
Visualization and exploration of linked data using virtual
reality
Alexander J. Kellmann 1,2, Max Postema2, Joris de Keijser2, Pjotr Svetachov3,
Rebecca C. Wilson 4, Esther J. van Enckevort 1,2, Morris A. Swertz 1,2,*

1Department of Genetics, University of Groningen, Antonius Deusinglaan 1, Groningen, Groningen 9713 AV, The Netherlands
2Department of Genetics, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, Groningen 9713 AV, The Netherlands
3Center of information technology, University of Groningen, Nettelbosje 1, Groningen, Groningen 9747 AJ, The Netherlands
4Public Health, Policy & Systems, University of Liverpool, Block B, 1st Floor, Waterhouse Building, 1-5 Dover Street, Liverpool L69 3GL, United
Kingdom
*
Corresponding author: Tel: +31 50 3617100; Fax: +31 50 3617231; Email: m.a.swertz@umcg.nl

Citation details: Kellmann, A.J., Postema, M., de Keijser, J. et al. Visualization and exploration of linked data using virtual reality. Database (2024) Vol.
2024: article ID baae008; DOI: https://doi.org/10.1093/database/baae008

Abstract
In this report, we analyse the use of virtual reality (VR) as a method to navigate and explore complex knowledge graphs. Over the past
few decades, linked data technologies [Resource Description Framework (RDF) and Web Ontology Language (OWL)] have shown to be
valuable to encode such graphs and many tools have emerged to interactively visualize RDF. However, as knowledge graphs get larger,
most of these tools struggle with the limitations of 2D screens or 3D projections. Therefore, in this paper, we evaluate the use of VR
to visually explore SPARQL Protocol and RDF Query Language (SPARQL) (construct) queries, including a series of tutorial videos that
demonstrate the power of VR (see Graph2VR tutorial playlist: https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-
_JmuiOEZbdH). We first review existing methods for Linked Data visualization and then report the creation of a prototype, Graph2VR.
Finally, we report a first evaluation of the use of VR for exploring linked data graphs. Our results show that most participants enjoyed
testing Graph2VR and found it to be a useful tool for graph exploration and data discovery. The usability study also provides valuable
insights for potential future improvements to Linked Data visualization in VR.

Introduction
In recent years Linked Data has increased in popularity for
representing complex analysis results, i.e. ‘hairballs’ of scien-
tific knowledge, in particular in light of the desire to increase
the FAIRness of research results (2, 3).

In 2009, Sir Tim Berners Lee, who is also known as the
‘inventor of the World Wide Web’ because he invented the
Hypertext Transfer Protocol protocol and Hypertext markup
language for web pages, gave a famous Ted talk about Linked
Data in which he described how incompatible data formats
and documentation systems make it necessary to examine
each data element in order to create something new (4, 5).
Berners Lee suggested that uploading unadulterated raw data
to the web as Linked Data would make it easier to combine,
link and reuse existing data. Since then, shared vocabularies
and ontologies have increasingly been used to structure data,
and chemical and biological registries, as well as governments,
have started using Linked Data to handle the large amounts
of data they store (6–9).

The Resource Description Framework (RDF) developed by
the World Wide Web Consortium is a standard for describing
data on the web in a machine-readable format (10). The RDF
data model describes information as subject–predicate–object

relationships called triples. This kind of data can be queried
using the SPARQL query language; however, the powers of
SPARQL and linked data are not readily accessible to users
unfamiliar with SPARQL. Graphical tools provide visual user
interfaces to support the user in visually exploring and access-
ing this kind of data. These triples can be used to create a
network graph visualization by representing the subject and
object of each triple as nodes and the predicates as edges
between them. Nodes that represent the same resource are
merged in the visual representation.

Immersive technologies such as virtual reality (VR) and
augmented reality (AR) are increasingly used in health and life
sciences for a variety of applications, including therapeutics,
training, simulation of real-world scenarios and data analy-
sis for, e.g. genomics and medical imaging (11–15). Immersive
analytics has established applications for abstract and multidi-
mensional data in this domain (see (12) for a review). A limited
number of applications exist to explore knowledge graphs in
VR (16–18), but these are merely visualizations and do not
offer many options for users to query and interact with the
data.

We hypothesize that VR will allow users to more readily
explore, compare and query large knowledge graphs using

© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

https://orcid.org/0000-0001-6108-5552
https://orcid.org/0000-0003-2294-593X
https://orcid.org/0000-0002-2440-3993
https://orcid.org/0000-0002-0979-3401
mailto:m.a.swertz@umcg.nl
https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH
https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH
https://creativecommons.org/licenses/by/4.0/

2 Database , Vol. 00, Article ID baae008

a gesture-driven interface that requires less technical exper-
tise. In this VR context, users can use ontologies to search,
order and filter data to their needs. Instead of writing SPARQL
queries, the user can expand existing connections and define
patterns in the data interactively using the VR controllers.
Overall, VR adds a third dimension and an open space that
can help users perform complex data analysis.

In this paper, to test this hypothesis, we first review recent
visualization methods and tools used for the exploration and
analysis of semantic web knowledge graphs and identify best
practice methods for visualizing and interacting with SPARQL
query results. We then select methods and materials and
implement an experimental VR prototype to explore Linked
Data and Graph2VR, evaluate its usability and investigate
the human and VR environment factors that could enhance
the exploration and analysis of semantic web knowledge
graphs.

Related work
As a basis for the Graph2VR experiment, we reviewed existing
tools that provide best practice methods for addressing spe-
cific challenges when working with (large) graph databases.
Our review included tools for visualizing graphs in 2D, 3D
and VR; those working with ontologies, SPARQL and graph
databases; backends for graph databases and general ways to
visualize data in VR (Supplementary Appendix Table A1).

Later, we describe some notable tools, LODLive, GraphDB,
Vasturiano, Toran, Visual Notation for OWL ontologies
(VOWL), Gruff and Tarsier (18–25), that all provide rich
graph exploration functionality, enumerate functional chal-
lenges and visualization aspects and highlight their imple-
mentation in Graph2VR. We also refer the reader to some
overview papers about tools to visualize and interact with
ontologies, Linked Data or graph databases in general, which
have been tested and described, e.g. in the following papers.
(6, 26, 27).

In ‘LodLive’, the user is first asked for a SPARQL Endpoint
and a Unique Resource Identifier (URI). Each node is repre-
sented as a circle in LodLive, and outgoing connections are
represented as small nodes around it (see Figure 1). Each node
offers some options in the form of a menu that includes ‘i’ for
information, a button to focus on the node and to close other
relationships, a button to open a link to the URI to show an
online resource, a button to expand all relationships around
that node and a button to remove the selected node. Once a
node is added, existing connections to other open nodes are
also displayed. However, beyond opening new connections
and a comprehensive info panel that shows information about
the respective node in a flexible way that makes use of dif-
ferent kinds of semantic annotations, integrating images and
even google maps, the query possibilities in LodLive are quite
limited.

‘GraphDB’ and ‘Metaphactory’ are commercial software
tools (20, 28). They use an internal database and offer an
autocomplete search function to find URIs. The user is thus
not required to know the precise URI, which makes the tools
quite user-friendly. GraphDB also offers an option to collapse
all nodes around a specific node instead of only allowing users
to delete specific nodes (Figure 2).

The Visual Notation for OWL Ontologies ‘VOWL’ (22,
23) adds use of colour-blind-friendly colours and symbols

Figure 1. A screenshot of LodLive (19): the graph can be expanded by
clicking on the small clouds or circles around the node.

Figure 2. A small ‘Visual Graph’ in GraphDB (20). The node in the middle
has a menu with the option to collapse connections around that node.

Figure 3. Screenshot of WebVOWL showing parts of the FOAF
ontology (32).

to visualize different types of nodes and edges. Two exam-
ples of the implementation of VOWL are a plugin for Protégé
and WebVOWL (29, 30). WebVOWL is an online visual-
ization for ontologies. By default, WebVOWL starts with a
subgraph of the Friend of a Friend Ontology (FOAF) ontol-
ogy, as shown in Figure 3, but users can upload their own, owl
files. QueryVOWL, another VOWL tool, can be used to query

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baae008 3

Figure 4. Gruff allows users to build queries visually and shows the
SPARQL query, so it can be modified (4(A)). The results can be displayed
as a visual graph (4(B))(24). (A) Screenshot of a query built-in Gruff’s
‘Graphical Query View’. (B) Screenshot of the resulting graph in Gruff’s
‘Graph View’. When zoomed out, the texts disappear, but the colours still
indicate similar nodes and edges.

a SPARQL Endpoint using a textual search to create a visual
graph as output (31).

Gruff is a commercial tool that can use its internal graph
database (Allegro graph), SPARQL Endpoints and Neo4j.
After selecting a database, users can ‘Display some sam-
ple triples’ from that database without any prior knowledge
about the content, which is very convenient for new users.
Gruff offers a visual query view to describe the necessary
relations using variables and searching for nodes. These rela-
tions can contain specific URIs, such as constant nodes and
variables. The relationships created in query view are then
translated into an editable SPARQL query, which can be
altered to add additional filters or other specific SPARQL com-
mands. This translation from a visualization to an editable
SPARQL query is convenient and makes Gruff stand out as
a tool. However, screen size is a limiting factor for Gruff.
When zooming out, the text becomes too small to read
and is hidden. The user can move the window of visible
nodes in all directions. Instead of using labels, Gruff uses
colours and shapes to indicate similar nodes and repeating
edges.

