
Original article

An advanced web query interface for
biological databases

Mario Latendresse* and Peter D. Karp*

Bioinformatics Research Group, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA

*Corresponding author: Tel: +(650) 859 - 4013; Fax: +(650) 859 - 3136; Email: latendre@ai.sri.com

Correspondence may also be addressed to Peter D. Karp. Tel: +(650) 859 - 3735; Fax: +(650) 859 - 3136; Email: pkarp@ai.sri.com

Submitted 28 October 2009; Revised 24 February 2010; Accepted 25 February 2010

.............................................................................................................................................................................................................................................................................................

Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB

queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically

query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between

the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological

DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for

building precise queries for biological DBs that can construct much more precise queries than most web-based query forms,

yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting

multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is

called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs.

Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a

query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of

several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than

500 Pathway/Genome DBs.

.............................................................................................................................................................................................................................................................................................

Introduction

Biological databases (DBs) now number in the hundreds,

and are widely viewed as an essential part of post-genomic

molecular biology. However, significant barriers limit biolo-

gists’ access to biological DBs. Existing easy-to-use web-

based query interfaces to biological DBs severely limit the

complexity of queries that the user can formulate. Users

who want to formulate complicated queries must learn

both a DB query language such as SQL, and a computer

programming language such as C or Java in which to

embed those queries and process the results. Learning

such languages is time consuming at best, and often pre-

sents an insurmountable hurdle for the biologist. One

reason is that the semantics of SQL is based on concepts

not commonly taught to scientists in the course of their

University education (e.g. join).

We present a flexible web interface through which biolo-

gists and bioinformaticists can author precise queries to

biological DBs. The queries that can be written with this

interface, called the ‘Structured Advanced Query Page’

(SAQP), can be as precise as what can be expected from a

computer programmer using expressive DB query lan-

guages like SQL. But the web interface can be used without

programming expertise, and use of the SAQP avoids the

types of errors that typically occur when writing computer

programs—greatly reducing the barriers to writing precise

queries.

A ‘precise query’ is formulated in such a way that it re-

turns what the user wants without superfluous results. To

enable precision in a query, an appropriate set of relational

operators, as well as direct access to the underlying data,

must be provided. A precise query is unlike an imprecise

query that returns many results that must be disregarded

.............................................................................................................................................................................................................................................................................................

� The Author(s) 2010. Published by Oxford University Press.
This is Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited. Page 1 of 13

(page number not for citation purposes)

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024

http://


by the user. A precise query can be simple or complex since

if a user expects all the proteins of a DB, this can be done

using a simple query whereas all proteins that are products

of genes located in specific parts of the genome is a com-

plex query requiring at least two classes of objects and sev-

eral constraints.

A ‘complex query’ might involve more than one DB class,

might include several DBs and specify many constraints, for

example, ‘find all metabolic pathways containing more

than four reactions for which all enzymes in the pathway

are monomeric’ and ‘find all biochemical reactions that

convert a carbohydrate to a phosphorylated carbohydrate,

and where the molecular weight of the carbohydrate is less

than 100’.

A ‘simple query’ typically involve searching one DB and

one class, using one or two constraints. Examples include a

query that searches for genes by name, or that searches for

biochemical reactions by EC number, or for chemical com-

pounds by molecular weight.

The flexibility, ease of use and precision of the SAQP are

due to (i) ‘readable’, interactive, expandable form con-

structs for specifying search constraints and object attri-

butes; (ii) the inclusion of variables in searches, which

allow search components to refer to one another; and (iii)

the inclusion of multiple search components within one

query. The notion of readability of precise database

queries is also presented in the doctoral dissertation of

M. Bada (1).

The SAQP web interface is based on a DB query language

newly developed as part of this project called BioVelo,

that is more expressive than SQL, but that has a succinct

syntax and a simpler semantics. In fact, the layout of the

graphical interface of the SAQP is based on the syntax of

BioVelo. We consider BioVelo’s syntax terse enough to

provide a user interface for direct entry of BioVelo

queries. This interface, called the Free Form Advanced

Query Page (FFAQP), is accessible from the SAQP in one

click.

Figure 1 illustrates the general architecture of our DB

query system. Two Web page interfaces are provided: the

FFAQP and the SAQP. In this article, we focus on the SAQP.

The development of the SAQP was motivated by the

need to provide biologists with the ability to query the

large collection of Pathway/Genome DBs (PGDBs) being de-

veloped by users of the Pathway Tools software, including

the more than 500 PGDBs within SRI’s BioCyc collection (2,3)

and the more than 200 PGDBs developed by groups outside

SRI, such as YeastCyc and MouseCyc (4) (see BioCyc.org

for a partial list). Pathway Tools PGDBs are managed using

a Frame Knowledge Representation System called Ocelot

(5). Ocelot is essentially a Common Lisp-based object-

oriented database management system (DBMS) that uses

a relational DBMS as a persistent back end. However, the

relational aspect of Ocelot is invisible to the Ocelot user.

In summary, BioVelo serves as a database query

language, currently built on Ocelot, and the SAQP is a

user-friendly interface built on BioVelo. The BioVelo

and SAQP implementations are applicable to any DB built

using Ocelot, and thus generalize beyond Pathway Tools

DBs such as the BioCyc DBs. Actually, the overall approach

used for the SAQP is applicable to other relational and

object-oriented DBs as BioVelo can be ported to other

relational and object-oriented DBs.

This article is structured as follows. ‘Simple SAQP queries’

section presents the basic elements of the SAQP through a

simple query with a few simple atomic conditions. ‘Pathway

Tools schema’ section presents basic concepts of the

Pathway Tools schema and how the SAQP interface can

be used to explore and learn a schema to create precise

queries. ‘Complex SAQP queries’ ‘Queries with several com-

ponents’ and ‘Variables’ sections present more complex

queries that illustrate the novel power of the SAQP.

