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Literature curation of protein interaction data faces a number of challenges. Although curators increasingly adhere to

standard data representations, the data that various databases actually record from the same published information may

differ significantly. Some of the reasons underlying these differences are well known, but their global impact on the

interactions collectively curated by major public databases has not been evaluated. Here we quantify the agreement

between curated interactions from 15 471 publications shared across nine major public databases. Results show that on

average, two databases fully agree on 42% of the interactions and 62% of the proteins curated from the same publication.

Furthermore, a sizable fraction of the measured differences can be attributed to divergent assignments of organism or

splice isoforms, different organism focus and alternative representations of multi-protein complexes. Our findings highlight

the impact of divergent curation policies across databases, and should be relevant to both curators and data consumers

interested in analyzing protein-interaction data generated by the scientific community.

Database URL: http://wodaklab.org/iRefWeb
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Introduction

A myriad of cellular processes are carried out by groups

of physically interacting proteins, or complexes, and the

function of individual proteins often depends on their

interaction partners. Substantial efforts are therefore

being devoted worldwide to experimentally characterizing

protein–protein interactions (PPIs) (1–9). This has in turn

prompted the development of a number of specialized

databases that curate and archive PPI data from the scien-

tific literature and make them available to the scientific

community (10).

Major PPI databases created in recent years such as HPRD

(11), BioGRID (12) and IntAct (13), represent essentially

independent annotation efforts driven by different re-

search interests, and contain as a result complementary as

well as redundant information. But exactly how much in-

formation is shared by the different databases and how

much is unique, is generally not well documented, because

comparing and integrating PPI information across the data-

bases remains a challenging undertaking. The different

databases apply different rules for capturing the data and

often use different systems for cross-referencing genes and

proteins across biological databases. Curation of the same
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publication by two different databases may hence result

in significant discrepancies between the data that they

record.

Adoption of the Proteomics Standards Initiative—

Molecular Interaction (PSI-MI) controlled vocabulary and

data structure (14) has been a major step forward in creat-

ing a common framework for representing PPI data.

But although all major PPI databases adhere in principle

to the PSI-MI standard, the actual implementations are

still far from uniform. The outstanding differences

prompted the creation of the IMEx consortium, committed

to further unifying the PPI data representations and cur-

ation policies (15).

These standardization efforts have significantly eased

the bottleneck for creating ‘meta’ resources that aggregate

information from multiple PPI databases, with several such

resources developed recently (16–20). But the aggregated

PPI data made available by these resources are only partial-

ly normalized at best, due to many outstanding issues.

A number of problems continue to plague the curation

and integration of PPI data. One problem, which further

complicates the tedious task of assigning and cross-

referencing gene and protein identifiers, is the annotation

of protein isoforms. In some cases an interaction is specific

to a particular protein isoform, whereas in others it is not.

So far this information is rarely provided in the original

publication. As a result the same protein may be annotated

by two different databases as interacting with two differ-

ent protein isoforms, each represented by a distinct identi-

fier. Addressing this issue would require mapping the

different isoforms of a protein to the corresponding gene

(or ‘canonical’ isoform) (21), which is generally, but not

always, uniquely defined. But this is currently not the ac-

cepted practice.

Guidelines on recording the organism in which an inter-

action has been observed also tend to differ. Some data-

bases make the deliberate choice to curate only

interactions pertaining to a specific organism from a

given publication, or to infer interactions in a given organ-

ism (mainly human) on the basis of reported interactions in

one or more related organisms (e.g. other mammals such as

mouse or rat) (11,22). Problems with interpreting the pub-

lished text are certainly also a factor, especially in studies of

interactions in human, mouse or rat models. Indeed, cell

lines from various model organisms are often used to

draw conclusions about human cells. It is also not uncom-

mon for authors to refer to previous studies for the descrip-

tion of cell lines and organisms, leaving it to the curator to

trace earlier publications and resolve ambiguities.

The representation of multi-protein complexes identified

by various detection methods (3,23,24) is yet another area

where curations diverge. Complexes can be recorded either

as a group of three or more associated proteins, or as a

series of binary associations, depending on the practices

adopted by the database (Supplementary Discussion S1).

A common representation is the so-called spoke model, in

which one protein is designated as a hub (or ‘bait’) and the

complex is represented by a set of binary associations, each

linking the bait to one of the other proteins (‘prey’) (25).

Such associations may be distinguished from experimen-

tally detected binary interactions (2,26) by examining

the PSI-MI ‘interaction type’ record, since binary inter-

actions derived from complexes are usually annotated as

‘association’ or ‘physical association’ (rather than ‘direct

interaction’).

Databases also tend to differ on how they curate data

sets produced by large-scale (high throughput) studies

either on binary interactions or complexes. These studies

often make available a high-confidence subset of the

data, in addition to providing access to the full processed

data set, or to the raw unprocessed data (2,27), but there is

no general agreement between databases on which of

these data sets is best fit for redistribution.

While all these problems are well known to database

curators (28–30), the extent to which the ensuing differ-

ences impact the data currently stored across major PPI

databases has so far not been quantified. The increasing

number of non-experts who rely on PPI data for their re-

search therefore often tend to ignore these problems

altogether.

