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Data generation, driven by rapid advances in genomic technologies, is fast outpacing our analysis capabilities. Faced with

this flood of data, more hardware and software resources are added to accommodate data sets whose structure has not

specifically been designed for analysis. This leads to unnecessarily lengthy processing times and excessive data handling and

storage costs. Current efforts to address this have centered on developing new indexing schemas and analysis algorithms,

whereas the root of the problem lies in the format of the data itself. We have developed a new data structure for storing

and analyzing genotype and phenotype data. By leveraging data normalization techniques, database management system

capabilities and the use of a novel multi-table, multidimensional database structure we have eliminated the following:

(i) unnecessarily large data set size due to high levels of redundancy, (ii) sequential access to these data sets and (iii)

common bottlenecks in analysis times. The resulting novel data structure horizontally divides the data to circumvent

traditional problems associated with the use of databases for very large genomic data sets. The resulting data set required

86% less disk space and performed analytical calculations 6248 times faster compared to a standard approach without any

loss of information.

Database URL: http://castor.pharmacogenomics.ca
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Introduction

Since the release of a working draft of the human genome

project, there has been a proliferation of technologies to

perform large-scale genotyping. The research possibilities

provided by genome-wide analysis have created a data

deluge reminiscent of Moore’s Law (1). In a single year,

one massively parallel sequencing machine can produce

nearly nine times the amount of data currently housed in

the US Library of Congress (2–4).

Currently, lengthy analysis times required for the vast

quantities of genotype data generated make interactive

analysis impractical (3). Sequential access, such as retrieving

data from flat files, e.g. PLINK input files (5), has the limi-

tation that all prior data must be processed in order to

access datum at the end of the file, and this process must

be repeated for each variation of the original analysis.

Furthermore, they are memory-bound. Although PLINK

provides a solution for many users there are no fixed

limits to the size of the data file (5). Larger data sets will

require an ever increasing amount of RAM. For example, a

sample set of 20 000 individuals and 1-million SNPs would

require �8–16 GB of RAM (http://pngu.mgh.harvard.edu/

�purcell/plink/faq.shtml#faq5).

Alternately, the use of databases has been hampered

due to challenges in data loading time and performance.
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The development of new techniques and tools is therefore

necessary, as historical solutions have been rendered

impractical due to the extreme volume of data generated

(2–4).

Efforts at reworking this analysis process have focused

on three main areas: data structures, data indexing and

data analysis. Initially, the improvement of data structures

began with a logical model of genomic and phenotypic

data using object-oriented structures (2,6), relational data-

bases (2), or mark-up languages (7), which add a lot of

model description metadata. These structures are more

suited to providing data context and long-term storage

than high-speed analysis (8), although some allow basic

analytical querying (9). Recent data indexing efforts seek

to improve pattern or sequence search performance. While

these have shown a significant performance increase

for specific targeted tasks, they have the drawback of

increasing the data set size by up to 10 times (10–12).

Hardware-based solutions such as cloud computing, peer-

to-peer networks, and other distributed computational

concepts are now used to prolong the useful lifespan of

software by increasing processing power. Other solutions

circumvent the problem of large data sets altogether at

the cost of losing content (13). Current data warehousing

and data sharing methodologies are making progress

but fall short of providing a solution for rapid analysis (14).

There are three obvious areas for improvement:

(i) reduce data set sizes without any loss of information

(also reducing long-term data storage costs), (ii) eliminate

the need for sequential access and (iii) organize

data to allow for rapid analysis. Our solution attempts to

address all these areas of concern. Using established com-

puter science principles we have developed the comprehen-

sive analysis and storage (CASTOR) methodology, a

normalized, multi-table and multidimensional database

structure for storing and analyzing genotype and pheno-

type data.