‘Implementation’ section describes the implementation

of the SAQP and the next section describes its limitations.

The next following section describes related work. The final

section presents the results of user evaluation of the SAQP.

The Appendix gives a brief overview of BioVelo.

Simple SAQP queries

We introduce the SAQP by describing how to construct

simple queries involving a single DB class, and how to spe-

cify the format of the query results. The BioCyc SAQP can be

found at biocyc.org/query.shtml.

Step 1: select database and class

The first step in building a query is to specify at least one

DB and the class of objects to search. Figure 2 shows an

RDBMS

BioVelo

Ocelot

Pathway Tools
Web Server

Pathway Tools

Free Form Advanced
Query Page

Structured Advanced
Query Page

Web Browser

Figure 1. Two web page interfaces for constructing BioVelo

queries interact with the Pathway Tools web server that com-
municates with a BioVelo query processor. Ocelot is an
object-oriented DB system that can use a relational DB back
end. The FFAQP and the SAQP are accessible at the web site
BioCyc.org/query.shtml.

.............................................................................................................................................................................................................................................................................................

Page 2 of 13

Original article Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



example of using the SAQP to query the class of protein

monomers (Polypeptides) in the EcoCyc DB. Only one search

component is used in this example. ‘Queries with several

components’ section will show an example with multiple

search components.

Step 2: specify conditions

Most queries include one or more conditions on the desired

objects within the class. By clicking the button labeled

add a condition in the initial blank SAQP, a ‘where’

clause is added—visually boxed—in the search component.

This operation adds a selector for an ‘attribute’ (e.g. name)

of the objects and a selector for a relational operator (e.g.

contains the substring). It also adds a ‘free text box’ to

enter a number or string. Several other relational operators

are provided, such as is equal to, is not equal to and

is a substring of. Regular expression matching is also

available as an operator.

This new field forms an ‘atomic condition’. Additional

atomic conditions can be added to the query by using the

button labeled ‘add a condition’.

When clicking the drop-down selector for a relational

operator, the list of relational operators provided is com-

patible with the type of the selected attribute. In the case

of the attribute name, the selectable operators are for

strings since the ‘type’ of the attribute name is string.

This notion of type extends to all biological objects such

as genes, proteins, metabolic pathways, reactions and com-

pounds. Thus, the user cannot select an operator incompat-

ible with the attribute of a class. The query in Figure 2 has

added three atomic conditions to filter the selected

polypeptides.

Step 3: define query results

The section titled Select attributes to include in

the query output allows the user to describe the contents

of the query results by selecting the attributes to display for

each result object. The result of a query is always a table of

at least one column. The tables have zero or more rows,

one for each query result and each column is a selected

attribute. A new column can be added by clicking the

button add a column. A column can be removed by clicking

its x icon. Each specified column will be generated in the

resulting output table.

The selector provided in each column contains the list of

accessible attributes for the object class selected for this

query. When only one search component has been speci-

fied in the query and no subqueries with a quantifier are

used, which is the case for Figure 2 (‘Queries with several

components’ section describes search components in more

detail), only one type of object is accessible. When more

than one search component is specified or a subquery is

Figure 2. A SAQP query searching for EcoCyc (Escherichia coli) polypeptides constrained by experimentally determined molecular
weight, isoelectric point and their genes. A three-column output table is specified containing the polypeptide name, gene name
producing this polypeptide and the left-end-position of the gene on the genome. The atomic condition with a quantifier ‘for
some object. . .’ retrieves only the polypeptides that are produced by genes located after the first 500 kb of the genome. Notice
the use of two variables Z1 and Z2 in the query and in the output specification. The Z2 variable comes from the quantifier
applied to the genes, whereas the Z1 variable comes from the search component main search objects, the polypeptides.

.............................................................................................................................................................................................................................................................................................

Page 3 of 13

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



used with a quantifier, a variable selector is provided to

select the desired variable. The interface provides the

number of possible objects having at least one value for

each attribute.

The output table produced by the SAQP can be for-

matted in two possible styles: tabulated and HTML. For

the tabulated format, no HTML is generated in the

output result, and column entries are separated by

a tab. It can be used as input to software such as Excel.

For the HTML format, which is the preselected for-

mat, the generated output contains HTML tags for URL

links and other visual formatting. It is the preferred

format to navigate and analyze the results using a web

browser.

The rows of the resulting table can be sorted based on

any user-selected column. It can be resorted at will on any

column in the output page as seen in Figure 3.

SAQP and schema documentation

Documentation is provided for several aspects of the SAQP

and of the DB schema being queried. One form of docu-

mentation uses tooltips (small pop-up text windows that

appear when the user hovers the mouse over a region of

the screen). [For Internet Explorer (IE), we do not provide a

tooltip mechanism since tooltips for selector elements do

not work for IE (versions 6–8). Tooltips are provided for

Firefox, Chrome and Safari.] Tooltips document the mean-

ing of DB classes, DB attributes and for SAQP operators

such as is equal to and is a substring of. Thus, this

documentation describes both the workings of the SAQP

and the schema of the DB being queried.

In addition, written instructions on how to use the SAQP

and the FFAQP are available by clicking on the heading

‘Advanced Query Documentation’ at the top of the SAQP

and the FFAQP.

To aid the reader in understanding subsequent ex-

amples, the following section presents a short introduction

to the Pathway Tools schema that structures the data at

BioCyc.org (and other Pathway Tools web servers) and

describes how to learn more about the schema using the

SAQP.

Pathway Tools schema

The schema of a DB is a plan of its structure. A schema

describes the objects the DB contains and the relationships

between them. Users face a significant barrier if they are

forced to learn the schema of a DB before being able to

query it. The approach taken by our interface is to provide

enough guidance and online documentation to make

Figure 3. The output result of the query in Figure 2. The BioVelo query generated from the user selection of Figure 2 is also
shown near the top of the page.