In this article we perform a quantitative evaluation of

the level of agreement of the PPI data curated by major

public databases. Our analysis is carried out on the global

landscape of PPI data consolidated from nine major data-

bases that focus primarily on the curation of experimentally

derived physical PPIs: BIND (31), BioGRID (12), CORUM (22),

DIP (32), IntAct (13), HPRD (11), MINT (33), MPact (34) and

MPPI (35). The consolidation was performed using the

Interaction Reference Index process (18) (‘Methods’ sec-

tion), and data analysis was enabled by iRefWeb (http://

wodaklab.org/irefweb), a web resource that serves as

portal to the consolidated information (36).

The global PPI landscape with all its supporting evidence

was generated by iRefIndex version 6.0. It comprised

271 716 distinct physical interactions involving 70 449 pro-

teins. These interactions are associated with 1324 different

organism-taxonomy identifiers and supported by a total of

42 651 publications. Interactions inferred by computa-

tional methods (37,38) and genetic interactions, which rep-

resent phenotype alterations produced by the mutation/

deletion of one gene in the background of a mutation/

deletion of another gene (39–41), were not considered

here mainly because only a small subset of the databases

curate them.

To perform the evaluation, we compared the annota-

tions derived from the same publication by different data-

bases. Whenever two databases cite the same publication

as supporting an archived interaction, we used a similarity
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score to quantify the agreement between, respectively, the

interactions and the proteins described in the original

curated records, as outlined in Figure 1. These are two

basic descriptors that (in principle) uniquely define the bio-

logical entity that was annotated. Ideally, they must be

specified unambiguously by the curator and can be readily

analyzed programmatically.

Analysis of the 15 471 shared publications reveals that on

average, two databases fully agree on only 42% of the

interactions and 62% of the proteins curated from the

same publication, but the level of agreement for individual

publications varies considerably. We then quantify how this

initial level of agreement is globally impacted by factors

such as divergent annotation of organisms, different

splice isoform assignments and alternative representations

of multi-protein complexes. Our findings highlight the role

played by differences in curation policies (past or present)

across databases. They also underscore the challenges that

annotators face in interpreting published information and

provide valuable insight into the hurdles that bioinforma-

ticians need to overcome to integrate PPI data from

multiple sources. Our study should help in formulating rec-

ommendations and developing improved software tools

for all those interested in recording, integrating and ana-

lyzing protein interaction data.

Results

Level of agreement across databases on a
per-publication basis

In order to measure the agreement of the information

curated across databases on a per-publication basis, we

examine the subset of shared publications, i.e. those

curated by two or more databases. We define a ‘co-citation’

as an instance of two databases citing the same publication

in an interaction record (‘Methods’ section). Depending on

the number of curating databases, a single publication may

give rise to several pairwise co-citations (Figure 1). Only

�36% of all cited publications, numbering 15 471, are

shared, and those give rise to 27 399 pairwise co-citations.

For each pairwise co-citations we compute two similarity

scores, SPPI and SProt, which take values between 0 and 1

Figure 1. Pictorial overview of the analysis of pairwise co-citations of protein–protein interactions by different source databases
from individual publications. (a) Workflow diagram summarizing the major steps of the co-citation analysis. A co-citation is
defined as an instance of two databases citing the same publication in a protein interaction record. The first step is the con-
solidation of the PPI data from the nine databases analyzed in this work, performed by the iRefIndex procedures. Next, genetic
interactions defined as described in ‘Methods’ section, are removed, and pairwise co-citations of individual publications by the
source databases are extracted. Analysis is then performed on the bulk of these co-citations, as well as on co-citation subsets
corresponding to publications dealing with interactions in one or more specific organisms (organism categories), in only a single
specific organism (single-organism), and after systematically mapping proteins to their canonical isoforms (canonical represen-
tation) (see text). (b) Evaluating the consistency in pairwise co-citations of a hypothetical publication cited by three databases out
of the total of nine analyzed here. Sorensen–Dice similarity scores (Methods section) are computed for each pairwise co-citation,
to quantify overlaps between the sets of interactions (SPPI) and proteins forming these interactions (SProt). The distributions of
these quantities are then used to evaluate the level of consistency in different co-citation categories.
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and measure the agreement, respectively, between the

annotated PPIs, and between the annotated pro-

teins engaged in these interactions (‘Methods’ section).

Figure 2a plots the distributions of the similarity scores

for the interactions (horizontal axis) and for the set of

annotated proteins (vertical axis). It shows that the level

of agreement between the annotated information in the

analyze co-citations, ranges between full agreement

and complete disagreement. On average, two databases

curating the same publication agree on 42% of their

interactions. The discrepancies between the sets of proteins

annotated from the same publication are typically less pro-

nounced, with the average agreement of 62%, but the

overall trend is similar.