Finally, ‘Tarsier’ is a tool that makes use of a 3D represen-
tation of SPARQL queries. Filters allow users to select nodes
that fulfil specific criteria and shift them to another ‘seman-
tic plane’. This tool was built with the intention to help new
students to learn SPARQL and understand how filters work
(Figure 5).

Figure 5. Tarsier filter data and can shift datapoints to different semantic
planes accordingly. (This screenshot was taken from a video from the
authors of Tarsier (33)).

Materials and Methods
Based on the analysis of existing tools and approaches, we
prioritized a list of key features for Graph2VR, which are
summarized in Table 1. We aimed to combine some of the
strengths of the different methods from different tools in one
VR application that enables immersive 3D visualization that
allows interaction with and manipulation of data. Graph2VR
is an extensive usable prototype that still has a few issues
that need to be resolved. It is extendable and demonstrates
how a VR application can be used to visualize and interact
with Linked Data. A more detailed description of its fea-
tures is present in the user manual in (34) and in five tutorial
videos (1). Later, we describe the methodological consider-
ations for these features in detail, grouped by initialization,
visualization, navigation and data analysis.

Initialization
In many visualization tools, graph exploration starts from
either a small subgraph (bottom-up or local view) or a global
hierarchy (top-down or global view) in which zoom and filters
are used to request more details (35). Starting from a sub-
graph, either an overview graph or a start node, the user can
expand the graph by opening further connections. Commonly,
tools that work with SPARQL need the Uniform Resource
Locator of a SPARQL Endpoint to determine to which graph
database their requests should be sent. Additionally, they need
a URI, SPARQL query or keyword to know where to start the
graph exploration. The graph can then be expanded further
to explore it incrementally. In Graph2VR, one can start with
an initially provided SPARQL query and explore from there.

Visualization
This section summarizes methods around visualization, in
particular use of layout, colour and information display.

Layout
In general, the layout of graphs in the tools is either static or
is restructured over time to increase the distance between the
nodes and the readability. The Fruchterman–Reingold algo-
rithm is a force-directed graph algorithm (36). The regular
runtime of the algorithm has a runtime of 𝒪(|N|2 + |E|), where
N is the number of nodes and E is the number of edges (37).

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

4 Database , Vol. 00, Article ID baae008

Table 1. Key features of Graph2VR

Category Description

Initialization A configuration file is used to preconfigure which SPARQL Endpoint to start from and additional ones to switch to. Graph
exploration usually starts from either a single URI or a small graph, which can also be specified in the configuration file.
Image predicates, predicates that get suggested for new connections and colour coding can be adjusted in this file. We
adopted the VOWL colour schema as a reasonable default.

Visualization To visualize Linked Data, nodes are represented as spheres and the edges between them as arrows. The colour schema is used
to represent different kinds of nodes or their current status (e.g. being selected or part of a query). A choice of graph layout
(3D, 2D, hierarchical and class hierarchy) for the visualization will give the most flexibility for the user. Labels and images for
nodes and labels for edges are preloaded when the graph is expanded.

Interaction Graph2VR provides features for interacting with the visualized Linked Data. The user can grab and move single nodes or
the whole graph. Once grabbed, the whole graph can be moved, rotated and scaled. There are four different graph layout
options: 3D, 2D, hierarchical and class hierarchy. The user has different ways to navigate in the VR environment. Graph2VR
is a room-scale VR application, so looking around and taking a few steps can help to move small distances. For larger dis-
tances, the user can either teleport or fly. Pinning nodes prevents them from being affected by the layout algorithm so that
they can be restructured manually. The user can create new nodes, edges and graphs; drag and drop nodes and graphs; and
convert nodes or edges to variables to create queries. New nodes can be added by searching for them in the database or by
spawning a new variable node. After selecting single nodes or edges, the circle menu shows options for the selected node or
edge for further interaction.

Data analysis Graph2VR provides features for querying SPARQL Endpoints, including graph expansion. In addition, the nodes and edges
can be used to generate custom queries visually. Triples can be selected to be part of a SPARQL query. A predefined set of
commands, including selecting triples, creating variables, OrderBy and Limit, can be used to create a SPARQL query. Options
that affect a whole triple can be found in the edge menu.

The algorithm also works in three dimensions. As the graphs
get larger, the number of node–node interactions increases.
For larger graphs, other algorithms like the Barnes–Hut algo-
rithm scale better. The Barnes–Hut algorithm combines the
gravity centre of nodes that are further away so that fewer cal-
culations need to be executed (38, 39). There are, of course,
many more algorithms like Kamada–Kawai that could be used
to handle even more nodes in a graph at once (36, 40). In a 3D
representation, we can use the third dimension to compare a
stack of 2D layers. In the literature, this kind of representation
is known as semantic planes (25, 41), and Tarsier already
makes use of it. Tarsier runs on a local server and can be
accessed via its web interface. It allows the user to apply fil-
ters, then takes all the nodes that fulfil the selection criteria
and shifts them to another semantic plane. A stack of differ-
ent planes of information would allow a user to compare them
without losing their internal structure (e.g. a tree structure).
In this way, the user can, e.g. compare data and annotate the
similarity between two resources. For comparisons, different
predicates can be used to describe the kinds of connections
between different nodes. In their Scientific Lens paper, Batche-
lor et al. name four predicates with decreasing similarity levels
to compare similar entities that could be used to compare dif-
ferent entities with similar meanings: ‘owl: sameAs’, ‘skos:
exactMatch’, ‘skos: closeMatch’ and ‘rdfs: seeAlso’ (42). In
the final version of Graph2VR, we added those as predefined
predicates so that a user can quickly adjust the predicate of
an edge. In Graph2VR, results can be shown as a series of
semantic planes representing the different results that match a
given query pattern (see section Demonstration Data). These
planes are useful for comparing different 2D structures and
creating new connections. For example, multiple 2D layers
of class hierarchies allow users to compare between differ-
ent ontologies, which can be used to find similarities and
differences.

Colour
The colouring of nodes and edges also varies from tool to tool.
LodLive uses random colours, whereas Gruff reuses the same
colour for the same types of nodes and edges. The VOWL
colour scheme defines the colour of each node based on its
properties, using specific colours for classes, variables, blank
nodes and literals. It has also been designed to be colour-blind-
friendly and understandable when printed in black and white
(32). VOWL recommends using specific shapes or patterns
to indicate different attributes, e.g. a ring around a node to
represent a class. For the 3D environment, the colours can
be reused, but some forms need to be adjusted. In 3D, for
example, a circle around a sphere to indicate a class could
be represented as either a circle or a sphere. Using different
forms and shapes would also be a viable option to represent
an object in Linked Data. In Graph2VR, we primarily apply
the VOWL schema but have not yet implemented all of it.
We also add some colours for variables and selected triples.
Further details can be found in the manual (34). As graphs
become larger through expansion, it becomes more impor-
tant to be able to quickly identify different types of nodes,
i.e. is the node a URI, a literal, a blank node or a variable?
Some tools do not distinguish, displaying all nodes in the same
or a custom colour. One example of such a tool is ‘Noda’,
an application sold on Steam that allows the user to interact
with 3D mindmaps or graph structures by adding nodes and
edges with different sizes, symbols, colours and labels (43).
Gruff colours the same kinds of connections in the same ran-
domly chosen colour, whereas the VOWL colour scheme can
help users make distinctions quickly (23). In Graph2VR, parts
of the VOWL schema are applied, making literals (strings
and numbers) yellow, URIs blue and classes light blue (only
if the class relationship is expanded). Blank nodes are dark.
When a node or edge is selected using the laser, it turns red.
When converted to a variable, nodes and edges turn green.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baae008 5

Nodes and edges glow white when the user hovers over them
with the laser. If triples are part of the selection for a query,
they shine in a bright yellow colour. While common edges
are black with a black arrowhead, the arrowhead changes
the colour for the ‘rdfs: subClassOf’ relationship to a white
arrowhead.

Information display
One useful feature in tools like LODLive or WebVOWL is
an information box containing essential information about a
selected node, although which information is displayed varies.
Typical information provided is the URI, label, class relation-
ship and sometimes comments. SPARQL offers the ‘describe’
function to request some basic information, but the results
can be quite extensive. Therefore, it is better to restrict the
information to a selection of predicates.

To visualize query results, we parsed the results and dis-
played the URIs or, if findable, the labels of the nodes and
edges in the graph. To further improve readability, the labels
above the nodes are continuously rotated towards the user, as
are the images. This can be seen in the first part of the Video
tutorial (1). In contrast, the texts above the edges always sit on
top of the connecting lines and are readable from both sides
of the edges. Since URIs are often long strings of characters,
the labels of the URIs are displayed instead (if available). The
complete URI appears when the user hovers over the edge with
the laser.

Interaction
This section summarizes features for interaction with the
visualization, in particular methods for controls, navigation,
zooming and rotation and menus in VR.

Controls
To enable users to reorder nodes, we implemented a gesture-
driven interface that allows the user to drag and drop them
using the controllers. The user grabs a node with both hands
while pressing the grip button. Grabbing a node while press-
ing the trigger button allows new links between two nodes to
be created.