.............................................................................................................................................................................................................................................................................................

Page 4 of 13

Original article Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



learning of the schema incremental. The user can concen-

trate on the parts of the schema relevant to the desired

searches.

The Pathway Tools schema is ‘object oriented’—it is

based on ‘classes’ that are subdivided into ‘subclasses’.

A class is a template based on a set of ‘attributes’, shared

by all objects in this class. For example, the class Genes has

the attributes product, and left-end-position (i.e. its

left-end nucleotide coordinate in the genome), among

others. (In this article, class names are capitalized whereas

attribute names are not.) A subclass of a class inherits its

attributes: the subclass is a child of the parent class.

Typically, the subclass has more attributes, which makes

its objects more specific than proper objects of the parent

class.

Each attribute has a datatype that constrains the pos-

sible values of that attribute, such as number, string,

Boolean, an object class or union of these. For example,

the values of the product attribute of the Genes class

must be objects within the classes Proteins or RNAs.

Attributes also have a multiplicity, which can be ‘single’

or ‘list’. The attribute must have one value in the case

of single, whereas it has zero or several values in the

case of a list.

For example, the class Proteins has the attribute gene

of type List of Genes. That is, this attribute has a value

made of a list of one or more objects that represent

genes (the list of genes that produce the protein). The at-

tribute may have no values in the case where it is unknown

what gene produces this protein. Although in the vast

majority of proteins this attribute will have a single

value, multiple values are used in the case where multiple

genes within the genome all code for a protein having

exactly the same amino acid sequence. The attribute

dna-footprint-size, again of class Proteins, has

type Integer. It is the number of nucleotides of the

protein.

Most objects have one or more attributes that refer to

other objects; we call such attributes ‘relations’. For ex-

ample, the objects of class Reactions have the attributes

left and right that refer to compound objects. They are,

respectively, the reactants and products of the reaction. In

general, these are lists of objects since several compounds

may be on the right and left of the equation. The class

Reactions also has the attribute in-pathway. It refers

to the list of metabolic pathways in which the reaction is

a part.

The relation component-of is used in several areas of

the schema to define the part-of relationship. For example,

the component-of relation defines the relationship be-

tween a protein monomer and a protein complex of

which it is a part, and it defines the relationship between

a gene and the chromosome on which it resides.

Schema exploration with the SAQP

Let us analyze how the SAQP can help the user discover

relevant knowledge of the schema based on the query in

Figure 2.

The user beginning to write this query may want to

query proteins, but be unsure which of the several

protein-related classes in EcoCyc to query. The user browses

through the contents of the class selector, and alternatively

mouses over three different EcoCyc classes related to

proteins: Proteins, Polypeptides and Protein-

Complexes. Documentation on each class is presented

in a tooltip as the user moves the mouse over it in the

selector. The user determines that Polypeptides is the

desired class, because of wanting to select monomers

only, not multimers, which are included in the other two

classes.

Next, the user begins formulating the conditions of

the query, and notices that two molecular weight-related

attributes are available: molecular-weight-exp and

molecular-weight-seq. The tooltip that appears when

the user selects each one reveals that the first attribute

refers to experimentally determined molecular weight,

whereas the second refers to molecular weight computed

from sequence. In our example, we have selected only the

former, but some users might choose to include both. The

documentation also indicates the units of a given attribute,

kilodaltons in the case of these attributes.

Complex SAQP queries

The query presented in ‘Simple SAQP queries’ section

contained a conjunction of conditions applied to one DB

class (Polypeptides). This section and the two that follow

explore the creation of more complex SAQP queries with

different logical operators, quantifiers and more than

one DB.

Combining logical connectors

The query in Figure 2 contains three atomic conditions, all

of which are connected using the and connector. But in

general, conditions can be connected by combining any

of the four connectors that the SAQP provides for the cre-

ation of complex conditions. These are and, or, or not and

and not. They are used to form complex conditions based

on several atomic conditions. The connectors or not and

and not apply a logical ‘not’ on the atomic condition

before applying the corresponding connectors or or and,

respectively. Notice that a condition is specified from top to

bottom since when a connector is selected a new atomic

condition is inserted below the last one. For example, for a

condition of the form a and b or c, the meaning is (a and b)

or c—it is not a and (b or c), which in general has a differ-

ent meaning. For this particular case, the second meaning

.............................................................................................................................................................................................................................................................................................

Page 5 of 13

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



can be specified by reversing the order of the atomic con-

ditions, that is by writing from top to bottom c or b and a.

This is the case since these connectors are commutative.

In other cases, some other reordering combined with one

or several logical reversal (i.e. not equal versus equal)

would make an equivalent condition.

Quantifiers on attributes of basic types

A ‘quantifier’ is used to query an attribute that has a list

of values. We separate the discussions of quantifiers that

apply to attributes with basic types such as numbers and

strings, versus quantifiers that apply to attributes whose

types are lists of other DB objects, which are described in

the next section.

Imagine that we want to add an additional restriction to

the query in Figure 2, to select polypeptides whose citations

contain the word ‘purified’. To do so, we would add a

condition and then select the citations attribute (no

figure provided because of space limitations). This attribute

has a type list of strings, typically, one string per citation.

The user can then select the operator at least one elem-

ent of, and enter ‘purified’ in the text box. Note that the

citations attribute is a list of strings that contain evidence

codes and PubMed/Medline identifiers. (This is documented

online in the tooltip: the user can read a description of the

citations attribute.)

Other quantifiers available for multivalued attributes

with basic types include at least one element of,

exactly one element of, for no element of and the

number of elements of (which allows queries based on

the number of values of an attribute instead of the values

themselves).