Admittedly, our criterion for agreement is quite strict, as

it requires that the two databases refer to the exact same

amino acid sequence and same organism taxonomy identi-

fier when annotating each interacting protein. However,

this allows us to quantify how far we are from the ideal

case of perfect agreement at the starting point of our

Figure 2. Statistical summary of the pairwise co-citation landscape across nine source databases. (a) Two-dimensional frequency
distribution of Sorensen–Dice scores (given as fractions) for interactions (horizontal axis, SPPI) and proteins (vertical axis, SProt),
over all co-citations. The color scale indicates the frequency. One-dimensional distributions of these scores are shown along the
corresponding axes. The mean and standard deviation of SPPI are 0.42� 0.42, hence two databases curating the same publication
agree (on average) on only 42% of the interactions. Both databases record identical sets of interactions (SPPI = 1) in 24% of
co-citations, while in 42% of co-citations they record completely different PPIs (SPPI = 0). The remaining 34% represent partial
agreement, varying widely between the two extremes. The mean and standard deviation of SProt are 0.62� 0.35. Full agreement
(SProt = 1) occurs in 29% of co-citations, a comparable level to that obtained for interactions, whereas complete disagreement
(SProt = 0) occurs in only 14% of the cases, or almost three times less frequently than for interactions. (b) The two-dimensional
frequency distribution of Sorensen–Dice scores in the Human category, i.e. 20 671 co-citations in which at least one database
recorded human proteins. (c ) Two-dimensional frequency distribution of the Sorensen–Dice similarity scores for the 15 194
human-only co-citations. Despite a prominent peak near the perfect agreement (SPPI = 1/SProt = 1), �57% of the co-citations
display various levels of partial agreement. (d) Distribution of the Sorensen–Dice similarity scores for the 4983 yeast-only
co-citations. Despite a prominent peak at the perfect agreement, �64% of the co-citations display various levels of partial
agreement.
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investigation. Seeing that the levels of agreement on

both the annotated interactions and proteins are low, we

now examine some of the factors that contribute to the

observed differences.

Publications dealing with specific organisms

Since the experimental characterization of PPIs tends to

vary between organisms in terms of both the methodology

and coverage, we investigate how the level of agreement

varies across publications dealing with specific organisms.

Organism information is usually unambiguously recorded

using the NCBI taxonomy identifiers (42) and can there-

fore be readily analyzed and compared. We consider a

co-citation as pertaining to a given organism when at

least one of the two databases citing the corresponding

publication recorded proteins from that organism. All

27 399 co-citations are classified in this fashion into 1324

categories corresponding to specific organisms. In this clas-

sification a given co-citation can belong to more than one

organism category, because the same publication may be

interpreted differently by two databases, with for example,

one database recording a human interaction but the other

recording an interaction from mouse.

The organism categories vary widely in the number of

co-citations that they contain and in the agreement levels

of the co-citations therein. The comparison across cate-

gories is summarized in Figure 3a, which plots the SPPI

and SProt scores for categories with at least 50 co-citations.

Among the largest categories, co-citations corresponding

to yeast Saccharomyces cerevisiae stand out as displaying

the highest agreement level (SPPI and SProt averaging 63 and

80%, respectively), whereas co-citations dealing with

mouse or rat display very poor agreement (with average

SPPI and SProt being, respectively, 12 and 26% for mouse

and 11 and 26% for rat). The average agreement for

human co-citations is roughly in the middle of the range

(37, 58%). For other well-studied organisms such as fission

yeast Schizosaccharomyces pombe, plant Arabidopsis

thaliana, worm Caenorhabditis elegans and fly Drosophila

melanogaster, the average agreement is relatively high,

whereas in some of the vertebrate species and in the bac-

teria Escherichia coli it is significantly lower (Figure 3a).

Divergent isoform assignments

The relatively low agreement level within the vertebrate

categories led us to examine the extent to which the de-

tected discrepancies were affected by differences in

splice-isoform assignments. We therefore compared the

level of agreement across the PPI landscape before and

after the splice isoform normalization process (‘Methods’

section). This process reduced the original set of 271 716

interactions involving 70 449 proteins, to that of 248 465

interactions involving 63 871 proteins. At the same time it

increased the level of agreement from 42 to 54� 41% for

PPIs, and from 62 to 71� 33% for proteins. Considering

specific organisms, the agreement improved for many spe-

cies, especially for human and fly (Figure 3b). We thus con-

firm that, using different splice isoforms in the description

of gene products is indeed a significant contributor to an-

notation discrepancies.

Following these findings, information provided by the

iRefWeb interface refers to proteins and interactions

mapped to their canonical isoforms (36). However, informa-

tion on the particular splice isoforms curated by the sources

databases is preserved and can be queried, as each conso-

lidated interaction links back to the original records from

which is was derived.

Divergent organism assignments

Even after the consolidation of isoforms, the level of agree-

ment associated with major organism categories, such as

Mouse and Rat, remained <20% for the interactions and

<30% for proteins (Figure 3b). To probe further into the

impact of organism assignments, we investigated the fol-

lowing question: When two databases cite the same article,

and one of them records all proteins as belonging to or-

ganism A, then which organism(s) does the other database

record, and how often?

Results show that the disagreements on the annotated

organism and annotation of PPIs from different organisms

by different databases are quite common (Figure 3c). The

discrepancies for the Mouse or Rat categories are dramatic.

Of the 1602 co-citations in which one database records ex-

clusively mouse proteins, the other database does so in only

242 cases (15%). Most commonly, however (in 1182 cases,

or �74%), human proteins are recorded instead. The trend

is very similar for the smaller Rat category. For the category

Human, there are 19 923 pairwise co-citations in which one

of the two databases records exclusively human proteins.

In 4729 of these cases (or 24%) the other database reports

proteins from a different organism (most often mouse or

rat) or a combination of organisms.

In contrast, organism assignments are much more con-

sistent for S. cerevisiae, A. thaliana, S. pombe, worm and fly

(Figure 3c), with only rare instance where interactions of

other organisms (mainly human) are recorded instead.

Additionally, discrepancies for the fission yeast, S. pombe,

often involve the attribution of proteins to the yeast

S. cerevisiae by the other database. Discrepancies are also

observed for the E. coli category, but are mostly a result of

different annotations of E. coli strains (Figure 3c).