When multiple graphs exist in VR, it can be challenging
to grab and manipulate the desired graph. To differentiate
between different graphs, we implemented a sphere around
all the nodes of a graph that is only visible from the outside of
the graph, to avoid cluttering the view. This sphere determines
the size of a graph and allows the user to interact with a spe-
cific graph. When a SPARQL query is executed and multiple
results are created in different layers (semantic planes), each
layer is generated as a separate graph. Grabbing and moving
a graph enable the user to work with a specific subgraph. To
remove less interesting graphs, we made it possible to delete
sibling graphs (all the other graphs created by the same query
aside from the current one) or all child graphs of a particular
graph. When the semantic planes are displayed next to each
other, we first tested drawing flat planes around the 2D visual-
izations. Those planes were transparent, similar to the sphere
surrounding the 3D version of the graph. However, as multiple
partially transparent 2D layers behind each other turned out
to be more distracting than useful, we turned off the planes
by default.

Figure 6. The sphere in Toran (6(A)) was the inspiration for having a
sphere and for how to rotate, zoom and drag&drop a graph (21). For
comparison, see the sphere in Graph2VR (6(B)). (A) Screenshot of Toran,
a transparent sphere surrounds the game elements. (B) Screenshot of
rotating a graph in Graph2VR. A transparent sphere surrounds the graph.

Navigation
We added a platform to Graph2VR to make orientation easier
as it feels more natural for a user to stand and walk on a sur-
face than to float in empty space. Common ways to move in
room-scaled VR applications are moving in the room, walk-
ing with a thumbstick or trackpad, teleportation and, in some
cases, flying. In Noda, users can drag themselves through the
room. In GraphXR, users can rotate the whole graph. Finally,
in 3D Force Graphs, the user can fly through a universe of
huge nodes (17, 18, 43). To give the user maximum freedom
for navigation, we implemented both flying and teleportation
and, if the user looks around or moves, this also happens in
the virtual environment.

Zoom and rotation
Graph2VR offers several ways to interact with a graph.
When using the grip buttons of the VR controller on a
node, the user can drag and drop a node close to the con-
troller. Here, we were inspired by functions in the game/tech
demo Toran (Figure 6(A)) (21). In that demo, a graph is
embedded in a round sphere that can be freely rotated and
zoomed (Figure 6(B)). The user can also create new connec-
tions between nodes within the sphere. As this also suits
working with graphs, we implemented similar ways to interact
with the graphs in Graph2VR. Both controllers’ grip buttons
must be pressed close to the graph simultaneously to grab the
whole graph, which can then be dragged around and rotated
freely. When the controllers are moved together/away from

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

6 Database , Vol. 00, Article ID baae008

Figure 7. The circle menu in 7(A) shows different options based on the
context. There are submenus that show more details, such as the
outgoing connections in 7(B). (A) The circle menu after clicking on a node.
(B) Circle menu displays multiple outgoing connections.

each other, the graph is scaled down/up. It is possible to grab
a node and the whole graph simultaneously. This results in
scaling the entire graph; only the grabbed node does not scale
with the graph, which can be used to scale specific nodes up
or down. It is also possible to work with multiple graphs in
Graph2VR, and each can have a different size.

Circle menu
VR has not yet evolved to have standard control archetypes
comparable to those used in 2D user interfaces. Nonetheless,
users do need a system that allows them to quickly choose
from sets of options. We were inspired to create a circu-
lar menu by the ‘Aesthethic Hover UI’ asset (44). Here, we
first attempted to reuse the HoverUIKit, but it used depreci-
ated packages, so we ultimately built our own circle menu.
Most 2D tools like LOD Live, Gruff, GraphDB and
Metaphactory show their menu and search options next to
the nodes (19, 20, 24, 45), but VR offers a wider range of
options. We therefore considered having the menu directly
next to the node, on the left arm, on a virtual display or
panel or static in front of the head as in a helmet display.
After some testing, we determined that a menu with many
options within a hairball of nodes would not be the appro-
priate solution and that the menu was best readable on the
left controller. This circular menu has several submenus and
shows the options that can be applied in the current context.
When a node is selected, the menu displays options that can
be applied to that node (Figure 7(A)). When selecting an edge,
a menu for the edge is shown. In the node menu are further
submenus that show all incoming or outgoing relations from
or to the selected node. To improve the usability of the menu,
we added some icons to the options in the circle menu. Click

sounds indicate that buttons have been pressed, and white cir-
cles around newly spawned nodes that disappear within 2 s
denote changes within the application. For new Graph2VR
users, we have added a short help menu describing the main
functionalities.

Data analysis
This section summarizes methods for graph manipulation, in
particular query generation, search, and save and load.

Query generation
In SPARQL, Select queries result in tabular answers, while
Construct queries describe graph structures. Therefore,
Graph2VR uses Select queries to populate the menu, e.g. with
the incoming and outgoing connections of a node, and Con-
struct queries to create graph structures. Nodes with the same
URI are combined into one node in the visualization to gener-
ate a network graph instead of a list of triples. The submenu
for incoming (and outgoing) connections lists the predicates
pointing to (or from) the current node. They are then grouped
by their predicates, and the number of available triples for
each predicate is displayed next to the entry. When there are
more predicates than can be displayed at once, a circular
scrollbar can be used to scroll through the menu (Figure 7(B)).
If a node with the same URI is added to a graph, it will
be merged with the existing node. To restrict the number of
results when expanding the graph (e.g. if one node has thou-
sands of connections of the same type), there is a limit on
how many connections to open (default is 25). This default
limit can be adjusted using the limit slider below the menu
(Figure 7(B)). The slider is not a linear scale but has fixed
amounts of nodes.

To improve predicate readability, predicate labels are
shown instead of the URI. If no label is available, the URI
is shortened, but it is still possible to see the entire URI when
hovering over the menu with the pointer. The predicates are
ordered alphabetically by URI, not by the shortened version
shown, which may confuse users when the base URI changes
and the alphabetic order starts from the beginning again.
When there are multiple connections between the same nodes,
or in case of a self-reference, the straight edges are replaced by
bent arrows to avoid overlapping texts.

Node removal
Once nodes are established, the user should have the option to
remove them from the visualization. We implemented two dif-
ferent ways to do so. The simplest is the ‘close’ option, which
removes the node and all triples containing this node from
the visualization (but not the database). A more complex way
to reduce the size of the graph is the ‘collapse’ option. This
removes all leaf nodes around the selected node, while the
node itself remains. Leaf nodes are nodes with no other con-
nections within the visualization (but not necessarily in the
underlying graph database). This helps reduce the number of
nodes while preserving the graph structure.

For each node, the user has the option to remove it or
to remove the surrounding leaf nodes (incoming, outgoing
or both). When a node is deleted, the edges around it and
its leaf nodes are also removed because there would be no
triple left that contains them. This could lead to many sin-
gle nodes that the user would have to remove manually. To
prevent accidental removal when collapsing a selected node

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baae008 7

(when no triples are left containing it), and to keep newly cre-
ated nodes that are not yet part of a triple, we decided to keep
single nodes so that a user can connect them or start a new
exploration from there.

When queries are sent in Graph2VR, the response will be
displayed in new graphs that we call child graphs. To remove
these again, each graph has the option to remove a whole
graph at once. When a query creates multiple child graphs,
it would be too much effort to remove those one-by-one. We
therefore included an option to delete all child graphs from the
original graph or the operation to delete all sibling graphs.
Removing all child graphs will remove all child graphs of
the respective graph. Each of the graphs also has the option
to remove its sibling graphs, which will remove all unmod-
ified sibling graphs created by the same query, leaving only
the selected graph and modified graphs. If the last graph has
been removed, it is possible to create a new graph by creat-
ing a new node, loading some saved data or using the search
function(s).

Search
Graph2VR was intended to be more interactive than just a
visualization. To be able to create some SPARQL queries visu-
ally, we added ways to create and rename variables or search
for keywords. This required a text input system. We therefore
reused a virtual keyboard from Unity’s asset store, VRKeys,
that uses VR controllers as drumsticks to enter text (46). This
approach to entering text in VR has two advantages over other
applications, which mainly use a laser with a point-and-click
system. Drumming the keyboard does not use an additional
key, so it does not interfere with our controls, and it can be
done with two hands simultaneously. We also implemented
both a global search in the settings menu and a context-
specific search that can be accessed from the node menu for
variable nodes. In addition to the keyword, this second search
function takes all the selected triples into account. Only results
that match the selected variable in the given context and
the keyword are shown. Both search functions attempt to
perform an autocomplete search on the search term. Depend-
ing on the settings, the search can either be triggered with
every keystroke on the VR keyboard or by pressing the
return key.

Save and load
Graph2VR has two different ways to save and load data to
a file. The first is to save the whole state of the application,
including all the nodes, edges, their positions, labels, graphs,
etc. Even images that have been loaded are saved, so they can
be reloaded even if they are no longer on the internet. To pre-
vent saved files from becoming too large, the image resolution
is scaled down if it is too large. The quicksave option offers
one save slot that will be overwritten every time. Alternatively,
the user can specify a filename for a save state, allowing multi-
ple save states. Loading a save state will overwrite the current
session. Another way of saving and loading is to save triples
as ntriples. This is a standard format that can also be read
from other applications. In contrast to the first save option,
this only saves the triples, and positions, images and single
nodes are not stored. When loading an ntriples file, all the
triples are automatically added to the current scene. In con-
trast to loading a save state, loading an ntriples file does not
overwrite the current scene. Instead, all the triples are added

as an additional graph. We strongly advise users not to load
large ntriples files because Graph2VR could become slow or
unresponsive. We could load about 5000 triples at once during
our tests, but the framerate dropped to around five frames per
second. For larger ntriples files, we recommend loading them
into a SPARQL endpoint, e.g. a Virtuoso server, and accessing
only the relevant parts from there (47).