Quantifiers on relations

A relation is an attribute whose values are other objects. In

a sense, the attribute creates a relationship among DB ob-

jects. Example relations within the Pathway Tools schema

include the attributes product (which links a gene to its

product protein or RNA) and reaction-list (which links

a pathway to its component reactions).

Quantifiers on relations within the SAQP allow us to real-

ize a significant advance in functionality within an inter-

active query form by supporting a join-like capability.

For example, imagine that we want to extend the query in

Figure 2 with an additional restriction that depends on the

‘gene encoding the polypeptide’, not on the polypeptide

itself. This type of condition is not supported in most other

query forms.

To do so, the user would add an and condition, and then

select the gene attribute, which represents the gene encod-

ing the polypeptide (see Figure 2). As in the previous sec-

tion, the SAQP rearranges the order of this condition to

enhance its readability. We then select the quantifier oper-

ator for some object . . . , meaning that we want to define

a condition that applies to some of the genes in the gene

attribute of this polypeptide (although in the majority of

cases only one gene will be present).

At this point the SAQP adds a new indented query clause

as shown in Figure 2, to allow a condition to be defined on

the gene. We have specified a constraint that its nucleotide

coordinate must lie in the first 500 kb of the genome. Since

several attributes and logical connectors can be specified in

this new clause, forming a complex condition by itself, the

web interface draws a box around this condition and intro-

duces it with the we have keyword. A new unique variable,

named Z2, is also introduced. This variable represents every

value of the gene attribute. Variables are described further

in the next section.

Additional quantifier operators applicable to multiva-

lued relations are for all objects. . ., for one ob-

ject . . . and for no objects. . ..

The quantifiers applicable to lists of basic values versus

those applicable to objects are named differently: the word

‘element’ is replaced by ‘object’.

The use of quantifiers, with the exception of the

number of elements of, generates a subquery in the

underlying query language BioVelo (but is transparent

to the user).

Quantifiers can be nested to any depth. That is, any of

the atomic conditions under a quantifier can refer to an

attribute that itself is a list on which a quantifier can be

applied, and so on. Therefore, a long list of nested relations

can be specified.

Queries with several components

Simple SAQP queries’ and ‘Complex SAQP queries’ sections

presented examples based on only one search component.

This restricted the complexity of the searches. For example,

there were no searches in two or more DBs. Here, we show

that adding a search component can provide more

flexibility.

In the SAQP interface, a component can be added by

clicking the button labeled ‘Select an operation to add an

additional search component’. The addition of a compo-

nent always introduces a new variable.

For two components, the second component does a

search for each object found in the previous one; for

three components, the third component does a search for

each pair of objects from the previous two components;

and so on. That is, the components do a search on the

‘Cartesian product’ of each list.

Figure 4 presents a query containing three search com-

ponents: the first one in the BioCyc Escherichia coli DB, the

second one in the DB for Helicobacter pylori strain 26695

and the third in the DB for H.pylori strain HPGA1. Notice

that the button ‘Select an operation to add an additional

search component’ still exists between the components.

.............................................................................................................................................................................................................................................................................................

Page 6 of 13

Original article Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



This provides the possibility to insert another search com-

ponent between any already existing search components,

not only at the end.

This search uses the attribute Frame-ID to identify

common pathways between databases. In general, the

frame-id values are assumed unique for one database.

Furthermore, a web server may offer, for some classes, to

uniquely identify objects based on frame-ids across all its

databases. In our case, if two pathways have the same

frame-id value, regardless of the database, then this

frame-id refers to the same pathway. Inversely, two differ-

ent frame-ids are assumed to refer to two different

pathways.

The query of Figure 4 is efficient, even though it has

three search components, since the second search compo-

nent keeps only the pathways that also exist, by frame-id,

in Helicobacter 26695. It turns out that there are around

100 of these. The third search component, although search-

ing through all the pathways of Helicobacter HPAG1, will

do so for this small number of cases. Notice that the first

component uses variable Z1 to identify every pathway of

E.coli, that variable Z2 is used to identify every pathway of

H.pylori 26695, and variable Z3 is used to identify every

pathway of H.pylori HPAG1. These variables are introduced

automatically by the interface. They are used in the condi-

tions to form correlated atomic conditions. They are also

used in the output specification to select appropriate

attributes for the result. The following section presents

more details about variables in the SAQP interface.

This particular example uses the Frame-ID attribute to

compare objects. It is possible to compare (i.e. join) any

database object attribute with any other database object

attribute, as long as their type matches.

Variables

Variables are introduced automatically by the web inter-

face. They make it possible to formulate precise conditions

between objects in conditions. Without them, it is not pos-

sible to precisely refer to different objects across search

components and conditions based on quantifiers.

When several search components or at least one quanti-

fier are used in a query, explicit variables are introduced—

they are always named Zn where n is an integer. Three

variables, Z1, Z2 and Z3, are visible in various places

in Figure 4. They cannot be explicitly renamed, created or

removed by the user. The interface introduces and removes

them as needed. Each one has a type (e.g. gene) since they

represent objects from a class. The interface maintains the

coherency of the list of attributes and operations that can

be applied to each variable according to its type.

Each search component has at least one variable asso-

ciated with it. This variable refers to the objects of the

top (i.e. first) class selector. When only one search

Figure 4. Three search components are used in this query across three DBs. This query searches for all pathways of Escherichia
coli that also exist in two other DBs, Helicobacter pylori for strains 26995 and HPAG1.

.............................................................................................................................................................................................................................................................................................

Page 7 of 13

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



component exists, no explicit (i.e. visible) variable is asso-

ciated with it—but it exists and it is called Z1. Therefore,

when it becomes necessary to introduce a second variable,

two become visible: the newly created one, typically called

Z2, and the implicit Z1.