In order to factor out the effects of divergent organism

assignments, we further restrict our analysis to co-citations

in which both databases record proteins from the same

organism. In such co-citations improvements in annotation

consistency of the order of 20% are observed for several

organism categories (Table 1 and Figure 2c and d),
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Figure 3. Analysis of co-citation agreement within different organism categories. (a) Average Sorensen–Dice similarity score for
co-citations in the different organism categories, before the canonicalization of protein isoforms. The area of the circle sur-
rounding the data point is proportional to the number of co-citations within the category. Orange error bars indicate the 95%
confidence interval for each category’s mean. Only organisms with at least 50 co-citations are shown. The four largest categories
are Human (20 671 co-citations), the yeast S. cerevisiae (5444 co-citations), Mouse (3550 co-citations) and Rat (R. norvegicus, 1477
co-citations). The inset shows the two-dimensional similarity distribution for the Human category (same as in Figure 2b). (b)
Improvement in average similarity scores for organism categories upon mapping of proteins to their canonical splice isoforms.
Error bars indicate the 95% confidence interval for each category’s mean. Improved agreement is observed for human and fly
co-citations, and to a lesser extent for the mouse and rat co-citations. The small improvements observed for E. coli co-citations
are due to a more consistent strain assignment performed in parallel to the canonical isoform mapping. (c) Discrepancies in
organism assignments: each group of colored bars corresponds to co-citations in which one database records proteins from a
single organism (indicated on the right, with the total number of such citations). Each colored bar represents co-citations in
which the other database records the organisms indicated on the right. Only bars with at least 10 co-citations are shown.
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confirming that divergent organism assignments contribute

significantly to the observed differences.

Specific examples of divergent organism
assignments

Experiments on mammalian cells and proteins are of crucial

importance to the studies of human diseases, especially

when such experiments involve known disease-related pro-

teins. However, disagreements between databases are

common even in publications involving such proteins.

Figure 4a illustrates the difficulty of curating a publica-

tion describing interactions between a well-known breast

cancer protein BRCA1 and another protein, BAP1, which

binds to BRCA1 and enhances cell-growth suppression

(43). The published text describes the interactions between

the BRCA1 RING finger domain (which has the same se-

quence in human and mouse) with the human BAP1 pro-

tein as well as with different variants of the BAP1 mouse

ortholog. The three databases that cite this study differ in

their representation of BAP1 as either a human or a mouse

interactor of BRCA1, with only IntAct faithfully represent-

ing both versions.

Another publication describes the interactions of only

three proteins, including a well-known tumor suppressor

TP53 as well as a BRCA1-associated protein BARD1 (44).

The experiments were conducted using human prostate-

cancer cells, rat ovarian-cancer cells and proteins from

human, rat and mouse. As a result, the difficulty of correct-

ly interpreting the paper rises dramatically and the anno-

tations have more potential to differ. Two of the databases

record only human interactions, with BIND recording them

both as a single complex comprising three proteins and

three distinct pairwise association (Figure 4b). In contrast,

curating the same paper, IntAct records interactions

involving human, mouse and rat proteins.

The presence of multiple organisms in a PPI annotation is

not in itself a sign of annotation discrepancies or difficul-

ties, since some publications may report interactions be-

tween host and pathogen proteins. Figure 4c illustrates

the annotations derived from such a study, which investi-

gated the interference of the human papillomavirus (HPV)

with the human insulin-signaling pathway (45). However,

only one of the two databases annotates the interactions

between human and HPV proteins, whereas the other data-

base does not record even a single HPV protein interactor,

for reasons that are not clear.

Several additional examples of annotation differences

can be found in the Supplementary Discussion S3.

Other factors affecting protein identification

Even when both databases completely agree on the organ-

ism assignment, and after splice isoform normalization,

agreement levels for interactions for on the largest organ-

ism categories except worm do not exceed 66% (Table 1).

To elucidate the factors that contribute to the outstanding

differences, we analyze the two largest categories of the

human-only and yeast (S. cerevisiae)-only co-citations,

which together represent the bulk (74%) of all 27 399

co-citations in our data.

First, we examine co-citations in which the two databases

disagree on every PPI described in the publication (SPPI = 0).

Such co-citations comprise 17% of the human-only and

13% of the yeast-only categories (Figure 2c and d). In

most of these cases the two databases have a partial

Table 1. Agreement for the largest single-organism categories of pairwise co-citations

Organism SPPI SProt SPPI

P-value

SProt

P-value

Pubs Co-cite

Human 0.66 (0.37) 0.83 (0.22) 0 0 10 546 15 194

Yeast 0.66 (0.35) 0.84 (0.22) 2.9e-4 3.6e-4 1867 4983

Mouse 0.42 (0.45) 0.65 (0.34) 0 0 203 242

Arabidopsis thaliana 0.63 (0.36) 0.79 (0.24) 0.486 0.306 156 186

Fission yeast 0.63 (0.33) 0.85 (0.19) 1.5e-3 2.9e-6 123 162

Fruit fly 0.66 (0.36) 0.81 (0.23) 5.6e-5 1.2e-6 106 147

Rat 0.53 (0.42) 0.76 (0.27) 0 0 95 111

Worm 0.70 (0.33) 0.84 (0.18) 0.0427 0.0189 19 37

Escherichia coli 0.32 (0.48) 0.50 (0.40) 0.044 9.9e-6 15 24

Mean and standard deviation (in parentheses) of the Sorensen–Dice SPPI and SProt distributions, considering only co-citations where