Methods

Data normalization

Data normalization restructuring techniques reduce redun-

dancy and increase the flexibility of a poorly structured

data set without loss of information (15). These techniques

are frequently used to make a data structure suitable

for implementation in a relational database management

system (RDBMS). Common genomic data sets such as

Illumina’s Genomestudio output files, certain PLINK input

files and the Gencode GTF format are all examples of data

structures that, despite being produced by, or for, auto-

mated analysis contain a significant amount of redundant

data and therefore violate the principles of normalization.

In a typical Illumina Genomestudio results file 63% of the

output file is composed of unnecessarily redundant data.

Although only a single instance of each datum is required

to communicate the necessary information, fields such

as sample identifier, the name of the single nucleotide

polymorphism (SNP) in question, and SNP position are

needlessly repeated for each row contained in the sequen-

tial file (Table 1). Since both SNP name and SNP position are

associated with the SNP in question and not the sample,

their inclusion on each row violates the second normal

form. Because of this, data which should take up a total

of 17-million characters (9 character SNP name + 8 character

SNP location = 17 characters� 1 000 000 SNPs), or 0.009% of

the final data set, instead takes up 119-billion characters

(17 characters� 1 000 000 SNPs� 7000 samples), or 63% of

the final data set.

This data set is a result of a combination of two different

data structures: SNP information (SNP and SNP positions)

and sample information (sample identifier) in order to

accommodate one piece of datum that depends on both

(SNP value).

In order to address this redundancy, we have separated

the data set into two individual but related tables. A SNP

reference table, containing a list of all SNPs used in the

study and their associated position, and a genotype results

table containing sample information and all genotypic

results.

The SNP reference table uses SNP name as the primary

key and related fields as non-prime attributes. This results

in one row of information for each SNP present in the

study. The genotype results table contains a single row

for each sample in the study, with each column represent-

ing the results of an individual SNP. This format is simi-

lar to the PLINK PED file format (5), which also has one

sample per row, using columns to represent the SNPs. This

approach leads to a large number of columns. A study

involving 1 000 000 SNPs would result in a data set with

1 000 001 columns (one column for sample id, and one

column for each SNP). This is impractical as a sequential

file, and impossible to implement as a database structure,

Table 1. Genomic data structure with a large amount of
duplicate data

Sample identifier SNP SNP value SNP position

Sample 1 rs3094315 CC 742 429

Sample 1 rs41480945 CC 21 227 772

Sample 1 rs4040617 CG 95 952 929

Sample 2 rs3094315 TT 742 429

Sample 2 rs41480945 AT 21 227 772

Sample 2 rs4040617 CC 95 952 929
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as a table with these dimensions is not supported by any

current database management system (DBMS).

Multi-table

While a DBMS cannot accommodate an unlimited number

of columns per table, most can accommodate a nearly

unlimited number of tables per database. The number of

tables is limited by the capacity of the underlying filesystem

or, in the case of Microsoft’s SQL Server, by the number

of database objects permitted (over 2 billion). It is this prop-

erty that we exploit to accommodate our 1 million SNP

wide structure, horizontally dividing the single, large,

genotype results table of 1 million SNPS into 2000 tables,

each with 501 columns (500 SNPs and a sample identifier as

primary key). This new structure is currently supported by

all major DBMSs.

Each column in the genotype results table is denoted

generically (snp1, snp2, etc.) and is included in the

SNP reference table allowing rapid identification of

the specific SNP. In doing so, uploading a new data set

would require no structure changes (such as renaming

each column).

Multidimensional encoding

Multidimensional databases are optimized for rapid and

ad hoc computer-aided analysis or online analytical process-

ing (OLAP) (16) by encoding all alphanumeric data as nu-

meric data, and isolating descriptive data from the data

required for the analysis. Using this methodology we

have divided the information into dimension tables and

fact tables. Dimension tables contain descriptive data

including all the original alphanumeric descriptors and

the code that replaces them in the fact tables. The fact

tables contain only numeric data and are used to conduct

the bulk of the analysis. Each possible combination of two

alleles is encoded numerically into 10 values (Table 2).

