
Original article

The Laccase Engineering Database: a
classification and analysis system for
laccases and related multicopper oxidases

Demet Sirim, Florian Wagner, Lei Wang, Rolf D Schmid and Jürgen Pleiss*

Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

*Corresponding author: Tel.: (+49) 711 685 63191; Fax: (+49) 711 685 63196 Email: juergen.pleiss@itb.uni-stuttgart.de

Submitted 27 June 2010; Revised 8 March 2011; Accepted 9 March 2011

.............................................................................................................................................................................................................................................................................................

Laccases and their homologues form the protein superfamily of multicopper oxidases (MCO). They catalyze the oxidation of

many, particularly phenolic substances, and, besides playing an important role in many cellular activities, are of interest in

biotechnological applications. The Laccase Engineering Database (LccED, http://www.lcced.uni-stuttgart.de) was designed

to serve as a tool for a systematic sequence-based classification and analysis of the diverse multicopper oxidase protein

family. More than 2200 proteins were classified into 11 superfamilies and 56 homologous families. For each family, the

LccED provides multiple sequence alignments, phylogenetic trees and family-specific HMM profiles. The integration of

structures for 14 different proteins allows a comprehensive comparison of sequences and structures to derive biochemical

properties. Among the families, the distribution of the proteins regarding different kingdoms was investigated. The data-

base was applied to perform a comprehensive analysis by MCO- and laccase-specific patterns.

The LccED combines information of sequences and structures of MCOs. It serves as a classification tool to assign new

proteins to a homologous family and can be applied to investigate sequence–structure–function relationship and to

guide protein engineering.

Database URL: http://www.lcced.uni-stuttgart.de
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Introduction

Multicopper oxidases (MCOs) catalyze the one-electron oxi-

dation of their substrates with a concomitant four-electron

reduction of molecular oxygen to water. MCOs consist of

four enzyme families: laccases (EC 1.10.3.2), ascorbate oxi-

dases (EC 1.10.3.3), ferroxidases (EC 1.16.3.1) and cerulo-

plasmin (EC 1.16.3.1). Functional studies have revealed

that MCOs have two active sites: one blue type 1 (T1)

copper site where the substrate is oxidized, and a trinuclear

copper cluster [consisting of three type 2 (T2)/type 3 (T3)

coppers] where oxygen is bound, activated and reduced (1).

The electrons are transferred from the T1 site to the T2/T3

site via highly conserved amino acids which have previously

been described in PROSITE (2, 3) as MCO-specific patterns,

further referred to as M2 and M4 (4, 5). In addition,

laccase-specific signature sequences, namely L1 and L3,

were generated from 100 plant and fungal laccase se-

quences. L1 and L3 have been suggested to be specific for

laccases and were proposed to distinguish laccases from

other MCOs (6). While there is only low overall sequence

similarity, the structure and catalytic mechanism is con-

served (7). Most MCOs consist of three cupredoxin domains,

except for ceruloplasmin and some bacterial laccases which

contain six or two domains, respectively (8). Depending on

the number of domains, MCOs vary in size, from 300 to

1000 residues, and contain up to six copper ions (4).

Laccases, which constitute the largest subfamily of MCOs,

are widely distributed among fungi, higher plants (9, 10),

bacteria (11) and insects (12). In fungi, they are supposed to
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be involved in lignin degradation (13), pigment production