both databases record proteins from the same organism, using canonical splice isoforms. Only a few single-organism categories remained

large enough for meaningful analysis. P-values of the Kolmogorov–Smirnov test (‘Methods’ section) are shown in comparison to the

overlapping organism categories in Figure 3b (in both cases after the canonical-isoform mapping of proteins was performed). The

number of pairwise co-citations (‘Co-cite’) and publications that give rise to these co-citations (‘Pubs’) is also shown. The agreement

for the Human-only and Fly-only categories now becomes as high as that for yeast S. cerevisiae. Several-fold improvements are observed

for Mouse and Rat. The already-high agreement for Yeast shows little improvement. After the Bonferroni correction with a= 0.025,

improvements for A. thaliana, Worm and E. coli are not statistically significant.
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Figure 4. Examples of citation discrepancies. Protein colors indicate the organism (human in blue, mouse in red, rat in green).
Prefixes ‘m’ and ‘r’ indicate mouse and rat, respectively. Matching pairwise interactions are aligned horizontally across databases.
(a) In a study involving BRCA1 (breast cancer 1) protein, its interactor BAP1 (BRCA1 associated protein-1) is attributed to either
human (by HPRD), or mouse (by BIND), or both (by IntAct). BIND and HPRD are in complete disagreement on interactions. (b)
Three databases annotate a study involving TP53 (tumor protein p53), BARD1 (BRCA1 associated RING domain 1) and XRCC6

.............................................................................................................................................................................................................................................................................................

Page 8 of 15

Original article Database, Vol. 2010, Article ID baq026, doi:10.1093/database/baq026
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baq026/408414 by guest on 03 M

ay 2024



overlap between the annotated sets of proteins. This sug-

gests that a major source of the remaining disagreements

on PPIs, after splice isoform normalization has been per-

formed, is the divergent identification of individual

proteins by the databases. A protein may be specified dif-

ferently due either to the existence of multiple representa-

tions that cannot be easily mapped to the same gene by our

consolidation procedure, or to a genuine curation discrep-

ancy. In such cases, the divergence propagates to the cor-

responding PPI records in the two databases, causing them

to differ even if they agree on a fraction of the interacting

proteins. We anticipate that this subset of the data is en-

riched for papers that should be re-examined by curators of

the source databases for potential issues with curation

errors or other genuine differences.

Treatment of binary interactions versus complexes

In a small fraction of the co-citations disagreements on the

interactions persist despite complete agreement on the

proteins involved. Indeed, 1% of all human-only and 2%

of yeast-only co-citations agree perfectly on the annotated

proteins (SProt = 1), but disagree completely on the reported

interactions (SPPI = 0). The main origin of these disagree-

ments is the group versus binary representations of

multi-protein complexes, as already mentioned.

For example, Figure 4d details the curated information

from an experimental study (46) that identified a pro-

tein complex of the breast cancer protein BRCA1, the

BRCA1-associated protein BARD1, and a cleavage-

stimulation factor CSTF. The four databases that annotated

the paper record the complex differently, using either

multi-subunit groups, or binary expansions, or both.

However, they largely agree (with BioGRID and HPRD

agreeing completely) on the sets of proteins involved in

these interactions.

Overall, co-citations involving groups of proteins display

significantly lower agreement on PPIs (29% for human-only

and 34% for yeast-only co-citations, on average) than those

that deal with binary representations (72 and 70% on aver-

age, respectively). However, the agreement on the proteins

involved in multi-protein groups remains rather high

(76 and 86% on average, respectively; Table 2).

Representing complexes as groups of proteins, is cur-

rently not a widely adopted practice, and occurs in just

12% of the human-only and 9% of yeast-only co-citations.

However, it accounts for, respectively, 32 and 22% of

co-citations showing complete disagreement on PPIs

(SPPI = 0). Furthermore, it accounts for as many as 75% of

the human-only and 45% of yeast-only co-citations show-

ing complete disagreement on PPIs but full agreement on

the proteins involved (SPPI = 0, SProt = 1). These numbers do

not include co-citations where both databases translated

the protein groups (complexes) into sets of binary inter-

actions, which we could not systematically trace, and

which we suspect may contribute to some of the remaining

cases of low SPPI, mainly due to different conventions used

to perform the translation.

Figure 4. Continued
(X-ray repair complementing defective repair in Chinese hamster cells 6). BIND and HPRD record only human interactions,
whereas IntAct also records PPI versions involving mouse and rat orthologs. BIND additionally annotates a human complex
involving all three proteins. (c) Citing an article on insulin-pathway interference, MINT records interactions between
human-papillomavirus (HPV) oncoprotein E6, which in implicated in cervical cancer, and several human proteins, including
tumor suppressors TP53 and TSC2. In contrast, BioGRID cites the same study to support only one interaction, between TSC2
and a human ubiquitin protein ligase UBE3A related to the neuro-genetic Angelman syndrome. (d) Four databases record
interactions between BRCA1, BARD1 and several cleavage stimulation factors (CSTF, subunits 1–3). All databases except
BioGRID record a protein complex but disagree on its precise membership. All except CORUM also record various pairwise
interactions of the type ‘physical association’ among BRCA1, BARD1 and CSTF1-2. In addition, IntAct records interactions with
two additional proteins, PCNA and POLR1A. CORUM is in complete disagreement on interactions with the other three databases
but in high agreement on the proteins involved.