Implementation
Based on the methodological basis, we implemented a
Graph2VR prototype in Unity (version 2 021.2f1) (48). This
section summarizes implementation details, in particular
use of Quest 2 VR, how to best represent RDF in unity,
implementation of the layout algorithms and performance
optimizations.

Standalone on Quest 2 VR headset
Graph2VR was designed to run as a standalone version on
the Quest 2 VR headset, but it also supports the HTC Vive
headset. We recommend using the Quest 2 headset because
its higher resolution provides better readability. Graph2VR
can be compiled as a Windows application (.exe) or as a stan-
dalone application (.apk) for the Meta Quest 2 VR headset.
Our Graph2VR implementation process started with the Free
Unity WebXR Exporter from the Unity Asset store (49). This
template includes a desert background and some objects and
models for the VR controllers. To be able to select nodes, a
laser pointer was added to the right controller. We used a sam-
ple dataset in a local Virtuoso server via docker as a database
(50). To access the server, a modified DotNetRDF (version 2.6)
is used (51, 52). At some point, DotNetRDF checks whether
a specific interface is present, but even if it was present, the
test failed in the Quest 2 standalone application. We resolved
this by removing this check and recompiling the DotNetRDF
library. One of the tougher decisions during the implementa-
tion process was whether to use SteamVR or OpenXR (53,
54). SteamVR, as commercial software, supports many VR
headsets out of the box, provides 3D controller models and
is, in general, easier to use due to its more abstract con-
troller bindings. On the other hand, OpenXR would allow
us to build a standalone application for the Quest2 headset
that does not require a connection to a personal computer
with a strong graphics card. Ultimately, we chose OpenXR
and were able to create a standalone application for the
Quest2.

RDF representation
One issue we had to resolve was whether to use the repre-
sentation of graphs provided by DotNetRDF, using iNodes
and iGraphs, or whether to use the Unity in-memory repre-
sentation for the nodes and edges. Unity-based prefabs can
help to circumvent potential inconsistencies of two represen-
tations of the same dataset. Keeping both representations
would be more error-prone but would allow reuse of more
iGraph functionalities. The DotNetRDF representation has
certain advantages when parsing and reusing the query results.
Many functionalities were already present and utilizable. The
disadvantage of this representation was that both the internal
and the visual would need updates when adapting the graph.
Additionally, while iGraphs in DotNetRDF support triples,
adding a single node to our graphs, e.g. when a user adds a

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

8 Database , Vol. 00, Article ID baae008

Figure 8. The hierarchical layout adds new triples, alternating vertical and
horizontal on the ‘right’ side. Only the rdfs: SubClassOf relations are
pointing to the ‘left’ side. They have a white arrowhead as specified in the
VOWL schema.

new node, led to differences between iGraph and visual repre-
sentation. Consequently, the decision was made to rely on the
unity-based representation to allow single nodes and enable
step-by-step generation of new triples without consistency
issues.

Layout algorithms
Layout algorithms help to reorder the graph to improve read-
ability. We implemented four layout algorithms: 3D force-
directed, 2D force-directed, hierarchical view and class hier-
archy. For the force-directed 3D layout, we used the Fruchter-
man Reingold Algorithm (37), which uses repulsive forces
between nodes and attractive forces along the edges. Over
time, the ‘temperature’ cools down, the forces get weaker, the
adjustments in the graph get smaller and smaller and there
can be a cut-off value. In Graph2VR, layout algorithms can be
switched via the Graph operations menu. Inspired by Gephi,
we modularized the layout algorithm, so the user can swap
to other layout algorithms (55). For the 2D layout, we used
a simple layout heuristic, simply ordering the nodes sequen-
tially in a plane aided by minimal force direction. While the
force-directed Fruchterman Reingold algorithm forms circles
in 2D or spheres of nodes in 3D, the ‘Hierarchical View’ layout
orders the nodes alternating in horizontal and vertical stacks
(Figure 8). This makes it easier to read the labels of the nodes
and find a specific node. Additionally, the nodes are sorted
alphabetically in this layout. New outgoing nodes are usu-
ally added to the expanded node’s right side. However, an
exception is the rdfs: subClassOf relationship, which points
to the left.

Besides the ‘Hierarchical View’, we also added a ‘Class
Hierarchy’ layout. The basic idea of this layout was to cre-
ate a class hierarchy, like the tree structure in Protégé (29),
but in three dimensions. The base of this layout is a 2D class
hierarchy based on the rdfs: subClassOf predicate. Each of the

Figure 9. Comparison of the 3D class hierarchy in Graph2VR (9(A)) with
the 2D class hierarchy in Protégé (9(B)) showing the same class
hierarchy. (A) The class hierarchy in Graph2VR can display subclasses and
individuals in a single 3D tree structure. The individuals and their
attributes point in the third dimension. (B) The class hierarchy in Protégé
is a tree structure starting at owl: thing. The individuals are displayed in a
separate panel after selecting one of the classes.

classes (or subclasses) can contain multiple individuals of that
class. We can use the extra dimension to display the individu-
als in a list orthogonal to the 2D class hierarchy based on the
rdf: type predicate. See Figure 9(A).

Finally, a pin function was added to pin certain nodes to
their current position. A pin prevents these nodes from being
affected by the layout algorithm, but they can still be dragged
around manually. This can have interesting effects when some

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baae008 9

nodes are pinned and layout algorithms are applied only to
parts of the graph. It can be helpful to have a class hierarchy
for the classes, pin it and continue exploring the individuals,
e.g. with a force-directed algorithm.

Performance optimizations
To prevent the whole application from stuttering while
SPARQL queries are executed, we put them into separate
threads. This way, Graph2VR will not stutter even if a query
takes several seconds to be executed. The disadvantage of
this is that the order of results from different queries is not
determined. There is a race condition between the differ-
ent queries, with the faster result displayed first. This may
affect the search function when ‘search on key press’ is acti-
vated as it fires a query on each key press. This can be
quite fast compared to the variation in execution times of
the search queries, potentially leading to a situation where
search results for an older but slower query overwrite newer
results. To speed-up free-text search queries, we used the bif:
contains command. This command is not supported by every
SPARQL server but is supported by e.g. OpenLink’s Virtuoso
(56). The bif: contains command triggers a search function
on a preindexed internal Structured query language table. If
such an index exists, this command can be used to speed up
the free-text search. If the index does not exist, the server
will most likely return empty results (57). During our tests,
the DBpedia SPARQL endpoint supported the bif: contains
command. One restriction of the bif: contains command (in
Virtuoso) is that it only supports words with at least four
letters and needs to be enclosed in brackets if it contains
spaces. This is a problem if the search term consists of mul-
tiple connected words that belong together (e.g. names with
‘Mc’ at the beginning or ‘van’ in the middle). We did over-
come this issue by separating the words but replacing the
spaces of words with fewer than four letters with a star (any
character) so that the whole name can be used as a single
search term.

Results
Application overview
A SPARQL query can be used to define the initial graph.
A combination of URIs, literals and variables in SPARQL
is used to define query patterns and to request results that
match this pattern from the database. Traditionally, formulat-
ing a SPARQL query involved manually searching for relevant
URIs and predicates, a process that could take several min-
utes, especially for complex queries involving multiple triples.
In Graph2VR, it is just a matter of expanding the graph by
clicking on the desired predicate and expanding the graph and
converting existing nodes (or edges) in the graph to variables.
If necessary, new nodes and edges can be spawned. Once the
relevant triples in the graph are selected, the results can be
requested.

We implemented two different ways to display the query
results. They can either be displayed as a single result graph
containing all the triples merged into one new graph or as
a series of separate result graphs stacked behind each other.
These result graphs are independent graphs. To make sure that
not all of them are moved, scaled and rotated at the same time,
only one graph (the closest) can be grabbed at the same time.
The relevant distance is the distance between the middle point

of a graph and the left controller. There are also options to
dispose of those stacks of graphs.

The idea of displaying parts of the results as stacked 2D
projections had already been used in previous applications.
Tarsier, for example, uses them to separate nodes that do or do
not meet user-defined filter criteria into different planes (25).
In the current version of Graph2VR, we did not implement a
filter function, but the Tarsier approach might be an excellent
way to do so in the future.

SPARQL has several commands to modify a query. The
limit slider was already introduced to limit the number of
nodes when expanding the graph (Figure 7(B)). It also can
be used to limit the number of result graphs when sending a
query. Another modifier is the ORDER BY command, which
is used to order the stacked result graphs either descending
or ascending. We added this menu option so that the variable
can be selected by clicking on it, and there is a small adjacent
button (ASC/DESC) to adjust the order.

Graph2VR can connect to local and online SPARQL End-
points. If databases are preconfigured, users can switch
between them via the circle menu.

Demonstration data
For testing purposes, we provided an easy-to-understand data
example from DBpedia, which is one of the best-known public
sources for Linked Data and is based on Wikipedia (58).