This encoding results in a smaller, faster, and more flex-

ible data set, which is more suitable for analysis. While the

structure and content change, none of the information

contained in the initial data set is lost.

Phenotypes are similarly encoded. Phenotype data

already in numeric format remains unchanged; however,

an entry is made in the phenotype_dim table (Table 3) to

ensure that the context of the phenotype is not lost. Each

alphanumeric phenotype is assigned an integer code in the

phenotypes_discrete_dim table and a parent entry is added

to the phenotypes_dim table (Tables 3 and 4). Numeric

codes from phenotypes_discrete_dim are used to populate

the phenotype fact tables. Using this methodology, almost

all alphanumeric values are converted to numeric values,

making these tables suitable for automated analysis. Note

that free-form text entries however, cannot be encoded in

this way and therefore should be avoided whenever pos-

sible if automated analysis is the goal.

Test platforms

The test platforms for all tests were Dell 2� Quad Core

Xeon E54102� 6 MB cache, 2.33 GHz, 1333 MHz FSB,

PE2900, with 16 GB 667 MHz Dual Ranked DIMMS and

8�300 GB 15K RPM SCSI 3 Gbps mounted in RAID 1+0 for

1.2 mirrored terabytes of disk space. The operating system

was RedHat Enterprise Linux 5, and the MySQL Community

Server 5.0.67 compiled for RHEL5 (MyISAM) or Oracle 11G

were used as the DBMS.

Tests were conducted using both DBMSs, but only Oracle

11G was able to manage the 7 billion rows contained in the

Table 2. Genotype dimension table (see genotypes_dim in
Figure 1)

Code Genotype Allele_a Allele_c Allele_g Allele_t

1 AA 2 0 0 0

2 CC 0 2 0 0

3 GG 0 0 2 0

4 TT 0 0 0 2

5 AC 1 1 0 0

6 AG 1 0 1 0

7 AT 1 0 0 1

8 CG 0 1 1 0

9 CT 0 1 0 1

10 GT 0 0 1 1

Table 3. Phenotype dimension table (see phenotypes_dim,
Figure 1)

Id Name Discrete Description Column

1 Medication

dosing (units)

0 Medication dose

per day in units

ptype1

2 Pain severity 0 Severity of

patient pain

ptype2

3 Smoking status 1 Never, former,

current

ptype3

Table 4. Discrete phenotype dimension table (see phenotypes
_discrete_dim, Figure 1)

Code Phenotypes_dim_id Label

1 3 Never smoked

2 3 Former smoker

3 3 Current smoker

.............................................................................................................................................................................................................................................................................................
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original data set, and therefore was used for all load, stat-

istical and data return comparisons on the original data set.

Two computer hosts were used. The first host handles

only the dimension tables and the software client respon-

sible for issuing the database queries and the collection of

results. The second host, configured to maximize the per-

formance of the DBMS responsible for manipulating the

fact tables, performs the analysis.

Evaluation

In the absence of a sufficiently large publicly available data

set, a very large data set composed of 7000 subjects, each

with 7000 phenotypes (both quantitative and dichotomous)

and 1 000 000 bi-allelic genotypes for a total of

7 049 000 000 data points was randomly generated and

used to evaluate the performance of our novel database

structure. A test suite was written in Perl (17), which cre-

ated the database structure, disabled indices before the

data set was loaded, loaded the data set and then

re-enabled the indices. Load time was defined as the sum

of the time required to perform these operations.

Our test suite then measured the impact of the new

schema using the same computer hardware and operating

system, for a direct comparison. To avoid comparing the

speed of a DBMS versus a sequential file, which would re-

quire the evaluation of a great number of hardware and

operating system variables, the original data set was also

loaded into the DBMS for evaluation (see Supplemental

Data for more detail).