Table 2. Agreement level in shared publications describing
multi-protein complexes

Organism DBs

annotating

complexes

SPPI SProt Pubs Co-cite

Human None 0.72 (0.35) 0.84 (0.22) 9737 13 327

One 0.27 (0.29) 0.73 (0.22) 867 1412

Both 0.37 (0.37) 0.84 (0.18) 376 455

Yeast None 0.70 (0.34) 0.84 (0.22) 1690 4511

One 0.34 (0.31) 0.85 (0.19) 261 439

Both 0.37 (0.37) 0.91 (0.16) 26 33

Values for the Sorensen–Dice distributions [mean and standard

deviation (in parentheses)] for shared publications (co-citations)

are computed after the mapping of proteins to their canonical

splice isoforms. ‘None/One/Both’ indicate pairwise co-citations

where, respectively, neither of the DBs represents multi-protein

complexes as groups of proteins, only one DB uses the group

representation, and both DBs use that representation. The

number of pairwise co-citations of publications in each category

is shown (‘Co-cite’), along with the number of shared publications

(‘Pubs’) that give rise to these co-citations. As expected,

co-citations where at least one database uses the group represen-

tation, display significantly lower SPPI values on average, than

those that do not use it. However, they feature high-average

SProt values, indicating a significantly better agreement on the

proteins involved than on their grouping into interactions.
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Contribution of specific databases to the observed
trends

Different pairs of databases display different levels of

agreement in each organism category. The average pair-

wise agreement on PPIs between the source databases,

and the corresponding number of co-citations for the

human-only and yeast-only co-citations, respectively, are

summarized in Figure 5, and the Supplementary Tables S3

and S4.

These summaries show that as many as 8340 out of

15 194 human-only co-citations (or 55%) are those by

BioGRID and HPRD (Figure 5a and b and Supplementary

Table S3). The next largest overlap is the 1653 co-citations

(11%) by BIND and HPRD, with all other overlaps not

exceeding 5%. Naturally, the average agreement level

between BioGRID and HPRD (SPPI = 0.71, SProt = 0.84) prom-

inently affects the distribution of the similarity values for

human data. Most other pairs of databases have somewhat

lower, but comparable agreement levels, with the excep-

tion of CORUM, which annotates mammalian protein

complexes. CORUM participates in 1018 human-only

co-citations, displaying a low average agreement on PPIs

(SPPI = 0.27� 0.38) but a high agreement on proteins

(SProt = 0.78� 0.23) with the other databases. This low

level of agreement stems from the fact that the CORUM

database represents complexes as groups of associated pro-

teins. Such group representations will invariably display dis-

agreements with binary expansions derived from the same

published information, due to differences in protein com-

position. Also, two group representations independently

curated from the same article are, in general, less likely to

have identical protein compositions, further contributing to

the observed differences.

The overlap between databases for yeast-only shared

publications is distributed more evenly than for the

human-only articles (Figure 5c and d and Supplementary

Table S4). Of the 4983 yeast-only co-citations, 21% are

those by BioGRID and DIP, 17% by BioGRID and BIND,

12% by BIND and DIP, 11% by BIND and MPact, 10% by

DIP and MPact, etc. As in the case of human data, the aver-

age agreement rates across different database pairs are

similar, especially for pairs with a significant overlap in

cited publications.

Clearly the pairwise agreement levels for these

organism-specific co-citations are significantly higher than

those obtained for co-citations prior to factoring out diver-

gent protein representation and/or organism assignments.

Indeed, for the latter type of co-citations many pairs of

databases agree on less than half of PPIs on average

(Supplementary Table S1 and Supplementary Figure S1).

Interestingly, the pairwise agreement between members

of the IMEx databases (DIP, IntAct, MINT) is in general

better than average, albeit similar to those of some other

database pairs. This is observed both before and after elim-

ination of some of the major discrepancy-causing factors

(Figure 5, Supplementary Figure S1 and Tables S1–S4), but

is unlikely to fully reflect the common curation policies

adopted by this consortium, since much of the data cur-

rently stored in the IMEx databases predates the implemen-

tation of these policies.

Discussion

In this study we quantified the level of agreement in the PPI

data curated from 15 471 publications co-cited across nine

major public databases. In doing so we evaluated the

global impact of several factors on the consistency of the

curated information.

One key factor is the divergence in organism assign-

ments, which was detected in 21% of all co-citations

(5769 out of a total of 27 399 co-citations). This divergence

may sometimes results from the difficulty of interpreting

the complex information reported in the original publica-

tion. Most commonly, however, it is due to the application

of different curation rules, with some databases recording

only interactions in the organism of interest, or systematic-

ally transferring interactions identified in one organism to

its orthologs in another. Differences in organism assign-

ments across databases should be dramatically reduced

by adherence to common curation policies that would,

for example, stipulate flagging interactions inferred by

homology or impose stricter rules for selecting publications

to curate.

