,D.J. and Fernández-Suárez,X.M. (2015)
The 2015 Nucleic Acids Res. Database Issue and Molecular Biol-
ogy Database Collection. Nucleic Acids Res., 43, D1.

15. Grinter,S.Z. and Zou,X. (2014) Challenges, applications, and
recent advances of protein-ligand docking in structure-based drug
design. Molecules, 19, 10150–10176.

16. Hoffer,J.A., Ramesh,V. and Topi,H. (2016) Modern Database
Management, 12th edn., London, England: Pearson Education
Limited.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baad093 15

17. Hoksza,D. and Jelinek,J. (2015) Using Neo4j for mining protein
graphs: a case study. In: 26th International Workshop on Database
and Expert Systems Applications (DEXA). IEEE: Valencia, Spain.
230–234.

18. Hooft,R.W.W., Sander,C. and Scharf,M., et al (1996) The
PDBFINDER database: a summary of PDB, DSSP and
HSSP information with added value. Bioinformatics, 12,
525–529.

19. Iuchi,S. (2001) Three classes of C2H2 zinc finger proteins. Cellular
and Molecular Life sciences, 58, 625—635.

20. Klug,A. (2010) The discovery of zinc fingers and their applica-
tions in gene regulation and genome manipulation. Annu. Rev.
Biochem., 79, 213–231.

21. Konc,J. and Jane ̌zi ̌c,D. (2014) Binding site comparison for function
prediction and pharmaceutical discovery. Curr. Opin. Struct. Biol.,
25, 34–39.

22. Kumar,V.N.A. (2021) PostgreSQL 13 Cookbook, Birmingham,
UK: Packt Publishing.

23. Lee,W., Yu,W. and Kim,S. et al (2012) PACSY, a relational database
management system for protein structure and chemical shift anal-
ysis. J. Biomol. NMR, 54, 169–179.

24. Lesk,A. (2010) Introduction to Protein Science: Architecture,
Function, and Genomics, 2nd edn. Oxford University Press, UK.

25. Liu,L. and Tamer Ozsu.,M. (2009) Encyclopedia of Database
Systems, New York, USA: Springer.

26. Mavromoustakos,T., Durdagi,S. and Koukoulitsa,C. et al (2011)
Strategies in the Rational Drug Design. Current Medicinal Chem-
istry, 18, 2517–2530.

27. Meysman,P., Zhou,C., Cule,B. et al (2015) Mining the entire Pro-
tein DataBank for frequent spatially cohesive amino acid patterns.
BioData Min., 8, 4.

28. Mishra,P. and Eich,M.H. (1992) Join processing in relational
databases. ACM Comput. Surv., 24, 63–113.

29. Berman,H. M., Westbrook,J, Feng,Z, et al (2000) The Protein Data
Bank. Nucleic Acids Res., 28, 1.

30. Rose,P.W., Prli ́c,A. and Altunkaya,A. et al (2017) The RCSB pro-
tein data bank: integrative view of protein, gene and 3D structural
information. Nucleic Acids Res., 45, D271–D281.

31. Samish,I., MacDermaid,C.M. and Manuel Perez-Aguilar,J., et al
(2011) Theoretical and computational protein design. Annu. Rev.
Phys. Chem., 62, 129–149.

32. Sanders,G. and Shin,S. (2001) Denormalization effects on perfor-
mance of rdbms. In: Proceedings of the 34th Annual Hawaii Inter-
national Conference on System Sciences (HICSS). IEEE Computer
Society, USA.

33. Sasha,D. and Bonnet,P. (2002) Database Tuning: Principles, Exper-
iments and Troubleshooting Techniques, Morgan Kaufmann, San
Francisco, CA, USA.

34. Schierz,A.C., Soldatova,L.N. and King,R.D. (2007) Overhauling
the PDB. Nat. Biotechnol., 25, 437–442.

35. Shin,S.K. and Lawrence Sanders.,G. (2006) Denormalization
strategies for data retrieval from data warehouses. Decis. Support
Syst., 42, 267–282.

36. Tsai,F.S. and Kwee,A.T. (2011) Database optimization for novelty
mining of business blogs. Expert Syst. Appl., 38, 11040–11047.

37. Williams,M.A. (2013) Protein–Ligand Interactions: Fundamen-
tals, Humana Press, New York, NY, pp. 3–34.

38. Mark,A.W. (2013) Protein-ligand interactions: Fundamentals.
Methods mol. biol., 1008, 3–34.

39. Zhang,Y., Zhou,X. and Zhang,Y. et al (2016) Virtual Denormal-
ization via Array Index Reference for Main Memory OLAP. IEEE
Trans. Knowl. Data Eng., 28, 1061–1074.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad093/7571373 by guest on 03 M

ay 2024

	An optimized relational database for querying structural patterns in proteins
	 Introduction
	 Structural patterns in proteins
	 Protein–ligand structural patterns
	 Graph-based structural pattern
	 GSP4PDB

	 Related work
	 Systems for managing PDB data
	 Optimization of relational databases

	 Relational database for proteins
	 Data extraction and pre-processing
	 Relational schema
	 Translating graph-based structural patterns into SQL queries
	 Evaluation of the normalized database

	 Database optimization
	 Denormalization
	 Indexing

	 Experimental evaluation
	 Methodology
	 Databases
	 Computer machines
	 Queries
	 Query test

	 Evaluation of real graph-based structural patterns
	 Evaluation of artificial graph-based structural patterns

	 Conclusions and future work
	Acknowledgements
	References