The database management system and multidimensional

nature of the data were kept constant for both the original

and CASTOR data sets to measure only the efficiencies of

the novel database structure. A variety of statistical and

common GWAS analyses were performed on the data sets

(mean, square root, minimum, standard deviation, vari-

ance, allele count with a phenotypic filter) (Table 5). In

addition, we tested how rapidly data could be located

and retrieved from the databases.

Results

Our CASTOR approach converts the sequential file into a

normalized and indexed, direct-access database (Figure 1).

Combining all normalization techniques the data set

was reduced from 98.4 to 13.8 GB, a decrease in disk

space usage of 86%, without loss of information

(Table 6). Removing redundant SNP information alone re-

claimed over 50 GB of space.

Once loaded, the data can be reused and reanalyzed

without the need to repeat either the conversion or the

data load. The significant decrease in load time (90.3 min

versus 8.23 h for the original data set) is primarily a result of

data set size reduction due to normalization, and the cor-

responding reduction in index size due to the horizontal

segmentation of this data set. The smaller indices are

easily loaded into available memory when needed, remov-

ing the need to use slower hard disk based virtual memory

space often required by larger indices.

As each column in the CASTOR data structure represents

a SNP, the database metadata itself is responsible for SNP

indexing thus obviating the need to separately index the

SNPs for rapid data access, as has been the focus of earlier

efforts (10–12).

The genotype table from the non-optimized original

database (single table) structure had a row count of 7 bil-

lion (1 million genotypes for 7000 samples) and the pheno-

type table had 49-million rows (7000 phenotypes for 7000

samples). With an alphanumeric index (such as the combin-

ation of SNP name and sample id), the index alone

would take up 111 GB of memory (9 character SNP

name + 8 character sample id = 17 characters�7 billion re-

cords). Our CASTOR database has significantly fewer rows

(7000 per table, one row per sample), but has 2000 geno-

type tables and 14 phenotype tables, dividing the data set

into smaller, fragmented indices. Using a single row per

sample, the index on each CASTOR table is 55 Kb (7000

samples� 8 character sample id) allowing for very rapid

load times. The total size of the CASTOR indices (across all

2000 genotype tables) is 107 megabytes, but since the indi-

ces are fragmented across many tables, only those indices

needed to fulfill a specific query are loaded at any given

time. Table 6 illustrates the benefits of the CASTOR

approach.

Table 5. Query return times of common statistical analyses
based on a single table query (genotype or phenotype)

Query CASTOR (s) Original (s)

Query (gtypes) avg(int) 0.347017 871.454132

Query (gtypes) sqrt(int) 0.096701 0.050104

Query (gtypes) min(int) 0.319485 716.520514

Query (ptypes) stddev(int) 0.014837 1341.081771

Query (ptypes) avg(float) 0.010675 1417.641397

Query (ptypes) sqrt(float) 0.003062 12.227921

Query (ptypes) min(float) 0.009296 0.014992

Query (ptypes) stddev(float) 0.013895 3.202807

Query (ptypes) var_pop(float) 0.010164 16.41966

Query (gtypes) count(int)

where int is 1

0.325984 16.669058

Query (gtypes) count(int)

where int is 3

0.358017 641.80022

Query (gtypes) count(int)

where int is 4 and

patient_id = 1234

0.027244 668.470442

All queries performed on the Oracle 11G DBMS.
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Since DBMSs are optimized for column-oriented calcu-

lations, using each column as a list of all genotypes for a

particular SNP (SNPs across samples), optimizes the data set

for GWAS-type analyses while still supporting row-based

calculations across SNPs when necessary.

The final result is a CASTOR data set (containing all

of the original information) that is very wide, comprising

over 2000 tables and 1-million columns for genotypes

alone, but quite short, with only a single row per sample

in each table (Figure 1). The resulting multi-table data sche-

ma’s time required to conduct the performance analysis

was reduced by 99.9% by moving from a single table to

a multi-table data structure (15.62 hours compared to

9.1 seconds) (Table 6).