In contrast to Wikipedia, it is possible to query data in
DBpedia using SPARQL queries. One of the examples from
a lecture about the semantic web was how to ask DBpedia for
the second-highest mountain in a certain country, e.g. Aus-
tralia (59). While it is challenging to find this information
simply by reading Wikipedia articles, writing a SPARQL query
to get this information from DBpedia is relatively easy. Since
all the information is represented as triples, a user only needs
to find out which predicates are used to encode height (dbo:
elevation), location (dbp: location) and the fact that it should
be a mountain (rdf: type dbo: mountain). The prefixes (res,
dbo, dbp and rdf) are the abbreviations of the base URIs and
are defined first. To find out which URIs need to be used, a
user could open an entry about any mountain, look up the
respective predicates and use that information to build their
SPARQL query. The following example query is not about
the second-highest mountain in Australia but rather about
the highest mountains in DBpedia and their location. The
mountains are ordered in descending order by height:

PREFIX res: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns>

SELECT ?Mountain ?location ?height
Where {
?Mountain rdf: type dbo: Mountain.
?Mountain dbp: location ?location.
?Mountain dbo: elevation ?height.
}
ORDER BY DESC(?height)
Limit 25

Within Graph2VR, this search can be done visually with-
out manually looking up all the URIs for the predicates. All

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns

10 Database , Vol. 00, Article ID baae008

Figure 10. Creating a query pattern in Graph2VR (10(A)) and requesting
the result graphs (10(B)). (A) Query patterns can be created visually in
Graph2VR by selecting the triples in the graph that should be part of the
query. The query can be modified using the Language settings, Order By
options and the Query Limit slider. (B) After rotating the graph and
clicking on ‘Request similar patterns’, the results are displayed in a stack
of multiple independent graphs.

outgoing predicates are listed in the menu, so the user only
needs to select them.

Within Graph2VR, it is possible to select the relevant
triples, add those to the query pattern, transform the respec-
tive nodes into variables and then send the query to the
SPARQL Endpoint. Besides the limit, the example query is the
same one used as the example for Gruff (Figure 4). This task
might still be tricky for a number of reasons: not every moun-
tain’s height is represented using the same predicate, some
mountains might be missing in the database or there might
be multiple instances encoding the same mountain. However,
this is a limitation of DBpedia data, not Graph2VR.

In many cases, DBpedia uses language tags that indicate the
language used for the literal. Just asking for all labels results
in many labels in different languages. We therefore added a
language filter feature to Graph2VR that can be set via the
settings menu. This allows users to request only labels with
a specific language tag or no language tag at all. Once set,
this is applied to every query. This may have consequences
for the results, as it will not be indicated when the content
is unavailable in the desired language or without a language
tag. However, being able to set these conditions in the menu
is more convenient than writing a SPARQL query to do so.

Usability survey
To assess usability, we conducted a user evaluation with 34
participants. We were interested in how useful the application

Figure 11. Results usability questionnaire questions 9–15.

Figure 12. Results usability questionnaire questions 19 and 20.

was for sensemaking, whether users enjoy the experience in
VR and what influences their perceptions. By ‘sensemaking’,
we mean the ability of the participant to answer questions
or get understandable content from the semantic graph using
the Graph2VR interface. We adopted this term from the Tar-
sier paper, which reused it from another earlier paper (25,
60) . Some participants already had some experience with
in GraphDB, SPARQL or Linked Data, but others did not.
We guided all first-time users through the application, told
them about their options and let them test the different fea-
tures. Then, we asked the users a series of questions, described
in Supplementary Appendix B. The results are summarized

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baae008 11

Table 2. Interpretation of the statistically significant correlations of the
usability study results ordered by p-values.

in Figures 11 and 12 with data from the usability survey
available in Supplementary Appendix B.

Evaluation results
We identified several factors that influenced how much partici-
pants enjoyed testing Graph2VR and how effective they found
the tool. One hypothesis was that people who are more used
to playing computer games, especially if they have experience
with VR glasses, might have an easier time using our appli-
cation. It was uncertain whether age would have any effect,
but we could imagine that younger participants, as digital
natives, might find it easier. So there might be a weak corre-
lation. To differentiate between enjoyment and effectiveness,
both questions were asked after the VR experience and next
to each other. We assumed that people who had a better expe-
rience, with fewer bugs, would rate their enjoyment as well
as the tool’s effectivity for sensemaking more highly. We also
expected a worse rating when the application had problems
like poor readability or functions not working. An intuitive
user interface makes the application more effective and enjoy-
able, whereas high complexity can make the application more
interesting for experts but more difficult to use for beginners.
During our studies, we determined that most participants
found navigation and exploration quite easy, while the query-
building seemed more challenging. Creating and modifying
queries seemed to be noticeably easier for the ‘expert users’
who had at least some experience with Linked Data and writ-
ing SPARQL queries. Finally, we looked at the correlations
between participants’ answers to the different questions. In
addition to the Pearson correlation, P-values were calculated
to determine the significance of those correlations. The com-
plete correlation matrix is given in Supplementary Appendix
Table A6. In Table 2, we summarize the statistically significant
correlations.

The questions, results and a more detailed evaluation can
be found in Supplementary Appendix B. The findings are

mostly as expected: having played video games more often
is positively correlated with more intuitive navigation in the
virtual world. Most participants also preferred flying to tele-
portation. We also found a positive correlation between nav-
igation with gesture controls, requesting query results and
exploring further details. We were curious whether age would
have any significant effect on the experience of Graph2VR.
Most participants (26/34) were between 30 and 50 years old.
The sample size of people outside that age group was too small
and probably not representative enough to draw any statis-
tically significant conclusions. At the end of the experiment,
we asked participants how much they enjoyed the experience
and how effective Graph2VR is for sensemaking. Since both
questions were asked at the same moment after the test, it is
not a surprise that the answers are highly correlated. What is
interesting is which factors are most relevant. For enjoying the
experience, there is a strong correlation between the gesture
controls and the graph exploration, as well as the exploration
of further details. The exploration of further details is the
second-to-last question during the VR session. A positive rat-
ing for this question implies that it was possible to request
further results and that no major bug prevented this. When
a problem occurred, the rating and the overall impression
decreased. As Graph2VR was still under active development
during the user study, some of the issues were fixed over
time. Examples of this are the Limit slider that intersected
with the scrollbar around the circle menu, nodes that were
hard to select when they were zoomed too large and a lay-
out option that led to many nodes being stapled at the same
position.

Setting up the query, selecting the relevant triples, setting
the order (and optionally the limit) and requesting the results
seemed to be the most complex part of the study for many
participants, especially those with no previous experience
with SPARQL. Query-building was also the most complex
and error-prone part as we were still developing features that
interfered with this process. It also takes users time to really
understand how this feature works, especially for individu-
als who did not have any experience with SPARQL queries.
Setting up SPARQL query patterns (like in Gruff) is one of
the most relevant features of Graph2VR. While it seemed to
already be complex for inexperienced users, users who already
had some experience were asking us to implement even more
SPARQL commands.

Discussion
Graph2VR is a prototype VR application for visualizing and
exploring Linked Data in the form of 3D graphs. After explor-
ing and testing multiple existing tools, we used Unity to
create a user interface and DotNetRDF to connect to SPARQL
Endpoints. We then tested our tool with a local Virtuoso
server and DBpedia’s publicly accessible SPARQL Endpoint.
To test the application and obtain feedback and suggestions
for improvements, we conducted a usability study with 34
individuals who had never tried Graph2VR before.

User feedback
Most testers were impressed and somewhat overwhelmed at
the beginning, especially if they had never used a VR headset
before. During the study, we guided them through the differ-
ent functionalities and explained what they could do. During

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

12 Database , Vol. 00, Article ID baae008

the tests, we noted their comments. After their VR session,
we asked them to give feedback. This yielded valuable feed-
back from participants, including comments like ‘It felt good
to be inside the world of the database’, ‘This is very fun to use
and a great way of organizing and querying data’ and ‘I would
love to try it out with other ontologies like Orphanet and con-
nect it to applications like the RD-Connect Sample Catalogue
(once that is in EMX2 so we can connect it)’ For explanation:
The Entity Model eXtensible (EMX) is an internal metadata
format of Molgenis, the current version is version 2 (61).

We explicitly asked the testers about specific problems they
experienced and any suggestions they had for the application.
It takes some time to explore all the different functional-
ities that we have built into Graph2VR. One tester men-
tioned, [I] “need to get used to the tool, but after that, it is
good :)”. Another tester found the movement in space initially
challenging: ‘moving in space was a bit hard in the begin-
ning, but started to feel more natural along the way’. The
most commonly mentioned issue among the testers was the
readability of the text in the application. While the menu and
nodes and edges nearby were legible, the labels of distant
nodes and edges were hard to read. This problem is related
to the resolution of the VR headset, which needs to display
texts that are further away in just a couple of pixels. One
general critique was that the VR headset is still quite heavy.
After long test sessions, some people felt somewhat dizzy
or tired. That was not unexpected. When using VR glasses,
especially for the first time, manufacturers recommend taking
breaks at least every 30 min. Our test sessions (including some
introduction and filling in the questionnaire) took 40–60 min,
on average.

We also asked more advanced users some additional ques-
tions, such as how Graph2VR compares to other conventional
tools. Some of the experts mentioned that typing SPARQL
queries by hand would still be faster than using the virtual
keyboard and selecting the triples one-by-one. Graph2VR
is somewhat limited by not having certain keywords, like
Optional and Subqueries. Nevertheless, these users saw the
potential that 3D visualization offers: ‘[Graph2VR is] much
more fun, also allows much more data to be visualized, opens
new possibilities’.

In all, we received constructive feedback, and we have
already fixed several of the issues mentioned by testers. For
example:

• The scrollbar no longer overlaps with the Limit slider.
• There was an issue with selecting nodes when the graph

was scaled too big.
• Some testers asked for more visual feedback when clicking

a button or to recognize when new nodes spawn. Both
have been added.