Each variable has a ‘scope’. The scope of a variable is the

extent, in the query, where it can be used. The user does

not have to worry about the scope of variables—that is, it is

not possible from the interface to refer to a variable out-

side its scope. When a selector is provided to select a vari-

able, at a specific location in the query, the list of choices

contains the variables that are in the scope at this loca-

tion—nothing more or less. Moreover, when a variable is

selected, the list of attributes associated with this variable,

typically provided as a selector, reflects the type of the vari-

able selected. This greatly reduces the possibility of error

compared with typical query languages like SQL.

The variable introduced when a new search component

is created has a large scope: it can be referenced in all com-

ponents below it and in the output specification and in all

conditions of this search component. This means that any

condition of a search component can refer to all variables

above this search component including its own variable. A

variable introduced when a quantifier (i.e. subquery) is spe-

cified has a scope to the condition under this quantifier and

in the output specification. This latter case is very useful: it

enables the user to output any attribute of the resulting

objects of subqueries.

The right argument of any atomic condition can refer

to either a variable or a constant. Using a variable

makes it possible to create conditions between the cur-

rent object of a search component and any other object

in the previous search components. Similarly, in a condi-

tion based on a quantifier applied to the elements of a

list, a variable is available to refer to the elements of

the list. Any subcondition under the quantifier, which

might also be based on a quantifier, can be based on

this variable.

Implementation

The SAQP is implemented in about 3000 lines of JavaScript

code. It has been tested on four browsers: Internet Explorer

6, 7 and 8, Firefox 3.2, Safari 4.0.3 and Chrome 4. Much of

the complexity of the code results from the need to main-

tain consistency within the query. For example, selectable

operators are type consistent with the attributes selected;

selectable variables are in the scope of the expression being

created; lists of selectable attributes are consistent with the

type of variables; right operands make sense with the left

attribute selected in an atomic condition; variables have

unique names.

The translation of an SAQP query to BioVelo is

relatively straightforward. It consists of a translation

where the values of the SAQP selectors are translated

into BioVelo operators. For example, the translation in-

serts the right BioVelo operators (e.g. ^ ^, ^, instring)

in the right places, generates pairs of well-balanced par-

entheses for complex conditions and converts some logical

connectors to two BioVelo logical connectors. The overall

structure of the SAQP query already gives the structure of

the BioVelo query.

The quantifiers within the SAQP create BioVelo subqu-

eries. Each quantifier generates one or two BioVelo syn-

tactic forms. They are always translated in the form of

atomic conditions that use the BioVelo length operator

# to count the number of elements of a subquery, then

to be compared (e.g. <, >, ¼) with the constant value 0

or 1 depending on the quantifier.

The SAQP output section generates directly the head of a

BioVelo query. It is always a tuple of the form

ðz1^?a1, . . . ,zn^?anÞ where every zi is a variable and every

ai is an attribute. The BioVelo html-sort-ascending

function is always applied to the whole query based on

the user-selected column.

As the user builds an SAQP query, no interaction occurs

with the web server. All verifications are done in the user’s

web browser on the client machine. This approach greatly

improves the speed of interaction, and is achieved by send-

ing the entire schema to the client machine (as a JavaScript

data structure), with all its documentation. The schema is

necessary to create the list of attributes in selectors, do type

checking and so on. Before the web server transmits the

schema to the web browser, it queries the database, thus

making the SAQP applicable to any database DB, not just

Pathway Tools DBs.

Limitations

BioVelo is the underlying query language used by the

SAQP. That is, the SAQP interface maps every query to

BioVelo, but the following features provided by

BioVelo are not accessible from SAQP.

In BioVelo, the head of a query specifies the output

result. It can be any BioVelo expression. In the SAQP,

the head of the query is always a tuple where each of its

elements is a reference to an attribute. For example, this

limits the result to a table where each element cannot be

a subquery.

Arithmetic operations cannot be embedded within con-

ditions. Such embedding can be useful, for example, when

calculating the length of a gene, or verifying if a gene over-

laps another gene by a few nucleotides. Also, basic statistics

(e.g. averages) cannot be performed within the SAQP but

can be done in BioVelo.

In BioVelo, subqueries can be inserted almost anywhere

as they are expressions. In the SAQP, subqueries occur only

when quantifiers are used.

.............................................................................................................................................................................................................................................................................................

Page 8 of 13

Original article Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



A more advanced schema class browser would facilitate

browsing of the classes within the Pathway Tools schema.

Currently, only a subset of the classes is accessible to limit

the complexity of the SAQP.

Related work

In comparing other web interfaces to the SAQP, we have

ordered them according to their similarity to the SAQP,

starting with the least similar.

Query-by-Example

Query-by-Example (QBE), developed by M. Zloof at IBM in

the 1970s (6), is a graphical interface to query and modify

relational DBs based on a table description. Using a table

similar to the relation to query, a user specifies constant

values or variables, along with some operators in some of

the columns. The table description becomes ‘an example’ of

the records to retrieve. Special ‘condition’ columns can spe-

cify relations between columns based on the variables.

Several tables can be specified for several relations to do

join operations. Such a description can be easily translated

to SQL. Microsoft Access is a commercial product that offers

a QBE-like facility. QBE, in this strict sense, is still problem-

atic to query nonrelational biological DBs such as BioCyc.

Our SAQP includes a compact QBE interface for querying

(not modifying) DBs. In QBE, a query is formed by specifying

values, variables and conditions in a table of the same form

as the relation being queried. This is visually appealing

since all the attributes (i.e. fields, columns) of the relation

are visible while creating the specification. On the other

hand, if the relation has a large number of attributes, the

visual aspect can become overwhelming. The remedy is to

allow the user to remove and reorder the attributes as

needed. Among other things, the SAQP allows this: once

a DB and class (a relation) are chosen, a where clause can be

added that has a selector of possible attributes. Any

number of attributes can be added by using the and logical

connector. QBE allows several relations to be queried in the

same query, with possible sharing of variables to interlace

the conditions on which to filter in the needed rows. The

mechanism of several components in SAQP offers a more

general mechanism.

