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Although research on influenza lasted for more than 100 years, it is still one of the most prominent diseases causing half a

million human deaths every year. With the recent observation of new highly pathogenic H5N1 and H7N7 strains, and the

appearance of the influenza pandemic caused by the H1N1 swine-like lineage, a collaborative effort to share observations

on the evolution of this virus in both animals and humans has been established. The OpenFlu database (OpenFluDB) is

a part of this collaborative effort. It contains genomic and protein sequences, as well as epidemiological data from more

than 27 000 isolates. The isolate annotations include virus type, host, geographical location and experimentally tested

antiviral resistance. Putative enhanced pathogenicity as well as human adaptation propensity are computed from protein

sequences. Each virus isolate can be associated with the laboratories that collected, sequenced and submitted it. Several

analysis tools including multiple sequence alignment, phylogenetic analysis and sequence similarity maps enable rapid

and efficient mining. The contents of OpenFluDB are supplied by direct user submission, as well as by a daily automatic

procedure importing data from public repositories. Additionally, a simple mechanism facilitates the export of OpenFluDB

records to GenBank. This resource has been successfully used to rapidly and widely distribute the sequences collected

during the recent human swine flu outbreak and also as an exchange platform during the vaccine selection procedure.

Database URL: http://openflu.vital-it.ch.
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Introduction

Influenza is a major disease caused by an RNA virus affect-

ing a wide variety of hosts. Every year, infection by the

traditional A/H1N1, A/H3N2 or B types of influenza cause

�500 000 human deaths worldwide (1). Continuous genetic

drift of its genome due to the error-prone RNA replication

machinery (2) imposes a yearly re-evaluation of the vaccine

composition (3). Occasionally, virus reassortants emerge as

new strains which might cause dramatic pandemics such as

the Spanish flu in 1918 (30–50 mio victims), the Asian flu in

1957 and the Hong Kong flu in 1969 (4). In the last decade,

the highly pathogenic H5N1 and H7N7 avian influenza

viruses have been sporadically transmitted from bird to

human, which resulted in clinically severe and fatal infec-

tions (5,6). More recently, the triple-reassortant swine-like

A/(H1N1) that is composed of RNA segments of viruses

infecting swine, avian and human hosts has emerged in

the human population (7,8). These observations result

in a worldwide awakening on the possible raise of a new

pandemic (6,9). The full support of the international scien-

tific community is therefore urgently required to better

understand the spread and evolution of the virus, and the

determinants of its transmissibility and pathogenicity in

humans. This in turn demands that scientists from different

backgrounds of expertise have full access to comprehensive

genetic, clinical and epidemiological data from both animal

and human virus isolates in a timely manner.

Several efforts have been made to improve both

comprehensiveness of influenza data records and informa-

tion on the virus dissemination rate. The major existing

influenza-specific resources include the Influenza virus
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resource (10) from NCBI, the Influenza Research Database

from BioHealthBase (11), Influenza virus database (12) and

Influenza Sequence and Epitope Database (13). They all

operate at some level of openness and provide technical

means for data exchange and analysis. The NCBI Influenza

virus resource is a major influenza sequence repository that

all the other listed references link to. It is a sequence-centric

database that provides convenient standard sequence

analysis tools (e.g. alignments, phylogenetic trees BLAST),

biological annotation such as antiviral resistance, as well as

basic epidemiological annotations. As influenza viruses are

able to exchange genetic segments and switch from one

host to another, it is essential to collect data from all

types and subtypes on a wide variety of host species to

track the origin of new viral strains. The OpenFlu database

(OpenFluDB) was developed with a goal to collect viral

sequences, as well as their detailed clinical and epidemio-

logical metadata at the isolate level from all over the

world, to annotate and to serve all these data back to the

scientific community together with both sequence and epi-

demiological data mining tools. The database was launched

in May 2008, and is free. More than a 1000 researchers of

the influenza community or people interested in progress

in the field have already used this resource.

As of January 2010, the database contains more than

27 000 isolates and 99 000 sequences. The data deposited

within OpenFluDB can be pushed towards Genbank/DDBJ/

EMBL depending on the laboratory and political body

policy.