• As we had at least two left-handed testers, we decided
to add an option for left-handed people. It is not perfect
as the menu still points to the right, but we have already
received some positive feedback.

Other issues persist and need to be addressed in future
versions:

• When the trigger is pressed while not pointing at any menu
item, node,or edge, the menu should close. When scrolling
down the scrollbar of the circle menu with the laser, it is

easy to slip down the scrollbar, causing the menu to close.
The circular scrollbar should be used instead via the slider
knob on the scrollbar, a small ball that can be grabbed and
then moved around.

• Some testers mentioned that the movement speed for fly-
ing in Graph2VR was quite fast and highly responsive,
making it difficult to control the movement. This could be
addressed in the future by adding an option to adjust the
movement speed.

• When a graph bumps into the ‘floor’, the nodes collide
with the floor and the graph deforms, which might result
in a flat graph. This can also happen when a query is sent
and a stack of result graphs is requested as the new graphs
are spawned in the looking direction and might collide
with the platform. One way to fix this is to trigger a layout
algorithm.

Overall, user study feedback was valuable for identifying
areas of improvement. Participants’ comments complemented
their scores and elucidated specific strengths and weaknesses
of Graph2VR. For example, several participants noted the dif-
ficulty of reading node and edge labels in VR, and this was also
reflected in lower scores for readability. Participants with pre-
vious VR experience found navigation easier, while those who
had experience with SPARQL queries found it easier to create
the query patterns.

Limitations of VR
One of our expectations was that the almost unlimited space
in VR and 3D could help users visualize more nodes at once.
Based on the reviewers’ comments, we can now confirm this.
However, one ongoing challenge in VR is the readability due
to a limited resolution of the node and edge labels. To improve
readability, we increased the font size of texts when hovering
on them, but they remain hard to read when the graph is too
small or the text is too far away. We also replaced the URIs
of nodes and edges with their labels. If no label is available,
Graph2VR displays the Compact URI, a shortened version
of the URI in which the namespace is replaced by a prefix
to shorten the URI. In addition to the textual representa-
tion, images, colours and shapes can also help to differentiate
between different types of nodes. We had originally planned
to allow federated queries for requesting data from multi-
ple SPARQL endpoints at once, but this has not yet been
implemented.

Ideas for future development
In the current version of Graph2VR, the colour schema is
derived from the VOWL specification (30). But not all the
colours and shapes from VOWL are implemented yet.

In the future, we would like to add further SPARQL com-
mands to the application. Important SPARQL commands
or keywords such as OPTIONAL, SERVICE (for federated
queries), UNION, BIND, OFFSET, DISTINCT, COUNT,
GROUP BY and MINUS, as well as FILTER, are supported
by DotNetRDF but have not yet been implemented in the
Graph2VR interface. In addition, an ‘undo’ button would be
desirable, especially to restore accidentally deleted elements or
graphs. Many test users found Graph2VR already quite com-
plex, mainly because they were using it for the first time and
did not have much experience with graph databases. Adding

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

Database, Vol. 00, Article ID baae008 13

new functionalities will only increase the complexity further,
so it might be a good idea to create a wizard to lead users
through the query-building process in order to make this pro-
cess easier. Another feature that should be implemented in the
future is the ability to log and export some of the queries that
have been performed. In addition, it should be possible to
export the latest SPARQL query to use, e.g. in a browser. To
find a specific object in the menu of outgoing nodes, another
layer of entries would be helpful. This could be triggered when
clicking the count of objects instead of the object itself. A
similar feature would be to display all the existing connec-
tions between two nodes when setting the predicate for a
new connection between two nodes. Finally, Graph2VR could
be transformed into an augmented reality application in the
future. This would especially be interesting as a multi-user
application.

Conclusion
We developed Graph2VR, a prototype VR application for
visualizing and exploring Linked Data in the form of 3D
graphs, and conducted a usability study with 34 testers, which
provided valuable feedback on the tool’s usability and areas
for improvement. We believe that Graph2VR represents a
novel and engaging way of visualizing and exploring Linked
Data. The overall user experience reported during the usabil-
ity study was positive, especially among more experienced
users. While there are still some limitations and issues to be
addressed, we are confident that, with further development
and refinement, VR will provide tools for working with large
Linked Data graphs.

Data availability
The source code of Graph2VR is openly available on
GitHub http://github.com/molgenis/Graph2VR, under LGPL
v3 license. The technical manual can be found in the attach-
ments. The questions from the usability study, as well as
the anonymous answers of the participants, can also be
found in the attachments. A technical user manual for
Graph2VR (version 1) can be found here: https://doi.org/
10.5281/zenodo.8040594. A Graph2VR tutorial playlist is
available on YouTube (1): https://www.youtube.com/playlist?
list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH.

Author contributions
Alexander Kellmann contributed to conceptualization, soft-
ware, writing—original draft, visualization, investigation,
data curation, formal analysis
Max Postema contributed to software and visualization
Pjotr Svetachov contributed to software and visualization
Joris de Keijser contributed to software and visualization
Becca Wilson: contributed to methodology, writing—original
draft, writing—review and editing, suspervision
Esther van Enckevort contributed to supervision, writing—
review and editing
Morris A. Swertz contributed to supervision, writing—review
and editing

Supplementary Material
Supplementary material is available at Database online.

Funding
EUCAN-Connect, a federated FAIR platform enabling large-
scale analysis of high-value cohort data connecting Europe
and Canada in personalized health, which is funded by
the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 824 989; and a
UKRI Innovation Fellowship with HDR UK (MR/S003959
/2; R.C.W.).

Conflict of interest statement
The authors declare no conflict of interest.

Acknowledgements
We would like to thank Gert-Jan Verheij, who leads the visual-
ization group at the Center for Information Technology (CIT)
and organizes the XRHub, where we presented Graph2VR.
We thank our colleagues Prof. Dr Isabel Fortier and Dr Tina
Wey from the Maelstrom Institute in Montreal for provid-
ing us with the REACH data as a test dataset. Of course,
we thank all participants of our usability study, especially the
expert users who gave us critical input and feedback on how
to improve the application. Last but not least, we thank Kate
Mc Intyre for editing this manuscript.

References
1. Kellmann,A. and Postema,M. (2023). Graph2VR tutorial part

1 – 5. https://www.youtube.com/playlist?list=PLRQCsKSUyhNI
dUzBNRTmE-_JmuiOEZbdH (4 December 2023, date last
accessed).

2. Wilkinson,M.D., Dumontier,M., Aalbersberg,I.J.J. et al. (2016)
The FAIR Guiding Principles for scientific data management and
stewardship. Sci. Data., 3, 160018.

3. Croset,S., Rupp,J. and Romacker,M. (2016) Flexible data integra-
tion and curation using a graph-based approach. Bioinformatics,
32, 918–925.

4. Berners-Lee,T. and Fischetti,M. (2000) Weaving the Web: The
Original Design and Ultimate Destiny of the World Wide Web by
its inventor. HarperCollins, San Francisco, CA.

5. Berners-Lee,T. (2009) The next web. https://www.ted.com/talks/
tim_berners_lee_the_next_web/transcript.

6. Desimoni,F. and Po,L. (2020) Empirical evaluation of Linked Data
visualization tools. Future Gener. Comput. Syst., 112, 258–282.

7. Callahan,A., Cruz-Toledo,J. and Dumontier,M. (2013) Ontology-
based querying with Bio2RDF’s linked open ata. J. Biomed.
Semant., 4 Suppl 1, 1–13.

8. Fu,G., Batchelor,C., Dumontier,M. et al. (2015) PubChemRDF:
Towards the semantic annotation of PubChem compound and
substance databases. J. Cheminformatics, 7, 34.

9. Galgonek,J., Hurt,T., Michlíková,V. et al. (2016) Advanced
SPARQL querying in small molecule databases. J. Cheminformat-
ics, 8, 31.

10. (2015) RDF - Semantic Web Standards. https://www.w3.org/RDF/
(12 December 2022, date last accepted).

11. Coffey,D., Malbraaten,N. and Le,T. et al. (2011) Slice WIM. In
Garland, M. and Wang, R. (eds.), Symposium on Interactive 3D
Graphics and Games. ACM, New York, NY, USA, pp. 191–198.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

http://github.com/molgenis/Graph2VR
https://doi.org/10.5281/zenodo.8040594
https://doi.org/10.5281/zenodo.8040594
https://www.youtube.com/playlist?%20list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH
https://www.youtube.com/playlist?%20list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baae008#supplementary-data
https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH
https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH
https://www.ted.com/talks/tim_berners_lee_the_next_web/transcript
https://www.ted.com/talks/tim_berners_lee_the_next_web/transcript
https://www.w3.org/RDF/

14 Database , Vol. 00, Article ID baae008

12. Czauderna,T., Haga,J. and Kim,J. et al. (2018) Immersive Ana-
lytics Applications in Life and Health Sciences. In Marriott, K.,
Schreiber, F. and Dwyer, T. et al. (eds.), Immersive Analytics.
Springer International Publishing, Cham, 611190, pp. 289–330.

13. Lau,C.W., Qu,Z., Draper,D. et al. (2022) Virtual reality for the
observation of oncology models (VROOM): immersive analytics
for oncology patient cohorts. Sci. Rep., 12, 11337.

14. Qu,Z., Lau,C.W., Simoff,S.J. et al. (2022) Review of innovative
immersive technologies for healthcare applications. Innovations in
Digital Health, Diagnostics, and Biomarkers, 2, 27–39.