Previous advanced query form at biocyc.org

The previous advanced query form at BioCyc.org, which

has been superseded by the interface presented in this art-

icle, had a fixed structure. A search would be done by se-

lecting a DB (e.g. E.coli), a class of objects (e.g. compounds),

a connective (e.g. and), one or several slots (i.e. attributes

of the class), constant values, and various constraints (e.g.,

greater than) between these slots and values. Depending

on the chosen operator, such a search returns a list of

objects satisfying all (e.g. and) or some (e.g. or) of the con-

straints on the slots.

It allowed only a single logical operator and limited the

number of attributes. The main limitation is that it was not

possible for queries to span multiple object types. Also, no

subqueries were allowed.

EuPathDB

The EuPathDB (7) web site contains a page called ‘All

Queries and Tools’ that provides a large number of possible

queries to the user. Compared to the SAQP, the approach is

quite different: EuPathDB uses a large number of prede-

fined queries where each query allows a few attributes to

be constrained. There are no facilities to create more pre-

cise queries based on several object types or with any

number of user-defined constraints. For example, there is

a set of queries called ‘Identify Genes by’ with a subsection

called ‘Putative Function’. That subsection links to six dif-

ferent query pages: ‘Go Term’, ‘EC Number’, ‘Metabolic

Pathway’, ‘Y2H Interaction’, ‘Predicted Interaction’, and

‘Phenotype’. Each query page is tailored to a specific

search; some searches require the user to select one or sev-

eral databases and enter one constraint, e.g. a GO term.

FlyBase, TAIR and Entrez

The majority of biological DBs allow user queries to

one class of objects at a time, but do not allow

queries that span multiple classes. This is true of the

FlyBase QueryBuilder (see flybase.org/cgi-bin/

qbgui.fr.html) and TAIR searches.

Entrez is subject to similar limitations, although the

Entrez web interface offers a cross-database search mech-

anism. By entering a single string, several DBs are searched

for this string. Since the DB searched contains different

types of object, several types of object are returned. But

the flexibility of the search is limited since multiple contra-

ints cannot be specified, nor can interrelations between

object types be specified.

BioMart

BioMart (8) is an open source data management system

used by several web sites: WormBase, Rat Genome

Database, UniProt, Reactome, Galaxy and others. For ex-

ample, the WormBase web site, at wormbase.org, covers

one organism, Caenorhabditis elegans and offers a query

page based on BioMart. It has a few databases since a few

versions of the wormbase are available.

The web query page provided by BioMart has two main

panes: a left narrow one and a right wider one. The left

pane acts as a menu from which the right pane can be

changed to specify the data set to search, the output attri-

butes and the filters to apply. It also summarizes the cur-

rent query. A second query can be formulated below the

first one.

.............................................................................................................................................................................................................................................................................................

Page 9 of 13

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



The underlying query language is Perl using the BioMart

libraries. The user can get the Perl code (as text) used for a

specific query or an XML file representing the selections

made for the query.

Biomart has several shortcomings compared with the

SAQP. It is not possible to do join queries specified by the

user. Only one logical operator, and, is available between

the filter elements; the logical or operator is not available.

BioMart includes a form of ‘not’ but on an individual filter

element only. More important, the user must use one of

the predefined filter elements. The attributes always have a

single value, lacking the rich list structure to create multiple

subqueries based on list and set of elements and objects.

Biozon

Biozon (biozon.org) integrates several biological DBs and

provides a web interface to query them (9). A query is cre-

ated by first selecting an object type, entering some con-

straints for this type and then proceeding to another

related object type if desired. That is, join operations be-

tween different types of object can be done. This is one of

the few web interfaces available today that allows joins.

However, the number of relations used in Biozon is limited

to a handful, and appears to be hardwired into the system.

Further, the Biozon interface does not provide the full set

of operators provided by the SAQP that distinguish all pos-

sible relationships between objects (e.g. find a protein such

that all its genes satisfy some condition, or some of its

genes, or none of its genes). Also, the SAQP allows the

user to see the entire query in one page.

FlyMine

FlyMine has a complex querying interface called

‘QueryBuilder’ accessible at (10). The first step in creating

a query is selecting a class of objects, such as ‘Gene’ or

‘Protein’. The next Web page is then divided into left and

right panes. The left pane shows a user-expandable tree of

attributes for the selected class of objects. For each such

attribute, the user can either ‘show’ or ‘constrain’ it, or

‘summary’ or ‘constrain’ it. The show command adds the

selected attribute to the output of the query. The con-

strain command allows the user to filter the results of

the query to objects with the selected attribute having

some specific values. For example, for class Gene, the attri-

bute length can be constrained to be smaller than 1000.

The user would select the relational operator < and enter

the value 1000 in a text box. Each such added constraint

requires communication with the web server, which can be

slow. It is not possible to refer to other attributes in the

constraint, only a constant can be entered.

Compared to the SAQP, this interface has the following

limitations: it is not possible to search more than one DB in

the same query, there are no quantifier operators on lists

of objects, only one search component is allowed with

one class of objects, and the constraints are based on con-

stant only with no possibility to refer to other attributes of

the same object. This last capability is possible in the SAQP

since variables are introduced for each new search

component.

BioGuide

BioGuide (11,12) is a user–centric framework which cap-

tures user preferences and querying strategies, and allows

various querying approaches. The framework consists of a

high-level, semantic view of the scientific domain in a Entity

graph (e.g. Gene, Disease, Protein), that is mapped to the

data sources of interest in a Source-Entity graph (e.g.

SwissProt, UniGene, TrEMBL). Users pose queries over the

Entity graph and are given a set of ranked paths in the

Source-Entity graph that take their preferences and query-

ing strategies into account. BioGuide helps scientists choose

suitable data sources, find complementary information in

sources and deal with divergent data.