Another factor, which contributes significantly to the de-

tected differences, is the treatment of multi-protein com-

plexes. Of the 3470 co-citations that involve complexes,

only 76 are in complete agreement following the normal-

ization of splice isoforms, indicating that up to 3394

(or 12% of the full data set) might be affected by this

factor. As already mentioned, this poor agreement level

is mostly due to different representations of the data

that cannot be readily inter-converted (Supplementary

Discussions S1 and S3). Adopting a common convention ac-

cording to which multi-protein complexes identified by

various purification methods are represented as groups of

associated proteins (15) is a simple solution that should sig-

nificantly improve agreement levels. However, once such

convention is widely adopted, the criteria for quantifying

the agreement between two databases curating the same

reported complex should be relaxed from requiring a per-

fect match between the annotated proteins, as done here,

to quantifying the level of overlap between the two pro-

tein lists.

By far the most crucial factor affecting the agreement

levels analyzed here is the proper assignment of protein

and gene identifiers across biological databases. Our ana-

lysis relies completely on the iRefIndex consolidation
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Figure 5. Pairwise agreement between databases for yeast-only and human-only co-citations. Shown is a pictorial summary of
the agreement levels between pairs of databases for shared publications, where both databases annotated all the interactions
reported in the shared publication to the same organism. The thickness of the edge connecting two databases is proportional to
the fraction of the total number of shared (co-cited) publications contributed by the database pair. The edge color indicates the
value of the average Sorensen–Dice similarity coefficient according to the color scale shown at the bottom (shades of orange for
agreement on less than half of the interactions or proteins, shades of blue for agreement on more than half of interactions or
proteins). (a) Fraction of co-citations and agreement on interactions (SPPI) for human-only co-citations. (b) Fraction of co-citations
and agreement on proteins (SProt) for human-only co-citations. (c) Fraction of co-citations and agreement on interactions (SPPI) for
yeast-only co-citations. (d) Fractions of co-citation and agreement on proteins (SProt) for yeast-only co-citations. The Human-only
data set is dominated by co-citations from BioGRID and HPRD, whereas the overlap in yeast-only citations is contributed more
evenly by most databases except MINT. The levels of agreement are markedly improved, compared to those observed in all
co-citations, before and after the canonicalization of splice isoforms (Supplementary Figure S1). The agreement on proteins is
overall better that the agreement on interactions for each database pair. Persistent differences are found in co-annotations
involving CORUM (22), which annotates mammalian complexes: the average Sorensen–Dice similarity score for CORUM and
any other source database is below 0.5, primarily due to different representations of complexes (Supplementary Discussion
S1). Green nodes correspond to IMEx databases (DIP, IntAct, MINT). Although their agreement levels are somewhat higher
than average for human-only co-citations, they represent only 1% of all human-only and 3.7% of all yeast-only co-citations
analyzed here. Additional details are provided in the Supplementary Tables S3 and S4.
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procedure for establishing the identity of the proteins in

the PPI records. This procedure maps the variety of protein

identifiers recorded by the databases to the protein amino

acid sequences, using a series of steps (18). The last step,

introduced recently, maps proteins to their canonical

splice-isoforms (or corresponding genes).

Here we were able to evaluate the contribution to the

observed disagreements both before and after this last

mapping step. Our isoform normalization method was

able to eliminate all disagreements on proteins in 2675

co-citations, or nearly 10% of the co-citation data set. It

increased the fraction of co-citations with a perfect agree-

ment on proteins from 29 to 39%, and those with perfect

agreement on interactions from 24 to 32%.

The problem of cross-referencing proteins and genes

across biological databases is an endemic one, over which

the PPI databases have very limited control. Addressing it in

the context of PPI curation needs to involve the cooper-

ation of database curators, bioinformaticians as well as

the authors of experimental studied (47,48). With this

goal in mind, concrete proposals on how to help authors

of publications provide standardized descriptions of inter-

actions have recently been made (MIMIx: minimum infor-

mation required for reporting a molecular interaction

experiment) (49). Mechanisms for submitting annotations

directly to the PPI databases in a unified format have also

been developed (15).

Overall, our analysis lends strong support to the conten-

tion that curation policies play a key role in shaping the

data collectively curated by PPI databases. These policies

determine how useful the data are to the scientific commu-

nity, in particular to the life scientists who routinely rely on

these data for biomedical and clinical applications. Indeed,

divergent organism assignments, the use of alternative pro-

tein identifiers, or different representation of complexes,

although not reflecting actual curation errors, may lead

to misinformation. These issues were raised in a recent

study (28,30), which suggested that ‘errors’ of the type

‘wrong protein’ and ‘wrong organism’, among others, are

not uncommon, and that the annotation of complexes as

sets of spoke-expanded binary interactions is a potential

source of concern. Our analysis has quantified these discre-

pancies on a global level, uncovering many more cases

where pairwise discrepancies are attributable to similar

issues (Examples 4–6 in the Supplementary Discussion S3).

Standardizing the curation policies along the lines

advocated by the IMEx consortium, including the require-

ment for in-depth curation of articles (50), should go a long

way towards resolving these issues. Members of the IMEx

consortium also agreed to curate complementary sets of

publications in order to increase coverage. We would like

to suggest that this policy be revised to include a large

enough number of commonly curated publications, in

order to generate co-citations by IMEx members that can

then be analyzed for compliance with the IMEx guidelines,

using similar methods as those employed here.

The issues related to data curation are in no way limited

to protein interaction data. Indeed, the importance of bio-

logical databases to the research community, combined

with the rapid growth of the collected data, has high-

lighted a number of current limitations and needs related

to the continued maintenance of such resources (51).