15. McCrae,J.P. (2022) The Linked Open Data Cloud. https://lod-
cloud.net/ (13 January 2023, date last accessed).

16. Deligiannidis,L., Sheth,A.P. and Aleman-Meza,B. (2006) Semantic
Analytics Visualization. In Hutchison, D., Kanade, T. and Kittler, J.
et al. (eds.), Intelligence and Security Informatics. Springer Berlin
Heidelberg, Berlin, Heidelberg, 3975, pp. 48–59.

17. Sony Green & Robert Allison. (2019) KINEVIZ GraphXR: How
to GraphXR: for GraphXR v2.2.1. https://static1.squarespace.
com/static/5c58b86e8dfc8c2d0d700050/t/5df2b6134e0d5763
5d14df4b/1576187456752/How+to+GraphXR.pdf (24 August
2020, date last accessed).

18. Asturiano,V. et al. (2021) vasturiano/3d-force-graph. https://
github.com/vasturiano/3d-force-graph/ (18 February 2021, date
last accessed).

19. Camarda,D.V., Mazzini,S. and Antonuccio,A. (2012) LodLive,
exploring the web of data. Proceedings of the 8th International
Conference on Semantic Systems. ACM Digital Library, New York,
NY, USA. p. 197.

20. (2020) GraphDB. https://graphdb.ontotext.com/ (5 March 2021,
date last accessed).

21. (2022) Toran (VR tech demo on steam). https://store.
steampowered.com/app/720300/Toran/ (9 March 2021, date
last accessed).

22. OWL Web Ontology Language Overview. (2009) https://www.w3.
org/TR/owl-features/ (19 May 2017, date last accessed).

23. Lohmann,S., Negru,S., Haag,F. et al. (2016) Visualizing Ontologies
with VOWL. Semantic Web, 7, 399–419.

24. Franz Inc. (2020) Gruff. https://allegrograph.com/products/gruff/
(3 November 2020, date last accessed).

25. Viola,F., Roffia,L., Antoniazzi,F. et al. (2018) Interactive 3D Explo-
ration of RDF Graphs through Semantic Planes. Future Internet,
10, 1–30.

26. Dudáš,M., Lohmann,S., Svátek,V. et al. (2018) Ontology visual-
ization methods and tools: a survey of the state of the art. Knowl.
Eng. Rev., 33.

27. Lanzenberger,M., Sampson,J. and Rester,M. (2009) Visualization
in Ontology Tools. International Conference on Complex, Intel-
ligent and Software Intensive Systems. IEEE, Piscataway, NJ.
pp. 705–711.

28. Palma,R. (2021) A Knowledge Graph for the Agri-Food Sec-
tor. https://blog.metaphacts.com/a-knowledge-graph-for-the-agri-
food-sector (8 March 2021, date last accessed).

29. Musen,M.A. (2015) The protégé Project: a look back and a look
forward. AI matters, 1, 4–12.

30. Steffen Lohmann,S.N. (2019) VOWL: Visual Notation for OWL
Ontologies. http://vowl.visualdataweb.org/ (13 January 2021, date
last accessed).

31. (2017) QueryVOWL. http://vowl.visualdataweb.org/queryvowl/
queryvowl.html (13 January 2021, date last accessed).

32. (2019) WebVOWL. http://www.visualdataweb.de/webvowl/# (13
January 2021, date last accessed).

33. Fabio,V. et al. (2018) Tarsier – exploring DBpedia. https://www.
youtube.com/watch?v=OgoxFWAb1vQ (2 December 2022, date
last accessed).

34. Kellmann,A.J., Postema,M., Keijser,J. et al. (2023) Graph2VR
Manual. Zenodo, 1–20.

35. Pienta,R., Abello,J., Kahng,M. et al. (2015) Scalable graph
exploration and visualization: Sensemaking challenges and

opportunities. In 2015 International Conference on Big Data
and Smart Computing (BIGCOMP), Jeju, Republic of Korea,
09.02.2015-11.02.2015. IEEE, pp. 271–278.

36. Sund,D. (2016) Comparison of Visualization Algorithms for
Graphs and Implementation of Visualization Algorithm for Multi-
Touch table using JavaFX, Bachelor Thesis, Linköping.

37. Fruchterman,T.M.J. and Reingold,E.M. (1991) Graph drawing by
force-directed placement. Softw. - Pract. Exp., 21, 1129–1164.

38. Barnes,J. and Hut,P. (1986) A hierarchical O(N log N) force-
calculation algorithm. Nature, 324, 446–449.

39. Swinehart,C. (2011) The Barnes-Hut Algorithm. http://arborjs.org/
docs/barnes-hut (3 December 2020, date last accessed).

40. Kamada,T. and Kawai,S. (1989) An algorithm for drawing general
undirected graphs. Inf. Process. Lett., 31, 7–15.

41. Teyseyre,A.R. and Campo,M.R. (2009) An overview of 3D
software visualization. IEEE Trans. Vis. Comput. Graph., 15,
87–105.

42. Batchelor,C., Brenninkmeijer,C.Y.A., Chichester,C. et al. (2014)
Scientific Lenses to Support Multiple Views over Linked Chemistry
Data. The Semantic Web - ISWC 2014. In: Mika, P., Tudorache, T.
and Bernstein, A. (eds.), Springer International Publishing, Cham,
98–113.

43. (2021) Noda (by Coding Leap - Steam link). https://store.ste
ampowered.com/app/578060/Noda/ (11 May 2021, dare last
accessed).

44. (2020) aestheticinteractive/Hover-UI-Kit. https://github.com/aesth
eticinteractive/Hover-UI-Kit (10 Decemebr 2020, date last
accessed).

45. (2021) Getting Started with metaphactory. https://help.metap
hacts.com/resource/Help:Start (5 March 2021, date last accessed).

46. (2022) VRKeys|Input Management|Unity Asset Store. https://
assetstore.unity.com/packages/tools/input-management/vrkeys-
99222 (24 March 2022, date last accessed).

47. (2021) OpenLink Software: Virtuoso Homepage. https://virtuoso.
openlinksw.com/ (25 February 2021, date last accessed).

48. Unity Technologies.Unity. https://unity.com/ (24 February 2022,
date last accessed).

49. (2022) MozillaReality/unity-webxr-export: assets for creat-
ing WebXR-enabled Unity3D projects. https://github.com/
mozillareality/unity-webxr-export (28 September 2022, date last
accessed).

50. tenforce/virtuoso. https://hub.docker.com/r/tenforce/virtuoso/ (3
March 2021, date last accessed).

51. (2020) DotNetRDF. https://www.dotnetrdf.org/ (15 September
2020, date last accessed).

52. (2020) dotnetrdf/dotnetrdf. https://github.com/dotnetrdf/dotn
etrdf/wiki/UserGuide-Querying-With-SPARQL (12 August 2020,
date last accessed).

53. (2020) Release SteamVR Unity Plugin v2.6.0b4 - SDK 1.13.10 -
ValveSoftware/steamvr_unity_plugin. https://github.com/Valve
Software/steamvr_unity_plugin/releases/tag/2.6.0b4 (12 August
2020, date last accessed).

54. The Khronos Group. (2016) OpenXR - High-performance access
to AR and VR – collectively known as XR – platforms and
devices. https://www.khronos.org/openxr/ (8 March 2022, date
last accessed).

55. Bastian,M., Heymann,S., and Jacomy,M. (2009) Gephi: An Open
Source Software for Exploring and Manipulating Networks. Pro-
ceedings of the International AAAI Conference on Web and Social
Media, 3, 361–362.

56. (2022) Using Full Text Search in SPARQL. https://docs.openlinksw.
com/virtuoso/rdfsparqlrulefulltext/ (2 December 2022, date last
accessed).

57. Bast,H., Kalmbach,J., Klumpp,T. et al. (2022) Efficient and Effec-
tive SPARQL Autocompletion on Very Large Knowledge Graphs.
Proceedings of the 31st ACM International Conference on Infor-
mation & Knowledge Management. ACM. New York, NY, USA.
pp. 2893–2902.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

https://lod-cloud.net/
https://lod-cloud.net/
https://static1.squarespace.com/static/5c58b86e8dfc8c2d0d700050/t/5df2b6134e0d57635d14df4b/1576187456752/How+to+GraphXR.pdf
https://static1.squarespace.com/static/5c58b86e8dfc8c2d0d700050/t/5df2b6134e0d57635d14df4b/1576187456752/How+to+GraphXR.pdf
https://static1.squarespace.com/static/5c58b86e8dfc8c2d0d700050/t/5df2b6134e0d57635d14df4b/1576187456752/How+to+GraphXR.pdf
https://github.com/vasturiano/3d-force-graph/
https://github.com/vasturiano/3d-force-graph/
https://graphdb.ontotext.com/
https://store.steampowered.com/app/720300/Toran/
https://store.steampowered.com/app/720300/Toran/
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
https://allegrograph.com/products/gruff/
https://blog.metaphacts.com/a-knowledge-graph-for-the-agri-food-sector
https://blog.metaphacts.com/a-knowledge-graph-for-the-agri-food-sector
http://vowl.visualdataweb.org/
http://vowl.visualdataweb.org/queryvowl/queryvowl.html
http://vowl.visualdataweb.org/queryvowl/queryvowl.html
http://www.visualdataweb.de/webvowl/
http://www.youtube.com/watchhttps://www.youtube.com/watch?v=OgoxFWAb1vQ
http://www.youtube.com/watchhttps://www.youtube.com/watch?v=OgoxFWAb1vQ
http://arborjs.org/docs/barnes-hut
http://arborjs.org/docs/barnes-hut
https://store.steampowered.com/app/578060/Noda/
https://store.steampowered.com/app/578060/Noda/
https://github.com/aestheticinteractive/Hover-UI-Kit
https://github.com/aestheticinteractive/Hover-UI-Kit
https://help.metaphacts.com/resource/Help:Start
https://help.metaphacts.com/resource/Help:Start
https://assetstore.unity.com/packages/tools/input-management/vrkeys-99222
https://assetstore.unity.com/packages/tools/input-management/vrkeys-99222
https://assetstore.unity.com/packages/tools/input-management/vrkeys-99222
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/
https://unity.com/
https://github.com/mozillareality/unity-webxr-export
https://github.com/mozillareality/unity-webxr-export
https://hub.docker.com/r/tenforce/virtuoso/
https://www.dotnetrdf.org/
https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Querying-With-SPARQL
https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Querying-With-SPARQL
https://github.com/ValveSoftware/steamvr_unity_plugin/releases/tag/2.6.0b4
https://github.com/ValveSoftware/steamvr_unity_plugin/releases/tag/2.6.0b4
https://www.khronos.org/openxr/
https://docs.openlinksw.com/virtuoso/rdfsparqlrulefulltext/
https://docs.openlinksw.com/virtuoso/rdfsparqlrulefulltext/