(14) and plant pathogenesis (15). In plants, their potential

function is the biosynthesis of lignin (16). In bacteria, they

are suggested to play a role in melanin production, spore

coat resistance, morphogenesis and detoxification of

copper (17). In particular laccases, which form the largest

subgroup of MCOs, also have a high biotechnological po-

tential as versatile catalysts in textile and in pulp and paper

industries, as well as in food applications, bioremediation

and organic synthesis (18, 19). However, their redox poten-

tial often is restricted and they react in a relatively

non-specific way (20). Engineered laccases promise to

have improved enzymatic properties such as activity, speci-

ficity and selectivity (21). It is expected that understanding

the relationships between sequence, structure and function

would greatly help the engineering of laccases. Therefore,

we integrated data on MCO sequences and structures and

built up the Laccase Engineering Database (LccED) using

the data warehouse system DWARF (22). Previously, 350

MCOs were assigned to 10 superfamilies (23): (A) basidio-

mycete laccases, (B) ascomycete laccases, (C) insect laccases,

(D) fungal pigment MCOs, (E) fungal ferroxidases, (F) fungal

and plant ascorbate oxidases, (G) plant laccase-like MCOs,

(H) copper resistance proteins (CopA), (I) bilirubin oxidases

and (J) copper efflux (CueO) proteins. For the MCOs that

lack the second domain, referred to as small laccases (SLAC),

a distinct family was established based on SLAC from of

Streptomyces coelicolor (24). Homologous MCO sequences

were retrieved and assigned to families by sequence simi-

larity. In order to assist comprehensive sequence analysis,

reliable multisequence alignments were generated and

annotated either by an automated pattern search or by

information extracted from GenBank (25). In addition,

family-specific HMM profiles (26) and a BLAST (27) interface

are provided to allow an assignment of new sequences to

families. Thus, the LccED is the first data resource that com-

bines information on sequences, sequence alignments, an-

notations, and structures of MCOs.

Construction and content

Database construction

The LccED was established within the data warehouse

system DWARF, which provides a data model for the inte-

gration of sequences and structures in a family-specific pro-

tein database, as well as tools for extracting and loading

data from various data sources (22). Previously, more than

350 MCO sequences were assigned to 10 superfamilies (23).

From this data set 248 sequences, for which a GenBank

entry was available, were selected as seed sequences and

assigned according to their initial classification by Hoegger

et al. to the 10 superfamilies, which were named based on

the origin of their seed sequences. An additional

superfamily was created for two domain laccases and

SLAC from Streptomyces coelicolor was used as seed se-

quence for this family. Subsequently, for each seed se-

quence a BLAST search (27) was performed in the

non-redundant sequence database at NCBI (http://ncbi

.nlm.nih.gov) with an E-value of E = 10�10. The E-value for

the BLAST search was determined empirically. Therefore,

for the more diverse bacterial families a higher E-value of

E = 10�5 was applied. Each BLAST hit was assigned to the

superfamily of the respective seed sequence if the sequence

identity was higher than 40%. Sequences within a super-

family were classified into homologous families based on

multiple sequence alignments and phylogenetic trees, as

calculated by CLUSTAL W (28). Information on source or-

ganism, sequence annotations and sequence was extracted

by the sequence data loader of the DWARF system. The

species information was adapted to the NCBI taxonomy.

Different names denominating the same organism are

listed as synonyms on the organism page. Sequences from

the same source organism and sharing >98% identical resi-

dues were represented as one single protein entry. This as-

signment is implemented in an automated script, thus

preventing that one protein from the same organism may

occur in duplicate within the database and avoiding redun-

dancy even if it may occur in GenBank.

In case of BLAST hits specifying a protein structure, the

respective structure was extracted from the PDB (29), stored

as structural monomers and secondary structure informa-

tion was generated for each chain by DSSP (30). For all

families, multiple sequence alignments were performed

by CLUSTAL W (28) and manually checked to improve con-

sistency and quality. Proteins which were not assignable to

any superfamily and are not similar to the class of MCOs

were removed from the database. BLAST hits which are

proteins fragments or putative sequences which were

longer than usual MCOs, or proteins with high sequence

similarity to MCOs where chosen to be included if they lo-

cally align in the active site regions.

The LccED provides regular yearly updates using the

automated update function of the DWARF system which

applies a protein ‘blacklist’ of removed entries, keeping

pace with the permanently growing GenBank data (25).