Facing such challenges, some of the current efforts empha-

size broader involvement of the research community in cur-

ation efforts (52), while others attempt to supplement or

even replace manual curation with automated literature

mining (53,54). But so far, the limitations of automated

approaches only further underscore the many ambiguities

and challenges of biocuration, indicating that manual

curation is here to stay in the foreseeable future and

that standardization of manual curation is an essential

requirement.

Lastly, we examined the agreement level in co-citations

of high-throughput articles and found it to be poor. This

seems to be mainly due to the increased likelihood of dif-

ferences occurring as the number of possible interacting

entities grows, as well as to divergent policies for the

annotations of large sets of raw versus filtered PPI data

by each database (36). However, the small number of

such articles contributes marginally to the discrepancies

found in the co-citation the data set taken as a whole

(Supplementary Discussion S2). Additional filtering of the

data on the basis of various evidence codes, such as ‘inter-

action type’ or ‘interactions detection method’, was not

performed mainly because the annotated information is

frequently missing or too inconsistent to objectively evalu-

ate agreement levels without a systematic re-examination

of the original publications.

Each of the co-citations described in this article may be

further explored using the ‘PubMed Report’ and ‘PubMed

Detail’ utilities of the iRefWeb interface (http://wodaklab

.org/iRefWeb/pubReport/), as described in detail in

ref. (36). Further work with databases can now target

those disagreements that are more likely due to genuine

curation policy differences or curation errors. This is turn

can lead to improved data curation policy and data that are

more easily integrated, accessible and reliable. It is our

hope that this study and its associated resources will con-

tribute towards this goal.

Methods

Interaction data

Interaction data were consolidated from the following

public databases and release dates, indicated in parenthe-

sis: BIND (25 May 2005), BioGRID (7 September 2009),

CORUM (8 September 2008), DIP (6 January 2009), HPRD
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(06 July 2009), IntAct (19 July 2009), MINT (28 July 2009),

MPact (10 January 2008) and MPPI (6 January 2004).

The consolidation was performed using the Interaction

Reference Index process (18). iRefIndex examines amino

acid sequences to establish the identity of proteins, instead

of relying on gene or protein identifiers or database acces-

sion number, which are often subject to change. This en-

ables it to reliably merge records from different databases

that use distinct types of protein identifiers to support the

same PPI.

The aggregated information comprised all the support-

ing evidence captured by the source databases using the

PSI-MI controlled vocabulary (14). This includes the terms

specifying the ‘interaction type’, the ‘interaction detection

method’, and the corresponding literature citation,

which is hyperlinked to the original PubMed identifiers.

Discrepancies in the recorded information on the inter-

action type and detection method, while also revealing

and important, were not globally monitored at this stage.

The inherent ambiguities associated with this information

make it very difficult to objectively quantify any detected

discrepancies, let alone to interpret them.

Genetic interactions (39–41) were identified and marked

for exclusion if their interaction types were defined as

such by the source databases using the appropriate PSI-MI

terms, as detailed in ref. (36). Inferred interactions from the

OPHID database were likewise excluded (38). The iRefWeb

resource (http://wodaklab.org/irefweb) provides details on

the consolidation process, and views of the full original re-

cords as annotated by the source databases (36).

Quantifying the level of agreement

For all instances where two databases cite the same publi-

cation in their interaction record, we evaluate the agree-

ment between the interactions and the proteins that they

annotated from the publication. We denote such instances

as ‘co-citations’. Depending on the number of databases

citing the same publication, a single publication may give

rise to several pairwise co-citations (Figure 1).

For each pairwise co-citation we compute two Sorensen–

Dice similarity scores, SPPI and SProt. These two quantities

measure the overlap, respectively, between the annotated

PPIs, and between the proteins engaged in these PPIs. For

sets A and B, the Sorensen–Dice similarity score is defined

as the ratio of the overlap between the two sets to their

average size (55):

S A,Bð Þ ¼
2 A \ Bj j

Aj j þ Bj j

SPPI and SProt take values between 0 and 1. For example, if

a publication gives rise to a co-citation with SPPI = 0.8, this

indicates that each of the two co-citing databases shares

with the other database, on average, 80% of its interaction

records that cite this publication.

Sorensen–Dice similarity scores are non-normally distrib-

uted and display a different variance within different

groups of co-citations. Therefore, the statistical significance

of differences in SPPI and SProt distributions in distinct

co-citation groups was computed using the non-parametric

two-sample Kolmogorov–Smirnov test for equality of con-

tinuous distributions (implemented in R, http://www

.r-project.org). Confidence intervals for the mean values

of SPPI and SProt were computed using Student’s t-distribu-

tion, for groups containing at least 50 co-citations.

Mapping proteins to canonical isoforms and genes

Using our criteria, two databases would disagree on an

interaction if they chose different peptide sequences to

represent the same protein. Recording protein identifiers

that point to different splice variants of the same gene is

an important example of such discrepancies. Therefore, a

further consolidation step was added to the iRefIndex pro-

cedure, whereby all the proteins were mapped to the ca-

nonical UniProt isoforms (56) of the corresponding genes,

whenever possible [http://irefindex.uio.no/wiki/Canonicali-

zation and ref. (36)]. This mapping was performed mainly

to further normalize the consolidated data set. The level

of agreement across the PPI landscape was measured

both before and after isoform normalization.

Supplementary Data

Supplementary data are available at Database Online.
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