The OpenFluDB contents

OpenFluDB is isolate-centric, rather than sequence-centric

and thus differs from the NCBI Influenza virus resource (10),

the Influenza virus database (12) or the Influenza Sequence

and Epitope Database (13). This choice facilitates the asso-

ciation between a comprehensive amount of clinical and

epidemiological annotations with the viral sequences. In

its present status, OpenFluDB contains data from A and B

type viruses. Each virus isolate can be associated with the

name of the institution providing the sample, the name of

the laboratory that sequenced it and the name of the

institution that submitted the data. General information

about an isolate includes type, subtype, lineage, passage

history, host, and collection date and place. Several clinical

data including host age, sex or vaccination status and epi-

demiological information including in vivo-tested antiviral

resistance can also be attributed to a virus strain. In add-

ition, automatic annotations derived from sequence motif

identification are used to computationally predict antiviral

resistance, enhanced pathogenicity or putative human

adaptation. This database stores both nucleotide sequences

and automatically translated protein sequences.

Overview of the OpenFluDB user
interface

The OpenFluDB user interface is composed of three parts.

The first one, ‘Browse’, is designed to efficiently retrieve

a set of isolates and related sequences that can be then

submitted to several analysis tools like sequence similarity

search and multiple sequence alignment (MSA), or mapped

on geographical and sequence similarity maps (SSMs).

Isolate records can be exported in Microsoft Excel format,

and the nucleotide and protein sequences in FASTA format.

The second part of the interface is the ‘Upload’ section,

where users can deposit data either as a single isolate

together with its sequences using a simple web form or a

group of isolates by providing a properly formatted

Microsoft Excel file together with the related sequences

in a FASTA file. Subsequently, uploaded isolates can be

easily exported to NCBI GenBank. The third part of the

interface contains three different statistical views of the

database content as histogram plots, geographical pos-

itions on a world map and SSMs produced by multidimen-

sional scaling. Additionally, a ‘Help’ section collects a set of

frequently asked questions and some screencasts illustrat-

ing several functionalities of the database.

Data upload

Users can populate OpenFluDB via two mechanisms: single

isolate upload or batch upload. Uploading isolates one by

one allows fine-grained control over the process, but is usu-

ally time-consuming. Upload by batch is more time effi-

cient, but requires much user attention when preparing

data. In addition, a daily automatic procedure imports iso-

lates from GenBank. The uniqueness of one isolate is

assessed by its combination of name and passage history.

New sequences are annotated by automatic procedures.

Single isolate upload. This interface is meant to annotate

one isolate at a time in a comprehensive way (Figure 1). It is

a combination of several drop-down menus and text fields.

Consistency of the data is improved by cross-checking of the

different components of the isolate name with sample col-

lection year and host annotation fields, as well as with a set

of controlled vocabulary terms displayed as select menus.

The geographical classification is adapted from GeoNames

(14) and the taxonomical classification from NCBI taxonomy

(15). Both classifications are displayed in form of hierarch-

ical select menus to provide a convenient and consistent

way of defining sample collection location and host species.

Once an isolate is created, genetic sequences can be

appended using either a web form for a single entry or

by uploading multiple sequences from a FASTA file.

Batch upload. Multiple isolates and sequences can be

uploaded in batch using the combination of a Microsoft

Excel file in a fixed format and a text file containing
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Figure 1. ‘Single isolate upload’ interface. The web form is split into three parts. The top one contains fields to specify isolate
name, isolate type and passage history. The syntax of the isolate name is verified against sample collection year and standard
influenza nomenclature (except for laboratory-derived strains). The middle part contains sample data including host and sample
collection date and geographical location. The bottom part contains additional data including sample provider laboratory,
sequencer laboratory, in vivo tested antiviral resistance and user note.
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nucleotide sequences in FASTA format. The Excel template,

meant to assist users to precisely describe isolates, can be

downloaded from the ‘batch upload’ page. Each column

header contains a short description of the required content

and format. If the batch upload procedure fails because of

inconsistency in annotation or improper sequences, a pair

of Excel and FASTA files containing only the erroneous

entries together with a comment on the errors is returned

to the user for correction and resubmission.

Upon successful completion of single or batch upload

procedure, a summary email is sent to the user listing all

assigned OpenFluDB isolate identifiers (EPI_ISL_ID) and

OpenFluDB sequence identifiers (EPIID). The newly

uploaded data are immediately available to all registered

users. Uploaded isolates can easily be exported to GenBank,

where specific OpenFluDB annotations are kept in a struc-

tured comment.

Import. Besides user data uploads, daily automatic

import procedures run to incorporate new influenza

sequences and their annotation records from GenBank.