BioGuide offers a graphical interface based on oriented

graphs to query DBs (e.g. Entrez). Two oriented graphs are

initially displayed. On the left is the Entity graph, and on

the right is the Source-Entity graph.

The implementation does not offer data filters based on

complex conditions using logical operators (e.g. or) nor to

search entities based on specific attributes. For example, it

is not possible to search a gene based on the molecular

weight of its product.

BioGuide differs greatly from the SAQP. The SAQP em-

phasizes precise queries where the user has access to the

database schema, whereas BioGuide emphasizes to search

alternative paths for complementary results without a

direct access to the database schema. The BioGuide inter-

face implementation is based on the Java Web Start tech-

nology that eases the installation of a Java application. In

contrast, the SAQP requires no additional application be-

sides a web browser.

SAQP evaluation

A user evaluation of the SAQP interface took place in May

2009 at SRI International in two different sessions. The two

sessions differed in that the first cohort of five participants

received no tutorial (nor any form of introduction) to the

SAQP, whereas the second cohort of three participants

watched a video tutorial of 10 min at the start of the ses-

sion. They watched the same video tutorial that is available

in conjunction with the SAQP through the BioCyc web site.

Common to both sessions were the following. The par-

ticipants had never used the SAQP. Each participant

received the same questionnaire of 10 precise queries to

solve, using the SAQP, with an overall time limit of 1 h.

.............................................................................................................................................................................................................................................................................................

Page 10 of 13

Original article Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



The queries were written in English using standard biologic-

al terms. For example, one question was

Find all metabolic pathways in E.coli having more than 2

reactions and where none of the reactions has the react-

ant (i.e., the left side) ‘‘acetaldehyde’’ in it. How many

such pathways have you found?

Each participant filled out a form answering basic ques-

tions about that person’s own background. Five partici-

pants had no programming experience, two participants

had fair Perl programming experience and one participant

had good Perl programming experience.

The questionnaires were scored using the same criteria

for all participants. The results are shown in Table 1.

Analysis of evaluation results

The two highest scores were obtained by participants who

had viewed the SAQP video tutorial and had Perl program-

ming experience. The tutorial appears to have a positive

impact although the lowest score was from the third par-

ticipant, who viewed the tutorial. Experience in program-

ming may help in using the SAQP, although this is not clear

from this evaluation as the second-lowest score was from

the participant who had the most programming experi-

ence. The participants who did not view the tutorial and

had no programming experience had average scores.

The study participants exhibited a wide range of per-

formance: 25% of subjects were able to answer most

(75%) of the questions; 38% of subjects were able to

answer more than half of the questions. Although these

results say clearly that a high success rate is possible in a

person’s first encounter with the SAQP, we had hoped that

more subjects would exhibit a high success rate. Clearly, not

all subjects were readily able in one short period to solve

the sample problems using the SAQP. Biologists who had

some programming experience and were given a short tu-

torial were most capable of formulating simple and com-

plex queries using the SAQP.

Since we are aware of no similar empirical evaluations

for related query tools, it is unclear how other tools would

compare in this evaluation. Such a study would indeed be

an important research direction, but is beyond the scope

of this work. Our work establishes a baseline for future

comparisons.

The evaluation confirmed that understanding the

schema is a key factor in using the SAQP. The problems

within the questionnaire were formulated using a neutral

vocabulary whose terminology sometimes varied signifi-

cantly from the terminology (class and slot names) used in

the schema. For example, one question asked the partici-

pants to find ‘all monomers in E.coli ‘ but the Pathway Tools

schema uses the term ‘polypeptide’ rather than ‘monomer.’

Users reported that identifying appropriate schema terms

was a significant challenge.

Results and conclusions

We presented the SAQP web interface for dynamic

authoring of precise DB queries. SAQP queries combine a

level of expressiveness and usability by nonprogrammers

that is unrivaled among biological DBs. The SAQP is imple-

mented as part of the Pathway Tools software, and trans-

lates its queries to the BioVelo query language for

evaluation, although the syntax of BioVelo is hidden

from the user.

The SAQP interface is available at BioCyc.org/query

.shtml for more than 500 PGDBs. Development of the

SAQP was informed by feedback from several EcoCyc and

MetaCyc biologist curators. During 2009, an average of 855

SAQP queries per month were received at BioCyc.org, for

1252 unique visitors, illustrating that the SAQP is in active

use by BioCyc users.

SAQP queries consist of a set of search components and a

description of how the query output should be formatted.

Each search component searches one DB; a query with

more than one component can search multiple DBs. A

search component specifies a set of conditions on a DB

class to be searched. In addition, conditions can apply to

other objects of other DB classes that are connected via

relation attributes to the initial class. These conditions can

be nested arbitrarily. Variables that appear within SAQP

expressions allow the user to relate or compare terms

that appear in spatially separated parts of a query.

One of the difficulties users face in querying a complex

biological DB, such as those in the BioCyc collection, is

understanding the DB schema. We cannot expect a user

to learn or know this schema before creating a query.

The SAQP interface provides basic tools to learn the parts

of the schema required for a query. The tools are based on

inline tooltips available for every schema attribute and

class, which are generated within the SAQP by the web

server. The SAQP also performs type checking to help the

Table 1. The participant scores, their programming skills and
whether they watch a 10-min video tutorial

Participant Score
(percent)

Programming
Experience

Tutorial

1 82 Fair Perl
Fair Perl

Yes
2 79 Yes
3 63 No No
4 45 No No
5 40 No No
6 36 No No
7 21 Good Perl No
8 15 No Yes

.............................................................................................................................................................................................................................................................................................

Page 11 of 13

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



user make legal selections of variables, attributes and

operators.