Contents

The LccED contains data on 2828 sequences and 2297 pro-

teins. For 21 proteins from 10 different homologous

families crystal structures are deposited, which results in a

total of 82 structural monomers. The proteins were as-

signed to 11 superfamilies based on the origin of the

seed sequences and to 56 homologous families based on

phylogeny (Table 1). For each superfamily and homologous

family, an annotated multiple sequence alignment, a

phylogenetic tree and a family-specific HMM profile

(http://hmmer.janelia.org/) were generated.
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Web interface

The LccED is publicly available on http://www.LccED.uni-

stuttgart.de. It can be browsed by family, organism or struc-

ture. For each family, pre-calculated annotated multiple

sequence alignments, phylogenetic trees and HMMs are

provided. All protein entries in the alignments and trees

are linked to their original NCBI entries. Functionally rele-

vant amino acids are color coded, and further information

is displayed upon moving the mouse over the respective

residue in the multiple sequence alignment. The conserva-

tion degree of the alignment was calculated using

PLOTCON (31). PFAM (32) links to all protein entries were

added as far they were available. Further, the PFAM anno-

tation to each protein can be accessed within the multiple

sequence alignments by scrolling the mouse over the re-

spective region. Phylogenetic trees are visualized by an

in-house developed tree-visualizer which allows coloring

each entry by properties such as homologous family (in

superfamily-trees), organism, sequence length and king-

dom of the source organism (Figure 1). Via a local BLAST

interface, unknown MCO sequences can be classified by se-

quence similarity to the existing LccED entries. A tar-archive

comprising all information on families, sequences, struc-

tures, multiple sequence alignments, trees and profiles

can be downloaded.

Analysis of organism distribution
and patterns

In this study, 2297 MCO proteins from a wide spectrum of

source organisms were assigned to superfamilies and hom-

ologous families based on sequence similarity and

phylogenetic analysis. A comprehensive analysis of the

relationships between sequence similarity, source organism

and of patterns forming the binding sites of copper was

performed in 2274 proteins of families A–K. The proposed

patterns L1 (H-W-H-G-x(9)–D-G-x(5)–Q-C-P-I) and L3

(H-P-x-H-L-H-G-H) have been suggested to be specific for

laccases, the patterns M2 (G-x-[FYW]-x-[LIVMFYW]-x-[CST]-

x-{PR}-{K}-x(2)-{S}-x-{LFH}-G-[LM]-x(3)-[LIVMFYW], PROSITE

entry PS00079) and M4 (H-C-H-x(3)-H-x(3)-[AG]-[LM],

PROSITE entry PS00079) for MCOs (Figure 2). Pattern L1 in-

cludes one histidine which binds the T2 copper and one

histidine which binds the T3 copper. Pattern M2 includes

two further T3 copper ligands. Pattern L3 includes ligands

of the T1, T2 and T3 coppers. Within pattern M4 three of

the four ligands of the T1 centre and one T3 copper ligand

are located (Figure 2). For annotation and evaluation pur-

poses regular expressions generated from L1, L3, M2 and

M4 were applied. Because of the short length of their se-

quences and the missing domain, proteins of the SLAC

family were excluded from the analysis of the appearance

of the pattern within the families (Supplementary Table S1)

and the resulting numbers for false negatives

(Supplementary Table S2).

Family A (Basidiomycete Laccases) contains exclusively

fungal proteins, 91% are from basidiomycetes (homolo-

gous families A1–A4), 9% from ascomycetes (homologous

family A2). Eighty percent are annotated as laccases in

GenBank. Twenty-three percent of the proteins contain

the pattern L1, 22% M2, 14% L3 and 46% M4. Seventeen

percent of the entries are annotated as putative.

Family B (Ascomycete Laccases) contains 36% from asco-

mycetes. All of them cluster into the homologous family B1

and 62% are annotated as laccases in GenBank. The other

proteins are all of bacterial origin (homologous families

B2–B6) and 3% are annotated as laccases in GenBank.

Yet, they show a considerable sequence identity of over

40% to ascomycetous laccases. Eighty-eight percent of the

proteins contain the pattern L1, 92% M2, 49% L3 and 15%

M4. Thirty-three percent of the entries are annotated as

putative.