Host, sample collection geographical location and sample

collection year are extracted either from the respective

annotation field or from the isolate name. Isolate and seg-

ment annotation consistency is checked. Imported GenBank

entries that failed the automatic parsing procedure are not

shown to users, but stored for subsequent manual curation.

New sequences from user upload or GenBank import are

compared using BLAST (16) to a set of reference sequences

to compute, and verify, user submitted values for virus

type, subtype, lineage (for B type viruses) and segment

name. Prediction of coding regions is performed on these

nucleotide sequences; these are then translated into pro-

tein sequences that in turn are used to automatically detect

antiviral resistance, high pathogenicity and human adapta-

tion motifs. The criteria used to evaluate these features are

described in (17–46) and summarized in Table 1.

Browse

The main part of ‘Browse’ interface is depicted in Figure 2.

Newly deposited isolates are accessible in the ‘What’s new’

section (Figure 2A), which also contains announcements

about OpenFluDB. A ‘quick search’ field (Figure 2B) facili-

tates the finding of new isolates based on their EPI_ISL_ID

or EPIID, or isolate name or DDBJ/EMBL/GenBank sequence

accession number. The basic ‘browse’ form (Figure 2C) com-

prises several multiple select menus to restrict the search on

virus type, subtype, lineage, host and sample collection

geographical location. To further restrict the search criteria,

additional filters such as those listed in Figure 2D caption

can be applied. An estimation of the number of isolates

and sequences returned by a query is updated dynamically

and displayed when filters are set.

Combined queries, saved queries and alerts. Search

criteria selected within the basic ‘browse’ form and the

additional filters can be used directly to perform a simple

query, or pushed in the query builder tool for further com-

bination with one or several different simple queries. The

combinational operator can be intersection, union or exclu-

sion. Both simple and combined queries can be saved for

later use as online queries or as daily email alerts containing

the list of new isolates and sequences matching the search

criteria.

Isolate details and genome annotations. The result of

a ‘browse’ action is presented in a tabular form, in which

each row represents an isolate and each column represents

either an annotation of the isolate or the sequence

length of the different genomic segments (Figure 3A).

Annotations include isolate name, subtype and/or lineage,

passage history, year of collection, submission date, host

and country of collection. Columns can be sorted in ascend-

ing or descending order, and a filter field enables to display

a subset of the results. By default, only nucleotide

sequences are presented, but the protein view is accessible

using a simple switch at the top of the page. Clicking on an

isolate name presents detailed description of this isolate

(Figure 3B). This report is split into three parts: the first

one containing general annotation on the isolate, mainly

similar to the tabular presentation; the second one display-

ing OpenFluDB-specific annotations; and the third one list-

ing nucleotide or protein sequences depending on the

previously selected view. OpenFluDB-specific annotation is

a combination of user-provided clinical data, such as host

properties and sample collection details, epidemiological

data, such as antiviral resistance and protein automatic

annotation including antiviral resistance, high pathogen-

icity and human adaptation motifs.

Reference sets. Virologists tend to keep a set of refer-

ence isolates (also known as clade-specific isolates), option

is therefore given to save several lists of isolates, and use

them later to compare new query results with these

references.

Export. The result of a search query can be exported as a

pair of one Microsoft Excel file containing isolate annota-

tion and one FASTA file containing nucleotide or protein

sequences. The user can define a set of annotation fields to

export, which is saved as a preferred set and presented by

default in the next export events.

Analysis

OpenFluDB offers several analysis tools to mine its genetic

and epidemiological content. These tools are applied on a

selected set of isolates resulting from a search query.

BLAST. This tool presents a list of isolates having the

most similar sequences to a user-defined query sequence.

To optimize the speed of the ‘BLAST’ interface, blast scores

are pre-computed for all sequences against all sequences

within each viral segment using an implementation of the

algorithm for the Oracle database management system
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(47). To depict the relation between sequence similarity

and sample collection geographical location, the isolates

returned from a BLAST analysis can be positioned on a

world geographical map. By restricting the similarity

threshold, sequences below the specified value are hidden

on the map and in the BLAST result table.

Geolocation. The Google maps API (48) combined with

geographical data from GeoNames (14) are used to position

sample collection location on a world map. Four levels of

details from country to administrative division (state) to

administrative subdivision (county) to precise geoplaces

(cities or village) are represented as different color marks

on the map. Clicking on one of these mark displays a

pop-up balloon listing the represented isolates with links

to their detailed description (Figure 4A).