Acknowledgement

Sarah Cohen-Boulakia kindly provided several written clar-

ifications about BioGuide. The contents of this article are

solely the responsibility of the authors and do not neces-

sarily represent the official views of the National Institutes

of Health.

Funding

National Institutes of Health (grant GM75742). Funding for

open access charge: GM75742.

Conflict of interest. None declared.

References
1. Bada,M. (2003) A computational model of structural-biological

experimental data and its applications, Ph.D. Thesis, Stanford

University.

2. Caspi,R., Foerster,H., Fulcher,C.A. et al. (2008) The MetaCyc data-

base of metabolic pathways and enzymes and the BioCyc collection

of pathway/genome databases. Nuclic Acids Res. D623–D631.

3. BioCyc Database Collection. BioCyc Database Collection.

BioCyc.org (22 March 2010, date last accessed).

4. Evsikov,A.V., Dolan,M.E., Genrich,M.P. et al. (2009) MouseCyc: a

curated biochemical pathways database for the laboratory

mouse. Genome Biol., 10, R84.

5. Karp,P.D., Chaudhri,V.K. and Paley,S.M. (1999) A collaborative

environment for authoring large knowledge bases. J. Intelligent

Inform. Syst., 13, 155–194.

6. Zloof,M.M. (1977) Query-by-example: a data base language. IBM

Syst. J., 16, 324–343.

7. EuPathDB (2009) The EuPathDB Web site. eupathdb.org (22

March 2010, date last accessed).

8. Smedley,D., Haider,S., Ballester,B. et al. (2009) BioMart—biological

queries made easy. BMC Genomics, 10.

9. Birkland,A. and Yona,G. (2006) Biozon: a system for unification,

management and analysis of heterogeneous biological data. BMC

Bioinformatics, 7.

10. FlyMine. (2009) The FlyMine Web site. www.flymine.org (22

March 2010, date last accessed).

11. Cohen-Boulakia,S., Biton,O., Davidson,S. et al. (2007) BioGuideSRS:

querying multiple sources with a user-centric perspective. BMC

Bioinformatics, 23, 1301–1303.

12. BioGuide. (2010) The BioGuide Web Interface. www.bioguide-

project.net (22 March 2010, date last accessed).

13. Latendresse,M. (2007) Simple and efficient compilation of list

comprehension in Common Lisp. In: Shapiro,C. and Costanza,P.

(eds), International Lisp Conference, ACM (Association for

Computing Machinery), pp. 125–130.

14. SAQP. The Structured Advanced Query Page (SAQP) at BioCyc.

BioCyc.org/query.shtml (22 March 2010, date last accessed).

Appendix 1

The BioVelo language

BioVelo is the DB query language into which SAQP queries

are translated. That is, every request formulated by the user

in the SAQP interface is translated into BioVelo before

being sent to the server for evaluation. When a user sub-

mits a query, the translated BioVelo query is displayed

alongside the returned result (see Figure 3 for an example).

A list of example BioVelo queries is provided at

BioCyc.org/query.shtml. The specification of

BioVelo is at BioCyc.org/BioVeloLanguage.shtml.

BioVelo can be applied to object-oriented DBs. It has

set, list and tuple as nonatomic data type. Its syntax and

semantics are based on list comprehension and it has an

efficient implementation in Lisp described in (13).

For example, to retrieve all proteins from E.coli:

[p^name: p <- ecoli^^proteins]

The head of the query is p^name. The operator ^ references

an attribute. In the case of p^name, it references the attri-

bute name of variable p. The p <- ecoli^^proteins is a

generator. The name of the variable p is chosen by the user,

but the name of the DB ecoli is fixed by the server, and

the name of the class proteins is fixed by the schema of

the server. The dyadic operator ^^ references a list of those

DB objects that are instances of the specified class. In the

case of ecoli^^proteins, it references all proteins from

the E.coli DB. This generator means: for each object of the

class proteins in the DB E.coli, bind variable p to it. Since

there is nothing after the generator, the head is executed,

which simply retrieves the name of the protein. The list is

built sequentially. This is essentially the semantics of list

comprehension: the generator creates a ‘loop’, and the

head expression creates the result for each value generated

by this loop.

This example had only one generator, but constraints,

subqueries and more generators can be added. For exam-

ple, the query shown in Figure 2 is translated into

[(z1^?name, z1^?gene,

[e^?left-end-position: e <- L2]):

z1 <- ecoli^^polypeptides,

L2:= [z2: z2 <- z1^gene,

z2^left-end-position > 500000],

(#(y1:y1<-z1^molecular-weight-exp, y1 > 50)>0) &

(#(y2:y2<-z1^molecular-weight-exp, y2<100)>0) &

(#(y3:y3<-z1^PI, y3 < 7) > 0) & (0 < #L2)]

This last query has one main generator, with variable z1,

four subqueries, one of which is bound to variable L2, and

four atomic conditions forming one conjunctive condition.

The head of the expression is a tuple of three expressions:

.............................................................................................................................................................................................................................................................................................

Page 12 of 13

Original article Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024



the name of the polypeptide, the gene(s) producing this

polypeptide and the left-end position(s) of the gene(s) on

the genome. This tuple forms a table of three columns. The

operator # gives the length of a list. The operator ^? is

similar to ^ but it generates a URL link for HTML display.

BioVelo offers basic arithmetic operations, set and list

operations, indexing and so on. Queries can be embedded.

In fact, a query is an expression and can be specified

anywhere an expression can be specified, as long as its

type is compatible with the operation done on it. Some

aspects of BioVelo are not accessible from the SAQP inter-

face. For example, arithmetic operations available from

BioVelo cannot be done from the SAQP.

The FFAQP gives full access to the BioVelo language—

this form is accessible via the SAQP at (14).

.............................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................

Page 13 of 13

Database, Vol. 2010, Article ID baq006, doi:10.1093/database/baq006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq006/404059 by guest on 28 April 2024