Database, Vol. 00, Article ID baae008 15

58. Auer,S., Bizer,C. et al. (2007) DBpedia: A Nucleus for a
Web of Open Data. The Semantic Web., Vol. 4825, Lec-
ture Notes in Computer Science, Berlin, Heidelberg, Springer,
pp. 722–735.

59. Cimiano,P. (2015) Personal Communication During the “Semantic
Web” Lecture at the University of Bielefeld.

60. Motta,E., Mulholland,P. and Peroni,S. (2011) A Novel
Approach to Visualizing and Navigating Ontologies. 7031,
470–483.

61. (2024) Molgenis 6 user documentation. Formats. https://molgenis.
gitbooks.io/molgenis/content/v/6.0/user_documentation/guide-
upload.html.

62. Pirch,S., Müller,F., Iofinova,E. et al. (2021) The VRNetzer plat-
form enables interactive network analysis in Virtual Reality. Nat.
Commun., 12, 2432.

63. Dooley,D., Nguyen,M. and Hsiao,W. (2023) 3D Visualization
of Application Ontology Class Hierarchies. http://genepio.org/
ontotrek (19 May 2020, date last accessed).

64. Kineviz inc. (2022) Login. https://graphxr.kineviz.com/login (8
March 2022, date last accessed).

65. McVeigh-Schultz,J. (2018) Immersive Human Networks: An
Exploration of How VR Network Analysis Can Transform Sense-
making and Help Organizations Become More Agile INSTITUTE
FOR THE FUTURE 201 Hamilton Avenue, Palo Alto, CA
94301, https://www.iftf.org/fileadmin/user_upload/images/More_
Projects_Images/IFTF_Immersive_Human_Networks_FINAL_
READER_100918__1_.pdf.

66. Capece,N., Erra,U. and Grippa,J. (2018) Graphvr: A virtual real-
ity tool for the exploration of graphs with htc vive system. In:
2018 22nd International Conference Information Visualisation (iV
2018). IEEE, Piscataway, NJ, pp. 448–453.

67. Panahi,A. (2017) Big data visualization platform for mixed reality,
VCU Libraries, https://doi.org/10.25772/6MDD-2B85.

68. Radics,P.J., Polys,N.F., Neuman,S.P. et al. (2015) OSNAP! Intro-
ducing the open semantic network analysis platform. Visualization
and Data Analysis 2015, 9397, 38–52.

69. OpenGraphiti: Data Visualization Framework. (2014)
https://www.opengraphiti.com/ (7 March 2021, date last
accessed).

70. GitHub. (2014) opendns/dataviz, https://github.com/opendns/
dataviz (7 March 2021, date last accessed).

71. Bremer,E. and Haylyn. (2014) http://haylyn.io/ (6 January 2021,
date last accessed).

72. LodLive – browsing the Web of Data. (2012) http://lodlive.
it/ (15 Septemeber 2019, date last accessed).

73. Philipp, H., Steffen, L., Timo, S. et al (2010) RelFinder – Visual
Data Web. http://www.visualdataweb.org/relfinder.php (25 Febru-
ary 2021, date last accessed).

74. Pavlopoulos,G.A., O’Donoghue,S.I., Satagopam,V.P. et al. (2008)
Arena3D: visualization of biological networks in 3D. BMC Syst.
Biol., 2, 104.

75. Secrier,M., Pavlopoulos,G.A., Aerts,J. et al. (2012) Arena3D: visu-
alizing time-driven phenotypic differences in biological systems.
BMC Bioinformatics, 13, 45.

76. Koutrouli,M., Karatzas,E., Paez-Espino,D. et al. (2020) A Guide to
Conquer the Biological Network Era Using Graph Theory. Front.
bioeng. biotechnol., 8, 34.

77. Ramanathan Somasundaram. (2007) ONTOSELF: A 3D ONTOL-
OGY VISUALIZATION TOOL, Master Thesis, Oxford, Ohio.

78. The Interactorium - Systems Biology Initiative. https://www.
systemsbiology.org.au/software/the-interactorium/ (25 May 2021,
date last accessed).

79. Bosca,A., Bonino,D. and Pellegrino,P. (2005) OntoSphere: more
than a 3D ontology visualization tool. Semantic Web Applications
and Perspectives, Proceedings of the 2nd Italian Semantic Web
Workshop, Trento, Italy, December 14-16, 2005.

80. Reski, N. (2015). Change your Perspective. Master’s Thesis,
Institutionen för medieteknik, Linnéuniversitetet, V ̈axjö. https://
www-diva-portal-org.proxy-ub.rug.nl/smash/get/diva2:861573/
FULLTEXT01.pdf (10 December 2020, date last accessed).

81. Zainab,S.S., Saleem,M., Mehmood,Q. et al. (2015) FedViz: A
Visual Interface for SPARQL Queries Formulation and Execution.
In VOILA@ISWC 2015. http://svn.aksw.org/papers/2015/ISWC-
VOILA_FedViz/public.pdf.

82. Pattie,C., Wilson,B., Mullally,S. et al. Investigating individual
differences influencing the understanding of statistical concepts
in immersive data visualisations, Authors’ version from 2020 –
unpublished work.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

https://molgenis.gitbooks.io/molgenis/content/v/6.0/user_documentation/guide-upload.html
https://molgenis.gitbooks.io/molgenis/content/v/6.0/user_documentation/guide-upload.html
https://molgenis.gitbooks.io/molgenis/content/v/6.0/user_documentation/guide-upload.html
http://genepio.org/ontotrek
http://genepio.org/ontotrek
https://graphxr.kineviz.com/login
https://www.iftf.org/fileadmin/user_upload/images/More_Projects_Images/IFTF_Immersive_Human_Networks_FINAL_READER_100918__1_.pdf
https://www.iftf.org/fileadmin/user_upload/images/More_Projects_Images/IFTF_Immersive_Human_Networks_FINAL_READER_100918__1_.pdf
https://www.iftf.org/fileadmin/user_upload/images/More_Projects_Images/IFTF_Immersive_Human_Networks_FINAL_READER_100918__1_.pdf
https://doi.org/10.25772/6MDD-2B85
https://www.opengraphiti.com/
https://github.com/opendns/dataviz
https://github.com/opendns/dataviz
http://haylyn.io/
http://lodlive.it/
http://lodlive.it/
http://www.visualdataweb.org/relfinder.php
https://www.systemsbiology.org.au/software/the-interactorium/
https://www.systemsbiology.org.au/software/the-interactorium/
https://www-diva-portal-org.proxy-ub.rug.nl/smash/get/diva2:861573/FULLTEXT01.pdf
https://www-diva-portal-org.proxy-ub.rug.nl/smash/get/diva2:861573/FULLTEXT01.pdf
https://www-diva-portal-org.proxy-ub.rug.nl/smash/get/diva2:861573/FULLTEXT01.pdf
http://svn.aksw.org/papers/2015/ISWC-VOILA_FedViz/public.pdf
http://svn.aksw.org/papers/2015/ISWC-VOILA_FedViz/public.pdf

Database, 2024, 00, 1–15
DOI: https://doi.org/10.1093/database/baae008
Advance Access published on xx xxx xxxx
Original article
© The Author(s) 2024. Published by Oxford University Press.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae008/7613396 by guest on 03 M

ay 2024

	Visualization and exploration of linked data using virtual reality
	 Introduction
	 Related work
	 Materials and Methods
	 Initialization
	 Visualization
	 Layout
	 Colour
	 Information display

	 Interaction
	 Controls
	 Navigation
	 Zoom and rotation

	 Circle menu
	 Data analysis
	 Query generation
	 Node removal
	 Search
	 Save and load

	 Implementation
	 Standalone on Quest 2 VR headset
	 RDF representation
	 Layout algorithms
	 Performance optimizations

	 Results
	 Application overview
	 Demonstration data
	 Usability survey
	 Evaluation results

	 Discussion
	 User feedback
	 Limitations of VR
	 Ideas for future development

	 Conclusion
	 Data availability
	Author contributions
	Supplementary Material
	Funding
	Conflict of interest statement
	Acknowledgements
	References