A similar representation is available in the ‘Statistics’ sec-

tion of OpenFluDB. By default, all isolates are displayed on

the map, but filters on type/subtype, host, continent and

country can be applied to restrict the view. At low magni-

fication, isolates are grouped by continents. As zoom level

is increased, isolates get grouped by countries, administra-

tive divisions and subdivisions, thus generating more

detailed maps.

MSA and phylogenetic tree. Multiple alignments of

nucleotide or protein sequences using the MUSCLE pro-

gram (49) can be provided. To start an alignment proced-

ure, at least two isolates and one segment must be selected

from a ‘Browse’ result table. If multiple segments are

selected, one alignment will be produced for each of the

segment. The alignment can be visualized with the help of

Table 1. List of mutations used to compute antiviral resistance and putative human adaptation

Segment Type

(subtype)

Number

of

isolates

Position

(H3 and N2

numbering)

Wild Mutant Antiviral resistance High

pathogenicity

Hum.

adapt.

Ref.

Neuraminidase

inhibitors

Adam.

Ose. Zan. Per.

NA A(N2), B 12 119 E V X (38,40,42,43)

NA A(N2), B 1 119 E A X X (42,43)

NA A(N2), B 3 119 E G X (42,43)

NA A(N2), B 7 119 E D X X (42,43)

NA A(N1) 415 274 H Y X X (34–38,41,43,44)

NA A(N1,N2) 0 294 N S X (33)

NA A(N2), B 2 292 R K X X X (39,42,43)

NA B 0 152 R K X X X (36–38,42,43)

NA B 3 198 D N/E X X (38,43,44)

NA B 1 222 I T X X (44)

NA A(N2) 6 222 I V X X (44)

M2 A 20 26 L F X (46)

M2 A 130 27 V A X (45,46)

M2 A 8 30 A T X (18,46)

M2 A 1433 31 S N X (18,45,46)

M2 A 0 34 G E X (46)

HA A 2030 HA cleavage

site

�5 R or K +++ (24,25)

NP A 92 319 N K ++ (31)

PB2 A 3181 627 E K ++ (29)

PB2 A 177 701 D N ++ (29,30,31)

NS1 A 97 92 D E + (M) + (27,26)

NS1 A 1240 80–84 XXXXX – + (M) + (27)

PB1-F2 A 1416 66 N S ++ (28)

Ose., oseltamivir; Zan., zanamivir; Per., peramivir; Adam., adamantanes; Hum. adapt., human adaptation; Ref. bibliographic reference

number; High pathogenicity could contribute, alone or in association with other mutations, to a higher pathogenicity in avians and/or

mammals; +++, high level of confidence; ++, medium level of confidence; +, low level of confidence, or in correlation with other

mutations; (M), mammals only.
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Figure 2. The ‘browse’ form is the major entry point to query the database. (A) ‘What’s new’ section contains links to newly
deposited sequences and announcements about OpenFluDB feature development. (B) The ‘Quick search’ field is used to query on
EPI_ISL_ID, EPIID, isolate name or EMBL/DDBJ/GenBank accession numbers. (C) Basic ‘browse’ fields are composed of viral type
and subtype, viral host and sample collection geographical location. Multiple selections are possible. (D) Several additional filters
can be appended to the query; sample collection date, submission date, minimal sequence length, isolate name, EPI_ISL_ID,
passage history, lineage, EPIID, DDBJ/EMBL/GenBank accession number, sequence submitter laboratory, whether the isolate has
been primarily deposited in OpenFluDB, whether the isolate is publicly accessible in DDBJ/EMBL/GenBank and whether the
sequence has a complete CDS. Finally, required segments or complete genome can be specified.
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the Jalview applet (50). Jalview has been modified to

format the alignment in a virologist-friendly way. A con-

sensus sequence is presented at the bottom of the align-

ment, and nucleotides or amino acids similar to the

consensus are presented by dots whereas gaps are symbo-

lized by dashes (Figure 4B). A printer-friendly PDF version of

the alignment can be produced. The alignment tree com-

puted by Muscle can be visualized and edited with the help

of the PhyloWidget applet (51). Each leaf of the tree con-

tains links to the detailed view of the referred isolate

(Figure 4C). This applet can also produce a printer-friendly

PDF version of the tree. The corresponding tree can be

exported as a text file in standard ‘dnd’ format, whereas

the alignment can be exported in ‘ClustalW’ format.