Family C (Insect Laccases) resulted in 78% proteins of

insect origin (homologous families C1–C8). The remaining

22% consist of euechinoidea (in homologous family C1),

cephalochordata and cnidaria (in homologous family C6).

Thirty-eight percent are annotated as laccases in GenBank.

Thirty percent of the proteins contain pattern L1, 75% M2,

75% L3 and 3% M4. Thirty-five percent of the entries are

annotated as putative.

Family D (Fungal Pigment MCOs) contains exclusively

fungal proteins. Thirty-six percent of the proteins are anno-

tated in GenBank as laccases. Ninety percent of the proteins

contain pattern L1, 78% M2, 82% L3 and 11% M4.

Fifty-eight percent of the entries are annotated as putative.

Family E (Fungal Ferroxidases) contains exclusively fungal

proteins. Seventeen percent of the proteins are annotated

in GenBank as laccases. Eighty-three percent of the proteins

Table 1. LccED families, sequences and structures

Superfamily Homologous

families

Proteins Structures

A (Basidiomycete Laccases) 4 201 13

B (Ascomycete Laccases) 6 421 6

C (Insect Laccases) 8 168 0

D (Fungal Pigment MCOs) 4 55 0

E (Fungal Ferroxidases) 6 117 6

F (Fungal and plant AOs) 6 137 8

G (Plant Laccases) 5 333 0

H (Bacterial CopA Proteins) 6 383 0

I (Bacterial Bilirubin Oxidases) 5 149 24

J (Bacterial CueO Proteins) 5 310 11

K (SLAC homologs) 1 18 3
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Figure 1. Phylogenetic tree for the homologous family I1 (Bilirubin oxidases).The chosen coloring option is ‘by kingdom’. Entries
of bacterial origin are shown in blue, fungal entries in red, plant proteins in green and non-specified entries are colored in black.
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contain pattern L1, 40% M2, 23% L3 and 3% M4. Forty-five

percent of the entries are annotated as putative.

Family F (Fungal and Plant Ascorbate Oxidases) mainly

contain proteins of plant origin (homologous families

F2–F6). Twelve percent are of fungal origin and clustered

all to the homologous family F1. Two percent are anno-

tated as laccases in GenBank. In this family, 88% of the

proteins contain pattern L1, 56% M2, 66% L3 and 66%

M4. Sixty-two percent of the entries are annotated as

putative.

Family G (Plant Laccases) exclusively contains proteins of

plant origin and 83% are annotated as laccases in GenBank

(homologous families G1–G5). Fifteen percent of the pro-

teins contain pattern L1, 88% contain pattern M2, 77%

contain pattern L3 and 2% contain pattern M4.

Fifty-three percent of the entries are annotated as putative.

Family H (Bacterial CopA Proteins) contains proteins of

which 98% were of bacterial origin (homologous families

H1–H6). Eighty-three percent are annotated as laccases in

GenBank. Fifty percent contain pattern L1, 50% M2, 42%

L3 and 3% M4. Six percent of the entries are annotated as

putative.

Family I (Bilirubin Oxidases) contains proteins of which

70% were of bacterial origin (homologous families I1–I5),

15% of plant origin (homologous family I3), 10% of fungal

origin (homologous family I1) and 5% of unspecified source

organism (Figure 1). Three percent are annotated in

GenBank as laccases. Seventy percent contain pattern L1,

92% M2, 91% L3 and 65% M4. Twenty-six percent of the

entries are annotated as putative.

Family J (Bacterial CueO Proteins) contains proteins of

which 90% were of bacterial origin (homologous families

J1–J4) and 10% of eukaryotic origin (homologous family

J5). Twelve percent are annotated as laccases in GenBank.

Seventy-four percent of the proteins contain pattern L1,

75% M2, 76% L3 and 3% M4. Thirty-nine percent of the

entries are annotated as putative.

Family K (SLAC) which contains exclusively members of

the ‘small laccase family’ which all are of bacterial origin,

annotated as MCOs in GenBank and contain only pattern

L4. Six percent of the entries are annotated as putative.