Discussion

Applying both well-known and novel data transformation

and data architecture techniques, we have arrived at a

simple and elegant solution that achieves a significant

data set size reduction and a dramatic increase in process-

ing speed. As data is loaded into the database the data is

normalized to remove duplications, then encoded into nu-

merical data and subsequently divided into the novel multi-

dimensional multi-table structure specifically designed for

large genetic data set analysis. Converting the original data

set into a multidimensional data set has many advantages,

such as enabling the use of OLAP (16) and increasing the

speed of the data set (Table 5) by eliminating slower alpha-

numeric data from the analysis tasks. An additional benefit

Figure 1. CASTOR data diagram.

Table 6. Performance comparison results

Original CASTOR

Size of genotype data 97 GB 6.8 MB� 2000

tables = 13.3 GB

Size of phenotype data 1.4 GB 34 MB� 14

tables = 476 MB

Total data set size 98.4 GB 13.776 GB

Oracle 11G: load time (min) 493.5 (8.23 h) 90.3 (1.51 h)

Oracle 11G: Total time to

run all performance

tests (min)

937.2 (15.62 h) 0.15 (9.1 s)

Oracle 11G: Total time to

perform evaluation (min)

1430.7 (23.85 h) 90.18 (1.50 h)

.............................................................................................................................................................................................................................................................................................
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is the further reduction of the size of the data set while

preserving all of the information contained in the original.

A multi-dimensional encoding scheme can furthermore

be used to encode more than just the initial data. For ex-

ample, the genotypes dimension table (Table 2) not only

encodes the 10 possibilities of genotype pairs, it also easily

separates homozygous pairs (code �4) from heterozygous

pairs (code �5). Counting alleles, a basic calculation in a

GWAS, can be accommodated with the following struc-

tured query language (SQL) query:

select sum(genotypes_dim.allele_a) from genotypes_

dim, gtypes1 where gtypes1.snp2 = genotypes_dim.code

and genotypes_dim.allele_a> 0

Where genotypes_dim is the database table that holds

the information for each genotype; allele_a is a count of

A alleles in a particular genotype; gtypes1 is the table con-

taining the genotypes for the first 500 SNPs; snp2 is the

field containing the genotype code for snp2.

If adopted, this approach would offload basic statistical

manipulations to the database, provide a platform for

automated initial quality control and analysis, and result

in savings in disk storage, data archiving and transfer

time. Our CASTOR approach, if adopted for biological

data sets, would provide a much more reasonable starting

point that could enable analytical solutions on laptop com-

puters or other non-specialized hardware, while still bene-

fitting from the performance improvements available to

cloud computing and other hardware-based solutions.

The CASTOR approach will help meet the demand for

high-speed analysis by providing a solid foundation to

handle ever-increasing amounts of genetic data. Our data

set can scale to several million samples and nearly an un-

limited amount of SNPs with nothing more than a linear

impact on performance.

Aside from the stated performance benefits, CASTOR

also has a potential impact on storage costs associated

with this data. Based on published estimates, the average

long-term storage cost currently is $25/month/GB (18),

including all overheads. Prior to any normalization, the ori-

ginal data set composed of 7000 samples with 1-million

SNPs and 7000 phenotypes would cost $29 520 per year in

total storage costs. Based on the same published estimates,

the same information in CASTOR format would cost $4140

per year.

The next step is to incorporate the CASTOR approach

into commonly used software packages such as PLINK.

The CASTOR approach, as it is DBMS-based, readily accom-

modates multi-processing and multi-core processor archi-

tecture. This should significantly reduce the time required

to perform GWAS or similar analyses, allow for the devel-

opment of new algorithms, as well as extend the lifespan

of current software tools by eliminating hardware

bottlenecks.

Supplementary Data

Supplementary data are available at Database Online.
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