SSMs. SSM is a phylogenetic tool that lets users explore

the evolutionary relatedness among influenza virus iso-

lates, mapping several features such as year of collection,

hosts or geographical location. These maps enable the

study of a large number of isolates at once in a

user-friendly interface, to the contrary of classical phylo-

genetic trees that tend to be difficult to analyze when deal-

ing with thousands of sequences. These maps are produced

by applying multidimensional scaling algorithm (52–54) on

sequence pairwise distances to transform and project

sequence positions into three dimensions. The distances

are calculated starting from raw BLAST scores. There are

several maps calculated for various nucleotide and protein

sequence subsets. The most comprehensive maps present

‘landscapes’ of each of the eight RNA segments and each

of the 13 corresponding proteins. Additionally, detailed

maps are calculated for each of the 16 hemaglutinin gene

subtypes and 9 neuraminidase gene subtypes of type A. All

RNA and protein maps are separately computed for both

all-species and human isolate subsets. Human maps are sup-

plemented with ‘landscapes’ of the epidemiologically

important H1N1, H1N2, H3N2 (Figure 4D) and H5N1 type

Figure 3. ‘Browse’ results are presented in an isolate-centric view. Columns contain either annotations or sequence length.
Switching between the nucleotide and protein views is done with the top right switch. Complete CDS or proteins can be
highlighted in bold. Checkboxes are used to select isolates for further analysis, export or assignment to a reference set.
Analysis buttons are from left to right: MUSCLE MSA, BLAST, SSMs and isolate geolocation. Isolate annotations are exported
in a Microsoft Excel file and viral nucleotide or protein sequences are exported in a FASTA file.
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Figure 4. OpenFluDB analysis tools. (A) The Google Maps API is used to position sample collection on a world map. MSA are
computed with MUSCLE and displayed with Jalview (B) and as a tree with PhyloWidget (C). SSMs of hemaglutinin nucleotide
sequences are computed by multidimensional scaling, and projections on the first two principal dimensions are displayed. (D)
Human H3N2 sequences are colored based on year of sample collection revealing a genetic drift of the sequences. (E) H1
sequences are colored by host species. Three main clusters are revealed: human, swine and avian. Red highlighted sequences
from the recent human swine H1N1 lineage are located near the swine cluster.
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A human cases. In total, 110 maps are recalculated on a

daily basis and presented either under the ‘Statistics’ sec-

tion or as follow-up analysis from a ‘Browse’ result page.

The isolates selected from ‘Browse’ are highlighted on

similarity maps. It is possible to zoom into a particular

locus of the map to visualize dense areas in more details.

Additionally, a subset of sequences/isolates selected on SSM

can be sent to the ‘Browse’ interface to access their com-

plete records. To help discover trends and identify outliers,

epidemiological data such as year of sample collection,

virus type or host species can be overlaid using color gradi-

ents. By default, projection on the first and second scaling

dimensions is displayed, but all three projections are avail-

able to help resolving clusters of sequences eventually

obscuring each other.

Case study: H1N1 swl

To better illustrate the main features of OpenFluDB, let us

assume that a user wants to find out all isolates of the

newly appeared swine-like (swl) H1N1 human lineage,

retrieve HA sequences, and then use them to evaluate rela-

tions between the H1N1 swl and the seasonal H1N1 strains

by means of both MSA (MUSCLE) and SSMs.

From the ‘Browse’ section, set basic filters to select iso-

lates from type A, subtype H1N1, lineage swl, isolated on

human hosts. The 2009 A/(H1N1) flu outbreak started in

April, so we set a ‘collection date’ additional filter with

‘April 1st 2009’ as ‘From’ value. Finally, one has to select

HA as a ‘required segment’. Clicking on the run query

button will launch the search procedure. A few hundred

isolates are listed sorted by submission date in descending

order. To calculate a MSA from these isolates, all the iso-

lates must be selected as well as HA segment in the

‘required segment’ section. Clicking on the ‘sequence align-

ment’ button will launch the computation. Once finished,

the alignment is visualized in Jalview or as a phylogenetic

tree by clicking on the corresponding buttons. Both views

can be saved in PDF format. Although MSA does show all

substitutions and insertions/deletions pedantically, a ‘bird’s

eye view’ is a convenient way to globally see these differ-

ences and thus relate sequences to each other. For that, the

HA sequences from the swine flu outbreak can be com-

pared to other HA sequences from A/H1 virus types on a

similarity map by clicking on the ‘similarity map’ button of

the ‘analysis’ section of the ‘Browse’ result page. By default,

the map of human H1 sequences is displayed, however,

since this lineage is a reassortant, it is more interesting to

compare it to viruses infecting animal hosts. To do so, we

select ‘all’ in the organism filter. Selected sequences are

highlighted as big red discs. The map is composed of

three main clusters of sequences (Figure 4E). By selecting

‘host’ in the ‘color code annotation’ annotation field, one

can observe that one cluster is mainly composed of viral

sequences isolated from swine, another one is mainly com-

posed of viral sequences isolated from human and a third

one mainly composed of viral sequences isolated from

avian species. Interestingly and as described by Garten

et al. and Smith et al. (7,8), all highlighted human H1N1

swine-like HA sequences are aggregated in the ‘swine’