Besides the slight variations within the laccase and MCO

sequence patterns almost all MCO sequences share the

same highly conserved copper binding residues (Figure 2).

Figure 2. Copper binding residues of laccase from Trametes versicolor [PDB entry 1GYC, (39)].The copper centers are shown in
orange, the residues that match the defined pattern L1, M2, L3, M4 are colored in red, green, blue, and yellow, respectively
[visualization by PyMOL (40)].

.............................................................................................................................................................................................................................................................................................

Page 5 of 7

Database, Vol. 2011, Article ID bar006, doi:10.1093/database/bar006 Original article
.............................................................................................................................................................................................................................................................................................

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bar006/462244 by guest on 19 April 2024



They could be identified and annotated by a manual valid-

ation of each family-specific multisequence alignment. Only

within homologous families F5, F6, H3 and J2 these residues

could not be detected.

Discussion

As suggested previously (23), the 10 MCO superfamilies

were named by combining the name of the prevailing

source organism and the putative enzymatic function.

The overall distribution of source organisms among the

families generally agreed with the initial classification.

Since the assignment of a protein to a superfamily was ex-

clusively based on sequence similarity, it was expected to

find in the same family proteins from different source or-

ganisms, even from different kingdoms of life. Indeed,

most families consisted of a majority of proteins belonging

to one kingdom with a minority from other kingdoms, des-

pite a sequence similarity as high as 40%. A systematic clas-

sification of all proteins by sequence similarity only was

prerequisite to a reliable sequence alignment of superfami-

lies and to identify conserved, functionally relevant se-

quence patterns. However, a systematic analysis of

previously described MCO- and laccase-specific patterns

(4–6), which have been derived from a small number of

MCOs and laccases, demonstrated their low sensitivity.

This is also supported by the high number of false negatives

which were retrieved by a manual analysis of the respective

regions of the multisequence alignments (Supplementary

Table S2). The MCO patterns M2 and M4 were only found

in 15 and 65% of all MCOs (Supplementary Table S1), re-

spectively. Nine percent of all MCOs contain both M2 and

M4. To differentiate laccases from other MCOs is even more

difficult. If we assume that sequence similarity is an indica-

tion of function similarities, there are four superfamilies

which contain putative laccases. However, for these

families the laccase-specific patterns L1 and L3 were only

found in 45 and 37% of the sequences, respectively

(Supplementary Table S1). Only 8% of all putative laccases

contain all four patterns simultaneously. This low percent-

age of positive hits could either indicate that ‘laccase super-

families’ contain MCOs without laccases activity, or it might

be caused by the too restrictive patterns. As an alternative

to patterns, sequence profiles are widely used to specify

functionally related protein families (32, 33). Therefore,

for each superfamily, a hidden Markov profile is provided,

and the four copper binding regions are consistently anno-

tated in the LccED.

To define discriminating rules for laccases, more detailed

functional studies are needed. Newly gained information,

for example, on redox potential or the effect of mutations,

can be added to readily prepared tables and may be trans-

ferred on closely related proteins. It has been shown previ-

ously that a systematic classification of large protein

families based on sequence similarity and comprehensive

analysis tools as provided by the LccED serve as a reliable

framework for studying sequence–structure–function rela-

tionships of enzyme families (34–36) and for the design of

mutants or focused mutant libraries with improved bio-

chemical properties (37, 38).

Conclusion

The LccED enables the systematic classification and analysis

of MCO sequences and structures from different public

sources. The integration of protein data in a relational

database system has been used to study the molecular

basis of biochemical properties and to investigate se-

quence–structure–function relationships. The LccED comes

with a set of tools for phylogenetic analysis and classifica-

tion. The annotated multisequence alignments allow the

identification of the regions which house the copper

atoms and other functionally relevant residues.

Availability

The LccED is available at http://www.LccED.uni-stuttgart.de.

Via this web interface all sequences, alignments and trees

are accessible and all data are supplied for download.

Supplementary Data

Supplementary data are available at Database online.
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