cluster.

Implementation

OpenFluDB is implemented as a quite complex, but robust

combination of modules written in several programming

languages. The database foundation, Oracle DBMS, was

chosen because of its recognized data storage reliability,

security and rich programming environment necessary to

handle complex biological data types. Both Java and PL/

SQL are used to implement background algorithms such

as isolate annotation and import/export of isolate records

from/to GenBank. The OpenFluDB user web interface is

developed in PHP with systematic use of AJAX technique.

Conclusion

OpenFluDB provides a convenient and reliable mechanism

to collect, manage, store and distribute worldwide influ-

enza data. The tight links between the database, the SSM

and the isolate geolocation tool are innovative functional-

ities to mine Influenza genetic and epidemiological data as

well as its evolution. Constant surveillance on the contents

of OpenFluDB by means of manual and automatic curation

ensures its high reliability. Inconsistencies are reported to

the users who are in turn encouraged to report unavoid-

able inaccuracies or missing features. Future improvements

of OpenFluDB will contain pre-computed global MSAs and

will offer the possibility to perform ‘robust’ phylogenetic

analysis (e.g. Beast). It is our hope that this database

becomes an important scientific tool to the whole influenza

community, and it has already been successfully used in the

early alerting of the novel A/(H1N1) pandemic case by pro-

viding access to the sequence data within a few days (7).
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33. Abed,Y., Nehmé,B., Baz,M. and Boivin,G. (2008) Activity of the

neuraminidase inhibitor A-315675 against oseltamivir-resistant

influenza neuraminidases of N1 and N2 subtypes. Antiviral Res.,

77, 163–166.

34. Gubareva,L.V., Kaiser,L., Matrosovich,M.N. et al. (2001) Selection of

inFuenza virus mutants in experimentally infected volunteers trea-

ted with oseltamivir. J. Infect. Dis., 183, 523–531.

35. Gubareva,L.V., Webster,R.G. and Hayden,F.G. (2001) Comparison

of the activities of zanamivir, oseltamivir, and RWJ-270201

against clinical isolates of inFuenza virus and neuraminidase

inhibitor-resistant variants. Antimicrob. Agents Chemother., 45,

3403–3408.

36. Gubareva,L.V., Nedyalkova,M.S., Novikov,D.V. et al. (2002) A

release-competent inFuenza A virus mutant lacking the coding

capacity for the neuraminidase active site. J. Gen. Virol., 8,

2683–2692.

37. Gubareva,L.V., Webster,R.G. and Hayden,F.G. (2002) Detection of

inFuenza virus resistance to neuraminidase inhibitors by an

enzyme inhibition assay. Antiviral Res., 53, 47–61.

38. Gubareva,L.V. (2004) Molecular mechanisms of influenza virus resis-

tance to neuraminidase inhibitors. Virus Res., 103, 199–203.

39. Carr,J., Ives,J., Kelly,L. et al. (2002) InFuenza virus carrying neura-

minidase with reduced sensitivity to oseltamivir carboxylate has

altered properties in vitro and is compromised for infectivity and

replicative ability in vivo. Antiviral Res., 54, 79–88.

40. Ives,J., Carr,J., Roberts,N.A. et al. (2000) An oseltamivir treatment

selected inFuenza A/Wuhan/359/95 virus with a E119V mutation in

the neuraminidase gene has reduced infectivity in vivo. J. Clin.

Virol, 18, 251–269.

41. Ives,J.A., Carr,J.A., Mendel,D.B. et al. (2002) The H274Y mutation in

the inFuenza A/H1N1 neuraminidase active site folowing oseltami-

vir phosphate treatment leave virus severely compromised both

in vitro and in vivo. Antiviral Res., 55, 307–317.

42. Jackson,D., Barclay,W. and Zürcher,T. (2005) Characterization
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